1
|
|
|
import geopandas as gpd |
2
|
|
|
import numpy as np |
3
|
|
|
import pandas as pd |
4
|
|
|
|
5
|
|
|
from egon.data import db |
6
|
|
|
from egon.data.datasets.mastr import WORKING_DIR_MASTR_NEW |
7
|
|
|
import egon.data.config |
8
|
|
|
|
9
|
|
|
|
10
|
|
|
def insert(): |
11
|
|
|
def mastr_existing_pv(pow_per_area): |
12
|
|
|
"""Import MaStR data from csv-files. |
13
|
|
|
|
14
|
|
|
Parameters |
15
|
|
|
---------- |
16
|
|
|
pow_per_area: int |
17
|
|
|
Assumption for areas of existing pv farms and power of new built |
18
|
|
|
pv farms depending on area in kW/m² |
19
|
|
|
|
20
|
|
|
""" |
21
|
|
|
# get config |
22
|
|
|
cfg = egon.data.config.datasets()["power_plants"] |
23
|
|
|
|
24
|
|
|
# import MaStR data: locations, grid levels and installed capacities |
25
|
|
|
|
26
|
|
|
# get relevant pv plants: ground mounted |
27
|
|
|
df = pd.read_csv( |
28
|
|
|
WORKING_DIR_MASTR_NEW / cfg["sources"]["mastr_pv"], |
29
|
|
|
usecols=[ |
30
|
|
|
"Lage", |
31
|
|
|
"Laengengrad", |
32
|
|
|
"Breitengrad", |
33
|
|
|
"Nettonennleistung", |
34
|
|
|
"EinheitMastrNummer", |
35
|
|
|
"LokationMastrNummer", |
36
|
|
|
], |
37
|
|
|
) |
38
|
|
|
df = df[df["Lage"] == "Freifläche"] |
39
|
|
|
|
40
|
|
|
# examine data concerning geographical locations and drop NaNs |
41
|
|
|
x1 = df["Laengengrad"].isnull().sum() |
42
|
|
|
x2 = df["Breitengrad"].isnull().sum() |
43
|
|
|
print(" ") |
44
|
|
|
print("Examination of MaStR data set:") |
45
|
|
|
print("original number of rows in the data set: " + str(len(df))) |
46
|
|
|
print("NaNs for longitude and latitude: " + str(x1) + " & " + str(x2)) |
47
|
|
|
df.dropna(inplace=True) |
48
|
|
|
print("Number of rows after neglecting NaNs: " + str(len(df))) |
49
|
|
|
print(" ") |
50
|
|
|
|
51
|
|
|
# derive dataframe for locations |
52
|
|
|
mastr = gpd.GeoDataFrame( |
53
|
|
|
index=df.index, |
54
|
|
|
geometry=gpd.points_from_xy(df["Laengengrad"], df["Breitengrad"]), |
55
|
|
|
crs={"init": "epsg:4326"}, |
56
|
|
|
) |
57
|
|
|
mastr = mastr.to_crs(3035) |
58
|
|
|
|
59
|
|
|
# derive installed capacities |
60
|
|
|
mastr["installed capacity in kW"] = df["Nettonennleistung"] |
61
|
|
|
|
62
|
|
|
# create buffer around locations |
63
|
|
|
|
64
|
|
|
# calculate bufferarea and -radius considering installed capacity |
65
|
|
|
df_radius = ( |
66
|
|
|
mastr["installed capacity in kW"].div(pow_per_area * np.pi) ** 0.5 |
67
|
|
|
) # in m |
68
|
|
|
|
69
|
|
|
# create buffer |
70
|
|
|
mastr["buffer"] = mastr["geometry"].buffer(df_radius) |
71
|
|
|
mastr["buffer"].crs = 3035 |
72
|
|
|
|
73
|
|
|
# derive MaStR-Nummer |
74
|
|
|
mastr["LokationMastrNummer"] = df["LokationMastrNummer"] |
75
|
|
|
|
76
|
|
|
# derive voltage level |
77
|
|
|
|
78
|
|
|
mastr["voltage_level"] = pd.Series(dtype=int) |
79
|
|
|
lvl = pd.read_csv( |
80
|
|
|
WORKING_DIR_MASTR_NEW / cfg["sources"]["mastr_location"], |
81
|
|
|
usecols=["Spannungsebene", "MaStRNummer"], |
82
|
|
|
) |
83
|
|
|
|
84
|
|
|
# assign voltage_level to MaStR-unit: |
85
|
|
|
|
86
|
|
|
vlevel_mapping = { |
87
|
|
|
"Höchstspannung": 1, |
88
|
|
|
"UmspannungZurHochspannung": 2, |
89
|
|
|
"Hochspannung": 3, |
90
|
|
|
"UmspannungZurMittelspannung": 4, |
91
|
|
|
"Mittelspannung": 5, |
92
|
|
|
"UmspannungZurNiederspannung": 6, |
93
|
|
|
"Niederspannung": 7, |
94
|
|
|
} |
95
|
|
|
|
96
|
|
|
mastr = mastr.merge( |
97
|
|
|
lvl[["MaStRNummer", "Spannungsebene"]], |
98
|
|
|
left_on="LokationMastrNummer", |
99
|
|
|
right_on="MaStRNummer", |
100
|
|
|
how="left", |
101
|
|
|
) |
102
|
|
|
|
103
|
|
|
mastr["voltage_level"] = mastr.Spannungsebene.replace(vlevel_mapping) |
104
|
|
|
|
105
|
|
|
mastr.drop(["MaStRNummer", "Spannungsebene"], axis=1, inplace=True) |
106
|
|
|
|
107
|
|
|
# ### examine data concerning voltage level |
108
|
|
|
x1 = mastr["voltage_level"].isnull().sum() |
109
|
|
|
print(" ") |
110
|
|
|
print("Examination of voltage levels in MaStR data set:") |
111
|
|
|
print("Original number of rows in MaStR: " + str(len(mastr))) |
112
|
|
|
print( |
113
|
|
|
"NaNs in voltage level caused by a) a missing assignment to the " |
114
|
|
|
"number or b) insufficient data: " + str(x1) |
115
|
|
|
) |
116
|
|
|
# drop PVs with missing values due to a) no assignment of |
117
|
|
|
# MaStR-numbers or b) missing data in row |
118
|
|
|
mastr.dropna(inplace=True) |
119
|
|
|
print("Number of rows after neglecting NaNs: " + str(len(mastr))) |
120
|
|
|
|
121
|
|
|
# drop PVs in low voltage level |
122
|
|
|
index_names = mastr[mastr["voltage_level"] == "Niederspannung"].index |
123
|
|
|
x2 = len(index_names) |
124
|
|
|
mastr.drop(index_names, inplace=True) |
125
|
|
|
index_names = mastr[ |
126
|
|
|
mastr["voltage_level"] == "UmspannungZurNiederspannung" |
127
|
|
|
].index |
128
|
|
|
x3 = len(index_names) |
129
|
|
|
mastr.drop(index_names, inplace=True) |
130
|
|
|
|
131
|
|
|
# ### further examination |
132
|
|
|
print("Number of PVs in low voltage level: " + str(x2)) |
133
|
|
|
print("Number of PVs in LVMV level: " + str(x3)) |
134
|
|
|
print( |
135
|
|
|
"Number of rows after dropping entries assigned to these levels: " |
136
|
|
|
+ str(len(mastr)) |
137
|
|
|
) |
138
|
|
|
print(" ") |
139
|
|
|
|
140
|
|
|
return mastr |
141
|
|
|
|
142
|
|
|
def potential_areas(con, join_buffer): |
143
|
|
|
"""Import potential areas and choose and prepare areas suitable for PV |
144
|
|
|
ground mounted. |
145
|
|
|
|
146
|
|
|
Parameters |
147
|
|
|
---------- |
148
|
|
|
con: |
149
|
|
|
Connection to database |
150
|
|
|
join_buffer: int |
151
|
|
|
Maximum distance for joining of potential areas (only small ones |
152
|
|
|
to big ones) in m |
153
|
|
|
|
154
|
|
|
""" |
155
|
|
|
|
156
|
|
|
# import potential areas: railways and roads & agriculture |
157
|
|
|
|
158
|
|
|
# roads and railway |
159
|
|
|
sql = ( |
160
|
|
|
"SELECT id, geom FROM " |
161
|
|
|
"supply.egon_re_potential_area_pv_road_railway" |
162
|
|
|
) |
163
|
|
|
potentials_rora = gpd.GeoDataFrame.from_postgis(sql, con) |
164
|
|
|
potentials_rora = potentials_rora.set_index("id") |
165
|
|
|
|
166
|
|
|
# agriculture |
167
|
|
|
sql = ( |
168
|
|
|
"SELECT id, geom FROM " |
169
|
|
|
"supply.egon_re_potential_area_pv_agriculture" |
170
|
|
|
) |
171
|
|
|
potentials_agri = gpd.GeoDataFrame.from_postgis(sql, con) |
172
|
|
|
potentials_agri = potentials_agri.set_index("id") |
173
|
|
|
|
174
|
|
|
# add areas < 1 ha to bigger areas if they are very close, otherwise |
175
|
|
|
# exclude areas < 1 ha |
176
|
|
|
|
177
|
|
|
# calculate area |
178
|
|
|
potentials_rora["area"] = potentials_rora.area |
179
|
|
|
potentials_agri["area"] = potentials_agri.area |
180
|
|
|
|
181
|
|
|
# roads and railways |
182
|
|
|
|
183
|
|
|
# ### counting variable for examination |
184
|
|
|
before = len(potentials_rora) |
185
|
|
|
|
186
|
|
|
# get small areas and create buffer for joining around them |
187
|
|
|
small_areas = potentials_rora[potentials_rora["area"] < 10000] |
188
|
|
|
small_buffers = small_areas.copy() |
189
|
|
|
small_buffers["geom"] = small_areas["geom"].buffer(join_buffer) |
190
|
|
|
|
191
|
|
|
# drop small areas in potential areas |
192
|
|
|
index_names = potentials_rora[potentials_rora["area"] < 10000].index |
193
|
|
|
potentials_rora.drop(index_names, inplace=True) |
194
|
|
|
|
195
|
|
|
# check intersection of small areas with other potential areas |
196
|
|
|
overlay = gpd.sjoin(potentials_rora, small_buffers) |
197
|
|
|
o = overlay["index_right"] |
198
|
|
|
o.drop_duplicates(inplace=True) |
199
|
|
|
|
200
|
|
|
# add small areas to big ones if buffer intersects |
201
|
|
|
for i in range(0, len(o)): |
202
|
|
|
index_potentials = o.index[i] |
203
|
|
|
index_small = o.iloc[i] |
204
|
|
|
x = potentials_rora["geom"].loc[index_potentials] |
205
|
|
|
y = small_areas["geom"].loc[index_small] |
206
|
|
|
join = gpd.GeoSeries(data=[x, y]) |
207
|
|
|
potentials_rora["geom"].loc[index_potentials] = join.unary_union |
208
|
|
|
|
209
|
|
|
# ### examination of joining of areas |
210
|
|
|
count_small = len(small_buffers) |
211
|
|
|
count_join = len(o) |
212
|
|
|
count_delete = count_small - count_join |
213
|
|
|
print(" ") |
214
|
|
|
print( |
215
|
|
|
"Examination of potential areas in category 'Roads and Railways'" |
216
|
|
|
) |
217
|
|
|
print("Length of original data frame: " + str(before)) |
218
|
|
|
print("Number of small areas: " + str(count_small)) |
219
|
|
|
print("Number of joins: " + str(count_join)) |
220
|
|
|
print("Deleted areas (not joined): " + str(count_delete)) |
221
|
|
|
print("Length of resulting data frame: " + str(len(potentials_rora))) |
222
|
|
|
print(" ") |
223
|
|
|
|
224
|
|
|
# agriculture |
225
|
|
|
|
226
|
|
|
# ### counting variable for examination |
227
|
|
|
before = len(potentials_agri) |
228
|
|
|
|
229
|
|
|
# get small areas and create buffer for joining around them |
230
|
|
|
small_areas = potentials_agri[potentials_agri["area"] < 10000] |
231
|
|
|
small_buffers = small_areas.copy() |
232
|
|
|
small_buffers["geom"] = small_areas["geom"].buffer(join_buffer) |
233
|
|
|
|
234
|
|
|
# drop small areas in potential areas |
235
|
|
|
index_names = potentials_agri[potentials_agri["area"] < 10000].index |
236
|
|
|
potentials_agri.drop(index_names, inplace=True) |
237
|
|
|
|
238
|
|
|
# check intersection of small areas with other potential areas |
239
|
|
|
overlay = gpd.sjoin(potentials_agri, small_buffers) |
240
|
|
|
o = overlay["index_right"] |
241
|
|
|
o.drop_duplicates(inplace=True) |
242
|
|
|
|
243
|
|
|
# add small areas to big ones if buffer intersects |
244
|
|
|
for i in range(0, len(o)): |
245
|
|
|
index_potentials = o.index[i] |
246
|
|
|
index_small = o.iloc[i] |
247
|
|
|
x = potentials_agri["geom"].loc[index_potentials] |
248
|
|
|
y = small_areas["geom"].loc[index_small] |
249
|
|
|
join = gpd.GeoSeries(data=[x, y]) |
250
|
|
|
potentials_agri["geom"].loc[index_potentials] = join.unary_union |
251
|
|
|
|
252
|
|
|
# ### examination of joining of areas |
253
|
|
|
count_small = len(small_buffers) |
254
|
|
|
count_join = len(o) |
255
|
|
|
count_delete = count_small - count_join |
256
|
|
|
print(" ") |
257
|
|
|
print("Examination of potential areas in category 'Agriculture'") |
258
|
|
|
print("Length of original data frame: " + str(before)) |
259
|
|
|
print("Number of small areas: " + str(count_small)) |
260
|
|
|
print("Number of joins: " + str(count_join)) |
261
|
|
|
print("Deleted areas (not joined): " + str(count_delete)) |
262
|
|
|
print("Length of resulting data frame: " + str(len(potentials_agri))) |
263
|
|
|
print(" ") |
264
|
|
|
|
265
|
|
|
# calculate new areas |
266
|
|
|
potentials_rora["area"] = potentials_rora.area |
267
|
|
|
potentials_agri["area"] = potentials_agri.area |
268
|
|
|
|
269
|
|
|
# check intersection of potential areas |
270
|
|
|
|
271
|
|
|
# ### counting variable |
272
|
|
|
agri_vorher = len(potentials_agri) |
273
|
|
|
|
274
|
|
|
# if areas intersect, keep road & railway potential areas and drop |
275
|
|
|
# agricultural ones |
276
|
|
|
overlay = gpd.sjoin(potentials_rora, potentials_agri) |
277
|
|
|
o = overlay["index_right"] |
278
|
|
|
o.drop_duplicates(inplace=True) |
279
|
|
|
for i in range(0, len(o)): |
280
|
|
|
index = o.iloc[i] |
281
|
|
|
potentials_agri.drop([index], inplace=True) |
282
|
|
|
|
283
|
|
|
# ### examination of intersection of areas |
284
|
|
|
print(" ") |
285
|
|
|
print("Review function to avoid intersection of potential areas:") |
286
|
|
|
print("Initial length potentials_agri: " + str(agri_vorher)) |
287
|
|
|
print("Number of occurred cases: " + str(len(o))) |
288
|
|
|
print("Resulting length potentials_agri: " + str(len(potentials_agri))) |
289
|
|
|
print(" ") |
290
|
|
|
|
291
|
|
|
return potentials_rora, potentials_agri |
292
|
|
|
|
293
|
|
|
def select_pot_areas(mastr, potentials_pot): |
294
|
|
|
"""Select potential areas where there are existing pv parks |
295
|
|
|
(MaStR-data). |
296
|
|
|
|
297
|
|
|
Parameters |
298
|
|
|
---------- |
299
|
|
|
mastr: gpd.GeoDataFrame() |
300
|
|
|
MaStR-DataFrame with existing pv parks |
301
|
|
|
potentials_pot: gpd.GeoDataFrame() |
302
|
|
|
Suitable potential areas |
303
|
|
|
|
304
|
|
|
""" |
305
|
|
|
|
306
|
|
|
# select potential areas with existing pv parks |
307
|
|
|
# (potential areas intersect buffer around existing plants) |
308
|
|
|
|
309
|
|
|
# prepare dataframes to check intersection |
310
|
|
|
pvs = gpd.GeoDataFrame() |
311
|
|
|
pvs["geom"] = mastr["buffer"].copy() |
312
|
|
|
pvs.set_geometry("geom", inplace=True) |
313
|
|
|
pvs.crs = 3035 |
314
|
|
|
pvs = pvs.set_geometry("geom") |
315
|
|
|
potentials = gpd.GeoDataFrame() |
316
|
|
|
potentials["geom"] = potentials_pot["geom"].copy() |
317
|
|
|
potentials.set_geometry("geom", inplace=True) |
318
|
|
|
potentials.crs = 3035 |
319
|
|
|
potentials = potentials.set_geometry("geom") |
320
|
|
|
|
321
|
|
|
# check intersection of potential areas with exisiting PVs (MaStR) |
322
|
|
|
overlay = gpd.sjoin(pvs, potentials) |
323
|
|
|
o = overlay["index_right"] |
324
|
|
|
o.drop_duplicates(inplace=True) |
325
|
|
|
|
326
|
|
|
# define selected potentials areas |
327
|
|
|
pot_sel = potentials_pot.copy() |
328
|
|
|
pot_sel["selected"] = pd.Series() |
329
|
|
|
pot_sel["voltage_level"] = pd.Series(dtype=int) |
330
|
|
|
for i in range(0, len(o)): |
331
|
|
|
index_pot = o.iloc[i] |
332
|
|
|
pot_sel["selected"].loc[index_pot] = True |
333
|
|
|
# get voltage level of existing PVs |
334
|
|
|
index_pv = o.index[i] |
335
|
|
|
pot_sel["voltage_level"] = mastr["voltage_level"].loc[index_pv] |
336
|
|
|
pot_sel = pot_sel[pot_sel["selected"] == True] |
337
|
|
|
pot_sel.drop("selected", axis=1, inplace=True) |
338
|
|
|
|
339
|
|
|
# drop selected existing pv parks from mastr |
340
|
|
|
mastr.drop(index=o.index, inplace=True) |
341
|
|
|
|
342
|
|
|
return (pot_sel, mastr) |
343
|
|
|
|
344
|
|
|
def build_pv(pv_pot, pow_per_area): |
345
|
|
|
"""Build new pv parks in selected potential areas. |
346
|
|
|
|
347
|
|
|
Parameters |
348
|
|
|
---------- |
349
|
|
|
pv_pot: gpd.GeoDataFrame() |
350
|
|
|
Selected potential areas |
351
|
|
|
pow_per_area: int |
352
|
|
|
Assumption for areas of existing pv farms and power of new built |
353
|
|
|
pv farms depending on area in kW/m² |
354
|
|
|
|
355
|
|
|
""" |
356
|
|
|
|
357
|
|
|
# build pv farms in selected areas |
358
|
|
|
|
359
|
|
|
# calculation of centroids |
360
|
|
|
pv_pot["centroid"] = pv_pot["geom"].representative_point() |
361
|
|
|
|
362
|
|
|
# calculation of power in kW |
363
|
|
|
pv_pot["installed capacity in kW"] = pd.Series() |
364
|
|
|
pv_pot["installed capacity in kW"] = pv_pot["area"] * pow_per_area |
365
|
|
|
|
366
|
|
|
# check for maximal capacity for PV ground mounted |
367
|
|
|
limit_cap = 120000 # in kW |
368
|
|
|
pv_pot["installed capacity in kW"] = pv_pot[ |
369
|
|
|
"installed capacity in kW" |
370
|
|
|
].apply(lambda x: x if x < limit_cap else limit_cap) |
371
|
|
|
|
372
|
|
|
return pv_pot |
373
|
|
|
|
374
|
|
|
def adapt_grid_level(pv_pot, max_dist_hv, con): |
375
|
|
|
"""Check and if needed adapt grid level of newly built pv parks. |
376
|
|
|
|
377
|
|
|
Parameters |
378
|
|
|
---------- |
379
|
|
|
pv_pot: gpd.GeoDataFrame() |
380
|
|
|
Newly built pv parks on selected potential areas |
381
|
|
|
max_dist_hv: int |
382
|
|
|
Assumption for maximum distance of park with hv-power to next |
383
|
|
|
substation in m |
384
|
|
|
con: |
385
|
|
|
Connection to database |
386
|
|
|
|
387
|
|
|
""" |
388
|
|
|
|
389
|
|
|
# divide dataframe in MV and HV |
390
|
|
|
pv_pot_mv = pv_pot[pv_pot["voltage_level"] == 5] |
391
|
|
|
pv_pot_hv = pv_pot[pv_pot["voltage_level"] == 4] |
392
|
|
|
|
393
|
|
|
# check installed capacity in MV |
394
|
|
|
|
395
|
|
|
max_cap_mv = 5500 # in kW |
396
|
|
|
|
397
|
|
|
# find PVs which need to be HV or to have reduced capacity |
398
|
|
|
pv_pot_mv_to_hv = pv_pot_mv[ |
399
|
|
|
pv_pot_mv["installed capacity in kW"] > max_cap_mv |
400
|
|
|
] |
401
|
|
|
|
402
|
|
|
if len(pv_pot_mv_to_hv) > 0: |
403
|
|
|
# import data for HV substations |
404
|
|
|
|
405
|
|
|
sql = "SELECT point, voltage FROM grid.egon_hvmv_substation" |
406
|
|
|
hvmv_substation = gpd.GeoDataFrame.from_postgis( |
407
|
|
|
sql, con, geom_col="point" |
408
|
|
|
) |
409
|
|
|
hvmv_substation = hvmv_substation.to_crs(3035) |
410
|
|
|
hvmv_substation["voltage"] = hvmv_substation["voltage"].apply( |
411
|
|
|
lambda x: int(x.split(";")[0]) |
412
|
|
|
) |
413
|
|
|
hv_substations = hvmv_substation[ |
414
|
|
|
hvmv_substation["voltage"] >= 110000 |
415
|
|
|
] |
416
|
|
|
hv_substations = ( |
417
|
|
|
hv_substations.unary_union |
418
|
|
|
) # join all the hv_substations |
419
|
|
|
|
420
|
|
|
# check distance to HV substations of PVs with too high installed |
421
|
|
|
# capacity for MV |
422
|
|
|
|
423
|
|
|
# calculate distance to substations |
424
|
|
|
pv_pot_mv_to_hv["dist_to_HV"] = ( |
425
|
|
|
pv_pot_mv_to_hv["geom"].to_crs(3035).distance(hv_substations) |
426
|
|
|
) |
427
|
|
|
|
428
|
|
|
# adjust grid level and keep capacity if transmission lines are |
429
|
|
|
# close |
430
|
|
|
pv_pot_mv_to_hv = pv_pot_mv_to_hv[ |
431
|
|
|
pv_pot_mv_to_hv["dist_to_HV"] <= max_dist_hv |
432
|
|
|
] |
433
|
|
|
pv_pot_mv_to_hv = pv_pot_mv_to_hv.drop(columns=["dist_to_HV"]) |
434
|
|
|
pv_pot_hv = pd.concat([pv_pot_hv, pv_pot_mv_to_hv]) |
435
|
|
|
|
436
|
|
|
# delete PVs which are now HV from MV dataframe |
437
|
|
|
for index, pot in pv_pot_mv_to_hv.iterrows(): |
438
|
|
|
pv_pot_mv = pv_pot_mv.drop([index]) |
439
|
|
|
pv_pot_hv["voltage_level"] = 4 |
440
|
|
|
|
441
|
|
|
# keep grid level adjust capacity if transmission lines are too |
442
|
|
|
# far |
443
|
|
|
pv_pot_mv["installed capacity in kW"] = pv_pot_mv[ |
444
|
|
|
"installed capacity in kW" |
445
|
|
|
].apply(lambda x: x if x < max_cap_mv else max_cap_mv) |
446
|
|
|
pv_pot_mv["voltage_level"] = 5 |
447
|
|
|
|
448
|
|
|
pv_pot = pd.concat([pv_pot_mv, pv_pot_hv]) |
449
|
|
|
|
450
|
|
|
return pv_pot |
451
|
|
|
|
452
|
|
|
def build_additional_pv(potentials, pv, pow_per_area, con): |
453
|
|
|
"""Build additional pv parks if pv parks on selected potential areas |
454
|
|
|
do not hit the target value. |
455
|
|
|
|
456
|
|
|
Parameters |
457
|
|
|
---------- |
458
|
|
|
potenatials: gpd.GeoDataFrame() |
459
|
|
|
All suitable potential areas |
460
|
|
|
pv: gpd.GeoDataFrame() |
461
|
|
|
Newly built pv parks on selected potential areas |
462
|
|
|
pow_per_area: int |
463
|
|
|
Assumption for areas of existing pv farms and power of new built |
464
|
|
|
pv farms depending on area in kW/m² |
465
|
|
|
con: |
466
|
|
|
Connection to database |
467
|
|
|
|
468
|
|
|
""" |
469
|
|
|
|
470
|
|
|
# get MV grid districts |
471
|
|
|
sql = "SELECT bus_id, geom FROM grid.egon_mv_grid_district" |
472
|
|
|
distr = gpd.GeoDataFrame.from_postgis(sql, con) |
473
|
|
|
distr = distr.set_index("bus_id") |
474
|
|
|
|
475
|
|
|
# identify potential areas where there are no PV parks yet |
476
|
|
|
for index, pv in pv.iterrows(): |
477
|
|
|
potentials = potentials.drop([index]) |
478
|
|
|
|
479
|
|
|
# aggregate potential area per MV grid district |
480
|
|
|
pv_per_distr = gpd.GeoDataFrame() |
481
|
|
|
pv_per_distr["geom"] = distr["geom"].copy() |
482
|
|
|
centroids = potentials.copy() |
483
|
|
|
centroids["geom"] = centroids["geom"].representative_point() |
484
|
|
|
|
485
|
|
|
overlay = gpd.sjoin(centroids, distr) |
486
|
|
|
|
487
|
|
|
# ### examine potential area per grid district |
488
|
|
|
anz = len(overlay) |
489
|
|
|
anz_distr = len(overlay["index_right"].unique()) |
490
|
|
|
size = 137500 # m2 Fläche für > 5,5 MW: (5500 kW / (0,04 kW/m2)) |
491
|
|
|
anz_big = len(overlay[overlay["area"] >= size]) |
492
|
|
|
anz_small = len(overlay[overlay["area"] < size]) |
493
|
|
|
|
494
|
|
|
print(" ") |
495
|
|
|
print( |
496
|
|
|
"Examination of remaining potential areas in MV grid districts: " |
497
|
|
|
) |
498
|
|
|
print("Number of potential areas: " + str(anz)) |
499
|
|
|
print(" -> distributed to " + str(anz_distr) + " districts") |
500
|
|
|
print("Number of areas with a potential >= 5,5 MW: " + str(anz_big)) |
501
|
|
|
print("Number of areas with a potential < 5,5 MW: " + str(anz_small)) |
502
|
|
|
print(" ") |
503
|
|
|
|
504
|
|
|
for index, dist in distr.iterrows(): |
505
|
|
|
pots = overlay[overlay["index_right"] == index]["geom"].index |
506
|
|
|
p = gpd.GeoSeries(index=pots) |
507
|
|
|
for i in pots: |
508
|
|
|
p.loc[i] = potentials["geom"].loc[i] |
509
|
|
|
pv_per_distr["geom"].loc[index] = p.unary_union |
510
|
|
|
|
511
|
|
|
# calculate area per MV grid district and linearly distribute needed |
512
|
|
|
# capacity considering pow_per_area |
513
|
|
|
pv_per_distr["area"] = pv_per_distr["geom"].area |
514
|
|
|
pv_per_distr["installed capacity in kW"] = ( |
515
|
|
|
pv_per_distr["area"] * pow_per_area |
516
|
|
|
) |
517
|
|
|
|
518
|
|
|
# calculate centroid |
519
|
|
|
pv_per_distr["centroid"] = pv_per_distr["geom"].representative_point() |
520
|
|
|
|
521
|
|
|
return pv_per_distr |
522
|
|
|
|
523
|
|
|
def check_target( |
524
|
|
|
pv_rora_i, |
525
|
|
|
pv_agri_i, |
526
|
|
|
pv_exist_i, |
527
|
|
|
potentials_rora_i, |
528
|
|
|
potentials_agri_i, |
529
|
|
|
target_power, |
530
|
|
|
pow_per_area, |
531
|
|
|
con, |
532
|
|
|
): |
533
|
|
|
"""Check target value per scenario and per state. |
534
|
|
|
|
535
|
|
|
Parameters |
536
|
|
|
---------- |
537
|
|
|
pv_rora_i: gpd.GeoDataFrame() |
538
|
|
|
Newly built pv parks on selected potential areas of road and |
539
|
|
|
railways p |
540
|
|
|
pv_agri_i: gpd.GeoDataFrame() |
541
|
|
|
Newly built pv parks on selected potential areas of agriculture |
542
|
|
|
pv_exist_i: gpd.GeoDataFrame() |
543
|
|
|
existing pv parks that don't intercept any potential area |
544
|
|
|
potenatials_rora_i: gpd.GeoDataFrame() |
545
|
|
|
All suitable potential areas of road and railway |
546
|
|
|
potenatials_rora_i: gpd.GeoDataFrame() |
547
|
|
|
All suitable potential areas of agriculture |
548
|
|
|
target_power: int |
549
|
|
|
Target for installed capacity of pv ground mounted in referenced |
550
|
|
|
state |
551
|
|
|
pow_per_area: int |
552
|
|
|
Assumption for areas of existing pv farms and power of new built |
553
|
|
|
pv farms depending on area in kW/m² |
554
|
|
|
con: |
555
|
|
|
Connection to database |
556
|
|
|
|
557
|
|
|
""" |
558
|
|
|
|
559
|
|
|
# sum overall installed capacity for MV and HV |
560
|
|
|
|
561
|
|
|
total_pv_power = ( |
562
|
|
|
pv_rora_i["installed capacity in kW"].sum() |
563
|
|
|
+ pv_agri_i["installed capacity in kW"].sum() |
564
|
|
|
+ pv_exist_i["installed capacity in kW"].sum() |
565
|
|
|
) |
566
|
|
|
|
567
|
|
|
pv_per_distr_i = gpd.GeoDataFrame() |
568
|
|
|
|
569
|
|
|
# check target value |
570
|
|
|
|
571
|
|
|
### |
572
|
|
|
print(" ") |
573
|
|
|
print( |
574
|
|
|
"Installed capacity on areas with existing plants: " |
575
|
|
|
+ str(total_pv_power / 1000) |
576
|
|
|
+ " MW" |
577
|
|
|
) |
578
|
|
|
|
579
|
|
|
# linear scale farms to meet target if sum of installed capacity is |
580
|
|
|
# too high |
581
|
|
|
if total_pv_power >= target_power: |
582
|
|
|
scale_factor = target_power / total_pv_power |
583
|
|
|
pv_rora_i["installed capacity in kW"] = ( |
584
|
|
|
pv_rora_i["installed capacity in kW"] * scale_factor |
585
|
|
|
) |
586
|
|
|
pv_agri_i["installed capacity in kW"] = ( |
587
|
|
|
pv_agri_i["installed capacity in kW"] * scale_factor |
588
|
|
|
) |
589
|
|
|
pv_exist_i["installed capacity in kW"] = ( |
590
|
|
|
pv_exist_i["installed capacity in kW"] * scale_factor |
591
|
|
|
) |
592
|
|
|
|
593
|
|
|
pv_per_distr_i["grid_district"] = pd.Series() |
594
|
|
|
pv_per_distr_i["installed capacity in kW"] = pd.Series(0) |
595
|
|
|
|
596
|
|
|
### |
597
|
|
|
print( |
598
|
|
|
"Expansion of existing PV parks on potential areas to " |
599
|
|
|
"achieve target capacity is sufficient." |
600
|
|
|
) |
601
|
|
|
print( |
602
|
|
|
"Installed power is greater than the target value, scaling " |
603
|
|
|
"is applied:" |
604
|
|
|
) |
605
|
|
|
print("Scaling factor: " + str(scale_factor)) |
606
|
|
|
|
607
|
|
|
# build new pv parks if sum of installed capacity is below target |
608
|
|
|
# value |
609
|
|
|
elif total_pv_power < target_power: |
610
|
|
|
rest_cap = target_power - total_pv_power |
611
|
|
|
|
612
|
|
|
### |
613
|
|
|
print( |
614
|
|
|
"Expansion of existing PV parks on potential areas to " |
615
|
|
|
"achieve target capacity is unsufficient:" |
616
|
|
|
) |
617
|
|
|
print("Residual capacity: " + str(rest_cap / 1000) + " MW") |
618
|
|
|
print( |
619
|
|
|
"Residual capacity will initially be distributed via " |
620
|
|
|
"remaining potential areas 'Road & Railway'." |
621
|
|
|
) |
622
|
|
|
|
623
|
|
|
# build pv parks in potential areas road & railway |
624
|
|
|
pv_per_distr_i = build_additional_pv( |
625
|
|
|
potentials_rora_i, pv_rora_i, pow_per_area, con |
626
|
|
|
) |
627
|
|
|
# change index to add different Dataframes in the end |
628
|
|
|
pv_per_distr_i["grid_district"] = pv_per_distr_i.index.copy() |
629
|
|
|
pv_per_distr_i.index = range(0, len(pv_per_distr_i)) |
630
|
|
|
# delete empty grid districts |
631
|
|
|
index_names = pv_per_distr_i[ |
632
|
|
|
pv_per_distr_i["installed capacity in kW"].isna() |
633
|
|
|
].index |
634
|
|
|
pv_per_distr_i.drop(index_names, inplace=True) |
635
|
|
|
|
636
|
|
|
if pv_per_distr_i["installed capacity in kW"].sum() > rest_cap: |
637
|
|
|
scale_factor = ( |
638
|
|
|
rest_cap / pv_per_distr_i["installed capacity in kW"].sum() |
639
|
|
|
) |
640
|
|
|
pv_per_distr_i["installed capacity in kW"] = ( |
641
|
|
|
pv_per_distr_i["installed capacity in kW"] * scale_factor |
642
|
|
|
) |
643
|
|
|
|
644
|
|
|
### |
645
|
|
|
print( |
646
|
|
|
"Residual capacity got distributed via scaling factor " |
647
|
|
|
+ str(scale_factor) |
648
|
|
|
+ " to remaining potential areas 'Road & Railway'." |
649
|
|
|
) |
650
|
|
|
|
651
|
|
|
# build pv parks on potential areas agriculture if still necessary |
652
|
|
|
elif pv_per_distr_i["installed capacity in kW"].sum() < rest_cap: |
653
|
|
|
rest_cap = ( |
654
|
|
|
target_power |
655
|
|
|
- total_pv_power |
656
|
|
|
- pv_per_distr_i["installed capacity in kW"].sum() |
657
|
|
|
) |
658
|
|
|
|
659
|
|
|
### |
660
|
|
|
print( |
661
|
|
|
"Distribution via potential areas Road & Railway " |
662
|
|
|
"unsufficient to achieve target capacity:" |
663
|
|
|
) |
664
|
|
|
print("Residual capacity: " + str(rest_cap / 1000) + " MW") |
665
|
|
|
print( |
666
|
|
|
"Residual capacity is distributed to remaining potential " |
667
|
|
|
"areas 'Agriculture'." |
668
|
|
|
) |
669
|
|
|
|
670
|
|
|
pv_per_distr_i_2 = build_additional_pv( |
671
|
|
|
potentials_agri_i, pv_agri_i, pow_per_area, con |
672
|
|
|
) |
673
|
|
|
# change index to add different Dataframes in the end |
674
|
|
|
pv_per_distr_i_2["grid_district"] = pv_per_distr_i_2.index |
675
|
|
|
pv_per_distr_i_2.index = range(len(pv_per_distr_i_2)) |
676
|
|
|
|
677
|
|
|
# delete empty grid districts |
678
|
|
|
index_names = pv_per_distr_i_2[ |
679
|
|
|
pv_per_distr_i_2["installed capacity in kW"].isna() |
680
|
|
|
].index |
681
|
|
|
pv_per_distr_i_2.drop(index_names, inplace=True) |
682
|
|
|
|
683
|
|
|
if ( |
684
|
|
|
pv_per_distr_i_2["installed capacity in kW"].sum() |
685
|
|
|
> rest_cap |
686
|
|
|
): |
687
|
|
|
scale_factor = ( |
688
|
|
|
rest_cap |
689
|
|
|
/ pv_per_distr_i_2["installed capacity in kW"].sum() |
690
|
|
|
) |
691
|
|
|
pv_per_distr_i_2["installed capacity in kW"] = ( |
692
|
|
|
pv_per_distr_i_2["installed capacity in kW"] |
693
|
|
|
* scale_factor |
694
|
|
|
) |
695
|
|
|
|
696
|
|
|
### |
697
|
|
|
print( |
698
|
|
|
"Residual capacity got distributed via scaling " |
699
|
|
|
"factor " |
700
|
|
|
+ str(scale_factor) |
701
|
|
|
+ " to remaining potential areas 'Road & Railway' " |
702
|
|
|
"and 'Agriculture'." |
703
|
|
|
) |
704
|
|
|
|
705
|
|
|
pv_per_distr_i = pd.concat( |
706
|
|
|
[pv_per_distr_i, pv_per_distr_i_2], ignore_index=True |
707
|
|
|
) |
708
|
|
|
|
709
|
|
|
# assign grid level to pv_per_distr |
710
|
|
|
v_lvl = pd.Series(dtype=int, index=pv_per_distr_i.index) |
711
|
|
|
for index, distr in pv_per_distr_i.iterrows(): |
712
|
|
|
if distr["installed capacity in kW"] > 5500: # > 5 MW |
713
|
|
|
v_lvl[index] = 4 |
714
|
|
|
else: |
715
|
|
|
v_lvl[index] = 5 |
716
|
|
|
pv_per_distr_i["voltage_level"] = v_lvl |
717
|
|
|
|
718
|
|
|
# new overall installed capacity |
719
|
|
|
total_pv_power = ( |
720
|
|
|
pv_rora_i["installed capacity in kW"].sum() |
721
|
|
|
+ pv_agri_i["installed capacity in kW"].sum() |
722
|
|
|
+ pv_exist_i["installed capacity in kW"].sum() |
723
|
|
|
+ pv_per_distr_i["installed capacity in kW"].sum() |
724
|
|
|
) |
725
|
|
|
|
726
|
|
|
### |
727
|
|
|
print( |
728
|
|
|
"Total installed capacity of PV farms: " |
729
|
|
|
+ str(total_pv_power / 1000) |
730
|
|
|
+ " MW" |
731
|
|
|
) |
732
|
|
|
print(" ") |
733
|
|
|
|
734
|
|
|
pv_rora_i = pv_rora_i[pv_rora_i["installed capacity in kW"] > 0] |
735
|
|
|
pv_agri_i = pv_agri_i[pv_agri_i["installed capacity in kW"] > 0] |
736
|
|
|
pv_exist_i = pv_exist_i[pv_exist_i["installed capacity in kW"] > 0] |
737
|
|
|
pv_per_distr_i = pv_per_distr_i[ |
738
|
|
|
pv_per_distr_i["installed capacity in kW"] > 0 |
739
|
|
|
] |
740
|
|
|
|
741
|
|
|
return pv_rora_i, pv_agri_i, pv_exist_i, pv_per_distr_i |
742
|
|
|
|
743
|
|
|
def keep_existing_pv(mastr, con): |
744
|
|
|
pv_exist = mastr[ |
745
|
|
|
[ |
746
|
|
|
"geometry", |
747
|
|
|
"installed capacity in kW", |
748
|
|
|
"voltage_level", |
749
|
|
|
] |
750
|
|
|
] |
751
|
|
|
pv_exist.rename(columns={"geometry": "centroid"}, inplace=True) |
752
|
|
|
pv_exist = gpd.GeoDataFrame(pv_exist, geometry="centroid", crs=3035) |
753
|
|
|
|
754
|
|
|
# German states |
755
|
|
|
sql = "SELECT geometry as geom, gf FROM boundaries.vg250_lan" |
756
|
|
|
land = gpd.GeoDataFrame.from_postgis(sql, con).to_crs(3035) |
757
|
|
|
land = land[(land["gf"] != 1) & (land["gf"] != 2)] |
758
|
|
|
land = land.unary_union |
759
|
|
|
pv_exist = gpd.clip(pv_exist, land) |
760
|
|
|
|
761
|
|
|
return pv_exist |
762
|
|
|
|
763
|
|
|
def run_methodology( |
764
|
|
|
con=db.engine(), |
765
|
|
|
pow_per_area=0.04, |
766
|
|
|
join_buffer=10, |
767
|
|
|
max_dist_hv=20000, |
768
|
|
|
show_map=False, |
769
|
|
|
): |
770
|
|
|
"""Execute methodology to distribute pv ground mounted. |
771
|
|
|
|
772
|
|
|
Parameters |
773
|
|
|
---------- |
774
|
|
|
con: |
775
|
|
|
Connection to database |
776
|
|
|
pow_per_area: int, default 0.4 |
777
|
|
|
Assumption for areas of existing pv farms and power of new built |
778
|
|
|
pv farms depending on area in kW/m² |
779
|
|
|
join_buffer : int, default 10 |
780
|
|
|
Maximum distance for joining of potential areas (only small ones |
781
|
|
|
to big ones) in m |
782
|
|
|
max_dist_hv : int, default 20000 |
783
|
|
|
Assumption for maximum distance of park with hv-power to next |
784
|
|
|
substation in m |
785
|
|
|
show_map: boolean |
786
|
|
|
Optional creation of map to show distribution of installed |
787
|
|
|
capacity |
788
|
|
|
|
789
|
|
|
""" |
790
|
|
|
### |
791
|
|
|
print(" ") |
792
|
|
|
print("MaStR-Data") |
793
|
|
|
print(" ") |
794
|
|
|
|
795
|
|
|
# MaStR-data: existing PV farms |
796
|
|
|
mastr = mastr_existing_pv(pow_per_area) |
797
|
|
|
|
798
|
|
|
### |
799
|
|
|
print(" ") |
800
|
|
|
print("potential area") |
801
|
|
|
print(" ") |
802
|
|
|
|
803
|
|
|
# database-data: potential areas for new PV farms |
804
|
|
|
potentials_rora, potentials_agri = potential_areas(con, join_buffer) |
805
|
|
|
|
806
|
|
|
### |
807
|
|
|
print(" ") |
808
|
|
|
print("select potentials area") |
809
|
|
|
print(" ") |
810
|
|
|
|
811
|
|
|
# select potential areas with existing PV farms to build new PV farms |
812
|
|
|
pv_rora, mastr = select_pot_areas(mastr, potentials_rora) |
813
|
|
|
pv_agri, mastr = select_pot_areas(mastr, potentials_agri) |
814
|
|
|
|
815
|
|
|
### |
816
|
|
|
print(" ") |
817
|
|
|
print( |
818
|
|
|
"build PV parks where there is PV ground mounted already " |
819
|
|
|
"(-> MaStR) on potential area" |
820
|
|
|
) |
821
|
|
|
print(" ") |
822
|
|
|
|
823
|
|
|
# build new PV farms |
824
|
|
|
pv_rora = build_pv(pv_rora, pow_per_area) |
825
|
|
|
pv_agri = build_pv(pv_agri, pow_per_area) |
826
|
|
|
|
827
|
|
|
# keep the existing pv_farms that don't intercept potential areas |
828
|
|
|
exist = keep_existing_pv(mastr, con) |
829
|
|
|
|
830
|
|
|
### |
831
|
|
|
print(" ") |
832
|
|
|
print("adapt grid level of PV parks") |
833
|
|
|
print(" ") |
834
|
|
|
|
835
|
|
|
# adapt grid level to new farms |
836
|
|
|
rora = adapt_grid_level(pv_rora, max_dist_hv, con) |
837
|
|
|
agri = adapt_grid_level(pv_agri, max_dist_hv, con) |
838
|
|
|
|
839
|
|
|
### |
840
|
|
|
print(" ") |
841
|
|
|
print( |
842
|
|
|
"check target value and build more PV parks on potential area if " |
843
|
|
|
"necessary" |
844
|
|
|
) |
845
|
|
|
print(" ") |
846
|
|
|
|
847
|
|
|
# initialize final dataframe |
848
|
|
|
pv_rora = gpd.GeoDataFrame() |
849
|
|
|
pv_agri = gpd.GeoDataFrame() |
850
|
|
|
pv_exist = gpd.GeoDataFrame() |
851
|
|
|
pv_per_distr = gpd.GeoDataFrame() |
852
|
|
|
|
853
|
|
|
# 1) scenario: eGon2035 |
854
|
|
|
if ( |
855
|
|
|
"eGon2035" |
856
|
|
|
in egon.data.config.settings()["egon-data"]["--scenarios"] |
857
|
|
|
): |
858
|
|
|
### |
859
|
|
|
print(" ") |
860
|
|
|
print("scenario: eGon2035") |
861
|
|
|
print(" ") |
862
|
|
|
|
863
|
|
|
# German states |
864
|
|
|
sql = "SELECT geometry as geom, nuts FROM boundaries.vg250_lan" |
865
|
|
|
states = gpd.GeoDataFrame.from_postgis(sql, con) |
866
|
|
|
|
867
|
|
|
# assumption for target value of installed capacity |
868
|
|
|
sql = ( |
869
|
|
|
"SELECT capacity,scenario_name,nuts FROM " |
870
|
|
|
"supply.egon_scenario_capacities WHERE carrier='solar'" |
871
|
|
|
) |
872
|
|
|
target = pd.read_sql(sql, con) |
873
|
|
|
target = target[target["scenario_name"] == "eGon2035"] |
874
|
|
|
nuts = np.unique(target["nuts"]) |
875
|
|
|
|
876
|
|
|
# prepare selection per state |
877
|
|
|
rora = rora.set_geometry("centroid") |
878
|
|
|
agri = agri.set_geometry("centroid") |
879
|
|
|
potentials_rora = potentials_rora.set_geometry("geom") |
880
|
|
|
potentials_agri = potentials_agri.set_geometry("geom") |
881
|
|
|
|
882
|
|
|
# check target value per state |
883
|
|
|
for i in nuts: |
884
|
|
|
target_power = ( |
885
|
|
|
target[target["nuts"] == i]["capacity"].iloc[0] * 1000 |
886
|
|
|
) |
887
|
|
|
|
888
|
|
|
### |
889
|
|
|
land = target[target["nuts"] == i]["nuts"].iloc[0] |
890
|
|
|
print(" ") |
891
|
|
|
print("Bundesland (NUTS): " + land) |
892
|
|
|
print("target power: " + str(target_power / 1000) + " MW") |
893
|
|
|
|
894
|
|
|
# select state |
895
|
|
|
state = states[states["nuts"] == i] |
896
|
|
|
state = state.to_crs(3035) |
897
|
|
|
|
898
|
|
|
# select PVs in state |
899
|
|
|
rora_i = gpd.sjoin(rora, state) |
900
|
|
|
agri_i = gpd.sjoin(agri, state) |
901
|
|
|
exist_i = gpd.sjoin(exist, state) |
902
|
|
|
rora_i.drop("index_right", axis=1, inplace=True) |
903
|
|
|
agri_i.drop("index_right", axis=1, inplace=True) |
904
|
|
|
exist_i.drop("index_right", axis=1, inplace=True) |
905
|
|
|
rora_i.drop_duplicates(inplace=True) |
906
|
|
|
agri_i.drop_duplicates(inplace=True) |
907
|
|
|
exist_i.drop_duplicates(inplace=True) |
908
|
|
|
|
909
|
|
|
# select potential areas in state |
910
|
|
|
potentials_rora_i = gpd.sjoin(potentials_rora, state) |
911
|
|
|
potentials_agri_i = gpd.sjoin(potentials_agri, state) |
912
|
|
|
potentials_rora_i.drop("index_right", axis=1, inplace=True) |
913
|
|
|
potentials_agri_i.drop("index_right", axis=1, inplace=True) |
914
|
|
|
potentials_rora_i.drop_duplicates(inplace=True) |
915
|
|
|
potentials_agri_i.drop_duplicates(inplace=True) |
916
|
|
|
|
917
|
|
|
# check target value and adapt installed capacity if necessary |
918
|
|
|
rora_i, agri_i, exist_i, distr_i = check_target( |
919
|
|
|
rora_i, |
920
|
|
|
agri_i, |
921
|
|
|
exist_i, |
922
|
|
|
potentials_rora_i, |
923
|
|
|
potentials_agri_i, |
924
|
|
|
target_power, |
925
|
|
|
pow_per_area, |
926
|
|
|
con, |
927
|
|
|
) |
928
|
|
|
|
929
|
|
|
if len(distr_i) > 0: |
930
|
|
|
distr_i["nuts"] = target[target["nuts"] == i]["nuts"].iloc[ |
931
|
|
|
0 |
932
|
|
|
] |
933
|
|
|
|
934
|
|
|
# ### examination of built PV parks per state |
935
|
|
|
rora_i_mv = rora_i[rora_i["voltage_level"] == 5] |
936
|
|
|
rora_i_hv = rora_i[rora_i["voltage_level"] == 4] |
937
|
|
|
agri_i_mv = agri_i[agri_i["voltage_level"] == 5] |
938
|
|
|
agri_i_hv = agri_i[agri_i["voltage_level"] == 4] |
939
|
|
|
print( |
940
|
|
|
"eGon2035: Examination of voltage level per federal state:" |
941
|
|
|
) |
942
|
|
|
print("a) PVs on potential areas Road & Railway: ") |
943
|
|
|
print( |
944
|
|
|
"Total installed capacity: " |
945
|
|
|
+ str(rora_i["installed capacity in kW"].sum() / 1000) |
946
|
|
|
+ " MW" |
947
|
|
|
) |
948
|
|
|
print("Number of PV farms: " + str(len(rora_i))) |
949
|
|
|
print(" - thereof MV: " + str(len(rora_i_mv))) |
950
|
|
|
print(" - thereof HV: " + str(len(rora_i_hv))) |
951
|
|
|
print("b) PVs on potential areas Agriculture: ") |
952
|
|
|
print( |
953
|
|
|
"Total installed capacity: " |
954
|
|
|
+ str(agri_i["installed capacity in kW"].sum() / 1000) |
955
|
|
|
+ " MW" |
956
|
|
|
) |
957
|
|
|
print("Number of PV farms: " + str(len(agri_i))) |
958
|
|
|
print(" - thereof MV: " + str(len(agri_i_mv))) |
959
|
|
|
print(" - dthereof HV: " + str(len(agri_i_hv))) |
960
|
|
|
print("c) Existing PVs not in potential areas: ") |
961
|
|
|
print("Number of PV farms: " + str(len(exist_i))) |
962
|
|
|
print("d) PVs on additional potential areas per MV-District: ") |
963
|
|
|
if len(distr_i) > 0: |
964
|
|
|
distr_i_mv = distr_i[distr_i["voltage_level"] == 5] |
965
|
|
|
distr_i_hv = distr_i[distr_i["voltage_level"] == 4] |
966
|
|
|
print( |
967
|
|
|
"Total installed capacity: " |
968
|
|
|
+ str(distr_i["installed capacity in kW"].sum() / 1000) |
969
|
|
|
+ " MW" |
970
|
|
|
) |
971
|
|
|
print("Number of PV farms: " + str(len(distr_i))) |
972
|
|
|
print(" - thereof MV: " + str(len(distr_i_mv))) |
973
|
|
|
print(" - thereof HV: " + str(len(distr_i_hv))) |
974
|
|
|
else: |
975
|
|
|
print(" -> No additional expansion necessary") |
976
|
|
|
print(" ") |
977
|
|
|
|
978
|
|
|
pv_rora = pv_rora.append(rora_i) |
979
|
|
|
pv_agri = pv_agri.append(agri_i) |
980
|
|
|
pv_exist = pv_exist.append(exist_i) |
981
|
|
|
if len(distr_i) > 0: |
982
|
|
|
pv_per_distr = pd.concat([pv_per_distr, distr_i]) |
983
|
|
|
|
984
|
|
|
if ( |
985
|
|
|
"eGon100RE" |
986
|
|
|
in egon.data.config.settings()["egon-data"]["--scenarios"] |
987
|
|
|
): |
988
|
|
|
# 2) scenario: eGon100RE |
989
|
|
|
|
990
|
|
|
# assumption for target value of installed capacity in Germany per |
991
|
|
|
# scenario |
992
|
|
|
sql = ( |
993
|
|
|
"SELECT capacity,scenario_name FROM " |
994
|
|
|
"supply.egon_scenario_capacities WHERE carrier='solar'" |
995
|
|
|
) |
996
|
|
|
target_power = pd.read_sql(sql, con) |
997
|
|
|
target_power = target_power[ |
998
|
|
|
target_power["scenario_name"] == "eGon100RE" |
999
|
|
|
] |
1000
|
|
|
target_power = target_power["capacity"].sum() * 1000 |
1001
|
|
|
|
1002
|
|
|
### |
1003
|
|
|
print(" ") |
1004
|
|
|
print("scenario: eGon100RE") |
1005
|
|
|
print("target power: " + str(target_power) + " kW") |
1006
|
|
|
print(" ") |
1007
|
|
|
|
1008
|
|
|
# check target value and adapt installed capacity if necessary |
1009
|
|
|
( |
1010
|
|
|
pv_rora_100RE, |
1011
|
|
|
pv_agri_100RE, |
1012
|
|
|
pv_exist_100RE, |
1013
|
|
|
pv_per_distr_100RE, |
1014
|
|
|
) = check_target( |
1015
|
|
|
rora, |
1016
|
|
|
agri, |
1017
|
|
|
exist, |
1018
|
|
|
potentials_rora, |
1019
|
|
|
potentials_agri, |
1020
|
|
|
target_power, |
1021
|
|
|
pow_per_area, |
1022
|
|
|
con, |
1023
|
|
|
) |
1024
|
|
|
|
1025
|
|
|
# ### create map to show distribution of installed capacity |
1026
|
|
|
if show_map == True: |
1027
|
|
|
# 1) eGon2035 |
1028
|
|
|
|
1029
|
|
|
# get MV grid districts |
1030
|
|
|
sql = "SELECT bus_id, geom FROM grid.egon_mv_grid_district" |
1031
|
|
|
distr = gpd.GeoDataFrame.from_postgis(sql, con) |
1032
|
|
|
distr = distr.set_index("bus_id") |
1033
|
|
|
|
1034
|
|
|
# assign pv_per_distr-power to districts |
1035
|
|
|
distr["capacity"] = pd.Series() |
1036
|
|
|
for index, row in distr.iterrows(): |
1037
|
|
|
if index in np.unique(pv_per_distr["grid_district"]): |
1038
|
|
|
pv = pv_per_distr[pv_per_distr["grid_district"] == index] |
1039
|
|
|
x = pv["installed capacity in kW"].iloc[0] |
1040
|
|
|
distr["capacity"].loc[index] = x |
1041
|
|
|
else: |
1042
|
|
|
distr["capacity"].loc[index] = 0 |
1043
|
|
|
distr["capacity"] = distr["capacity"] / 1000 |
1044
|
|
|
|
1045
|
|
|
# add pv_rora- and pv_agri-power to district |
1046
|
|
|
pv_rora = pv_rora.set_geometry("centroid") |
1047
|
|
|
pv_agri = pv_agri.set_geometry("centroid") |
1048
|
|
|
overlay_rora = gpd.sjoin(pv_rora, distr) |
1049
|
|
|
overlay_agri = gpd.sjoin(pv_agri, distr) |
1050
|
|
|
|
1051
|
|
|
for index, row in distr.iterrows(): |
1052
|
|
|
o_rora = overlay_rora[overlay_rora["index_right"] == index] |
1053
|
|
|
o_agri = overlay_agri[overlay_agri["index_right"] == index] |
1054
|
|
|
cap_rora = o_rora["installed capacity in kW"].sum() / 1000 |
1055
|
|
|
cap_agri = o_agri["installed capacity in kW"].sum() / 1000 |
1056
|
|
|
distr["capacity"].loc[index] = ( |
1057
|
|
|
distr["capacity"].loc[index] + cap_rora + cap_agri |
|
|
|
|
1058
|
|
|
) |
1059
|
|
|
|
1060
|
|
|
from matplotlib import pyplot as plt |
1061
|
|
|
|
1062
|
|
|
fig, ax = plt.subplots(1, 1) |
1063
|
|
|
distr.boundary.plot(linewidth=0.2, ax=ax, color="black") |
1064
|
|
|
distr.plot( |
1065
|
|
|
ax=ax, |
1066
|
|
|
column="capacity", |
1067
|
|
|
cmap="magma_r", |
1068
|
|
|
legend=True, |
1069
|
|
|
legend_kwds={ |
1070
|
|
|
"label": "Installed capacity in MW", |
1071
|
|
|
"orientation": "vertical", |
1072
|
|
|
}, |
1073
|
|
|
) |
1074
|
|
|
plt.savefig("pv_per_distr_map_eGon2035.png", dpi=300) |
1075
|
|
|
|
1076
|
|
|
# 2) eGon100RE |
1077
|
|
|
|
1078
|
|
|
# get MV grid districts |
1079
|
|
|
sql = "SELECT bus_id, geom FROM grid.egon_mv_grid_district" |
1080
|
|
|
distr = gpd.GeoDataFrame.from_postgis(sql, con) |
1081
|
|
|
distr = distr.set_index("bus_id") |
1082
|
|
|
|
1083
|
|
|
# assign pv_per_distr-power to districts |
1084
|
|
|
distr["capacity"] = pd.Series() |
1085
|
|
|
for index, row in distr.iterrows(): |
1086
|
|
|
if index in np.unique(pv_per_distr_100RE["grid_district"]): |
|
|
|
|
1087
|
|
|
pv = pv_per_distr_100RE[ |
1088
|
|
|
pv_per_distr_100RE["grid_district"] == index |
1089
|
|
|
] |
1090
|
|
|
x = pv["installed capacity in kW"].iloc[0] |
1091
|
|
|
distr["capacity"].loc[index] = x |
1092
|
|
|
else: |
1093
|
|
|
distr["capacity"].loc[index] = 0 |
1094
|
|
|
distr["capacity"] = distr["capacity"] / 1000 |
1095
|
|
|
|
1096
|
|
|
# add pv_rora- and pv_agri-power to district |
1097
|
|
|
pv_rora_100RE = pv_rora_100RE.set_geometry("centroid") |
|
|
|
|
1098
|
|
|
pv_agri_100RE = pv_agri_100RE.set_geometry("centroid") |
|
|
|
|
1099
|
|
|
overlay_rora = gpd.sjoin(pv_rora_100RE, distr) |
1100
|
|
|
overlay_agri = gpd.sjoin(pv_agri_100RE, distr) |
1101
|
|
|
|
1102
|
|
|
for index, row in distr.iterrows(): |
1103
|
|
|
o_rora = overlay_rora[overlay_rora["index_right"] == index] |
1104
|
|
|
o_agri = overlay_agri[overlay_agri["index_right"] == index] |
1105
|
|
|
cap_rora = o_rora["installed capacity in kW"].sum() / 1000 |
1106
|
|
|
cap_agri = o_agri["installed capacity in kW"].sum() / 1000 |
1107
|
|
|
distr["capacity"].loc[index] = ( |
1108
|
|
|
distr["capacity"].loc[index] + cap_rora + cap_agri |
1109
|
|
|
) |
1110
|
|
|
|
1111
|
|
|
from matplotlib import pyplot as plt |
1112
|
|
|
|
1113
|
|
|
fig, ax = plt.subplots(1, 1) |
1114
|
|
|
distr.boundary.plot(linewidth=0.2, ax=ax, color="black") |
1115
|
|
|
distr.plot( |
1116
|
|
|
ax=ax, |
1117
|
|
|
column="capacity", |
1118
|
|
|
cmap="magma_r", |
1119
|
|
|
legend=True, |
1120
|
|
|
legend_kwds={ |
1121
|
|
|
"label": "Installed capacity in MW", |
1122
|
|
|
"orientation": "vertical", |
1123
|
|
|
}, |
1124
|
|
|
) |
1125
|
|
|
plt.savefig("pv_per_distr_map_eGon100RE.png", dpi=300) |
1126
|
|
|
|
1127
|
|
|
pv_rora_100RE = pv_rora_100RE[ |
1128
|
|
|
pv_rora_100RE["installed capacity in kW"] > 0 |
1129
|
|
|
] |
1130
|
|
|
pv_agri_100RE = pv_agri_100RE[ |
1131
|
|
|
pv_agri_100RE["installed capacity in kW"] > 0 |
1132
|
|
|
] |
1133
|
|
|
pv_per_distr_100RE = pv_per_distr_100RE[ |
1134
|
|
|
pv_per_distr_100RE["installed capacity in kW"] > 0 |
1135
|
|
|
] |
1136
|
|
|
|
1137
|
|
|
return ( |
1138
|
|
|
pv_rora, |
1139
|
|
|
pv_agri, |
1140
|
|
|
pv_exist, |
1141
|
|
|
pv_per_distr, |
1142
|
|
|
pv_rora_100RE, |
1143
|
|
|
pv_agri_100RE, |
1144
|
|
|
pv_exist_100RE, |
|
|
|
|
1145
|
|
|
pv_per_distr_100RE, |
1146
|
|
|
) |
1147
|
|
|
|
1148
|
|
|
def insert_pv_parks( |
1149
|
|
|
pv_rora, pv_agri, pv_exist, pv_per_distr, scenario_name |
1150
|
|
|
): |
1151
|
|
|
"""Write to database. |
1152
|
|
|
|
1153
|
|
|
Parameters |
1154
|
|
|
---------- |
1155
|
|
|
pv_rora : gpd.GeoDataFrame() |
1156
|
|
|
Pv parks on selected potential areas of raod and railway |
1157
|
|
|
pv_agri : gpd.GeoDataFrame() |
1158
|
|
|
Pv parks on selected potential areas of raod and railway |
1159
|
|
|
pv_exist : gpd.GeoDataFrame() |
1160
|
|
|
Existing Pv parks on selected areas |
1161
|
|
|
pv_per_distr: gpd.GeoDataFrame() |
1162
|
|
|
Additionally built pv parks on potential areas per mv grid |
1163
|
|
|
district |
1164
|
|
|
scenario_name: |
1165
|
|
|
Scenario name of calculation |
1166
|
|
|
|
1167
|
|
|
""" |
1168
|
|
|
|
1169
|
|
|
# prepare dataframe for integration in supply.egon_power_plants |
1170
|
|
|
|
1171
|
|
|
pv_parks = pd.concat( |
1172
|
|
|
[pv_rora, pv_agri, pv_exist, pv_per_distr], ignore_index=True |
1173
|
|
|
) |
1174
|
|
|
pv_parks["el_capacity"] = pv_parks["installed capacity in kW"] / 1000 |
1175
|
|
|
pv_parks.rename(columns={"centroid": "geometry"}, inplace=True) |
1176
|
|
|
pv_parks = gpd.GeoDataFrame(pv_parks, geometry="geometry", crs=3035) |
1177
|
|
|
pv_parks = pv_parks[["el_capacity", "voltage_level", "geometry"]] |
1178
|
|
|
|
1179
|
|
|
# integration in supply.egon_power_plants |
1180
|
|
|
|
1181
|
|
|
con = db.engine() |
1182
|
|
|
|
1183
|
|
|
# maximum ID in egon_power_plants |
1184
|
|
|
sql = "SELECT MAX(id) FROM supply.egon_power_plants" |
1185
|
|
|
max_id = pd.read_sql(sql, con) |
1186
|
|
|
max_id = max_id["max"].iat[0] |
1187
|
|
|
if max_id is None: |
1188
|
|
|
max_id = 1 |
1189
|
|
|
|
1190
|
|
|
pv_park_id = max_id + 1 |
1191
|
|
|
|
1192
|
|
|
# copy relevant columns from pv_parks |
1193
|
|
|
insert_pv_parks = pv_parks[ |
1194
|
|
|
["el_capacity", "voltage_level", "geometry"] |
1195
|
|
|
] |
1196
|
|
|
insert_pv_parks = insert_pv_parks.set_geometry("geometry") |
1197
|
|
|
insert_pv_parks["voltage_level"] = insert_pv_parks[ |
1198
|
|
|
"voltage_level" |
1199
|
|
|
].apply(int) |
1200
|
|
|
|
1201
|
|
|
# set static column values |
1202
|
|
|
insert_pv_parks["carrier"] = "solar" |
1203
|
|
|
insert_pv_parks["scenario"] = scenario_name |
1204
|
|
|
|
1205
|
|
|
# change name and crs of geometry column |
1206
|
|
|
insert_pv_parks.set_crs(epsg=3035, allow_override=True, inplace=True) |
1207
|
|
|
insert_pv_parks = ( |
1208
|
|
|
insert_pv_parks.rename({"geometry": "geom"}, axis=1) |
1209
|
|
|
.set_geometry("geom") |
1210
|
|
|
.to_crs(4326) |
1211
|
|
|
) |
1212
|
|
|
|
1213
|
|
|
# reset index |
1214
|
|
|
insert_pv_parks.index = pd.RangeIndex( |
1215
|
|
|
start=pv_park_id, stop=pv_park_id + len(insert_pv_parks), name="id" |
1216
|
|
|
) |
1217
|
|
|
|
1218
|
|
|
# insert into database |
1219
|
|
|
insert_pv_parks.reset_index().to_postgis( |
1220
|
|
|
"egon_power_plants", |
1221
|
|
|
schema="supply", |
1222
|
|
|
con=db.engine(), |
1223
|
|
|
if_exists="append", |
1224
|
|
|
) |
1225
|
|
|
|
1226
|
|
|
return pv_parks |
1227
|
|
|
|
1228
|
|
|
# ######################################################################## |
1229
|
|
|
|
1230
|
|
|
# execute methodology |
1231
|
|
|
|
1232
|
|
|
( |
1233
|
|
|
pv_rora, |
1234
|
|
|
pv_agri, |
1235
|
|
|
pv_exist, |
1236
|
|
|
pv_per_distr, |
1237
|
|
|
pv_rora_100RE, |
1238
|
|
|
pv_agri_100RE, |
1239
|
|
|
pv_exist_100RE, |
1240
|
|
|
pv_per_distr_100RE, |
1241
|
|
|
) = run_methodology( |
1242
|
|
|
con=db.engine(), |
1243
|
|
|
pow_per_area=0.04, |
1244
|
|
|
join_buffer=10, |
1245
|
|
|
max_dist_hv=20000, |
1246
|
|
|
show_map=False, |
1247
|
|
|
) |
1248
|
|
|
|
1249
|
|
|
# ### examination of results |
1250
|
|
|
if len(pv_per_distr) > 0: |
1251
|
|
|
pv_per_distr_mv = pv_per_distr[pv_per_distr["voltage_level"] == 5] |
1252
|
|
|
pv_per_distr_hv = pv_per_distr[pv_per_distr["voltage_level"] == 4] |
1253
|
|
|
if len(pv_rora) > 0: |
1254
|
|
|
pv_rora_mv = pv_rora[pv_rora["voltage_level"] == 5] |
1255
|
|
|
pv_rora_hv = pv_rora[pv_rora["voltage_level"] == 4] |
1256
|
|
|
pv_agri_mv = pv_agri[pv_agri["voltage_level"] == 5] |
1257
|
|
|
pv_agri_hv = pv_agri[pv_agri["voltage_level"] == 4] |
1258
|
|
|
|
1259
|
|
|
print(" ") |
1260
|
|
|
print("eGon2035: Examination of overall voltage levels:") |
1261
|
|
|
print("a) PVs on potential areas Road & Railway: ") |
1262
|
|
|
print( |
1263
|
|
|
"Total installed capacity: " |
1264
|
|
|
+ str(pv_rora["installed capacity in kW"].sum() / 1000) |
1265
|
|
|
+ " MW" |
1266
|
|
|
) |
1267
|
|
|
print("Number of PV farms: " + str(len(pv_rora))) |
1268
|
|
|
print(" - thereof MV: " + str(len(pv_rora_mv))) |
1269
|
|
|
print(" - thereof HV: " + str(len(pv_rora_hv))) |
1270
|
|
|
print("b) PVs on potential areas Agriculture: ") |
1271
|
|
|
print( |
1272
|
|
|
"Total installed capacity: " |
1273
|
|
|
+ str(pv_agri["installed capacity in kW"].sum() / 1000) |
1274
|
|
|
+ " MW" |
1275
|
|
|
) |
1276
|
|
|
print("Number of PV farms: " + str(len(pv_agri))) |
1277
|
|
|
print(" - thereof MV: " + str(len(pv_agri_mv))) |
1278
|
|
|
print(" - thereof HV: " + str(len(pv_agri_hv))) |
1279
|
|
|
print("c) Existing PVs not in potential areas: ") |
1280
|
|
|
print("Number of PV farms: " + str(len(pv_exist))) |
1281
|
|
|
print("d) PVs on additional potential areas per MV-District: ") |
1282
|
|
|
if len(pv_per_distr) > 0: |
1283
|
|
|
print( |
1284
|
|
|
"Total installed capacity: " |
1285
|
|
|
+ str(pv_per_distr["installed capacity in kW"].sum() / 1000) |
1286
|
|
|
+ " MW" |
1287
|
|
|
) |
1288
|
|
|
print("Number of PV farms: " + str(len(pv_per_distr))) |
1289
|
|
|
print(" - thereof MV: " + str(len(pv_per_distr_mv))) |
|
|
|
|
1290
|
|
|
print(" - thereof HV: " + str(len(pv_per_distr_hv))) |
|
|
|
|
1291
|
|
|
else: |
1292
|
|
|
print(" -> No additional expansion needed") |
1293
|
|
|
print(" ") |
1294
|
|
|
### |
1295
|
|
|
|
1296
|
|
|
# save to DB |
1297
|
|
|
if "eGon2035" in egon.data.config.settings()["egon-data"]["--scenarios"]: |
1298
|
|
|
if ( |
1299
|
|
|
pv_rora["installed capacity in kW"].sum() > 0 |
1300
|
|
|
or pv_agri["installed capacity in kW"].sum() > 0 |
1301
|
|
|
or pv_per_distr["installed capacity in kW"].sum() > 0 |
1302
|
|
|
or pv_exist["installed capacity in kW"].sum() > 0 |
1303
|
|
|
): |
1304
|
|
|
pv_parks = insert_pv_parks( |
1305
|
|
|
pv_rora, pv_agri, pv_exist, pv_per_distr, "eGon2035" |
1306
|
|
|
) |
1307
|
|
|
|
1308
|
|
|
else: |
1309
|
|
|
pv_parks = gpd.GeoDataFrame() |
1310
|
|
|
else: |
1311
|
|
|
pv_parks = gpd.GeoDataFrame() |
1312
|
|
|
|
1313
|
|
|
if "eGon100RE" in egon.data.config.settings()["egon-data"]["--scenarios"]: |
1314
|
|
|
if ( |
1315
|
|
|
pv_rora_100RE["installed capacity in kW"].sum() > 0 |
1316
|
|
|
or pv_agri_100RE["installed capacity in kW"].sum() > 0 |
1317
|
|
|
or pv_per_distr_100RE["installed capacity in kW"].sum() > 0 |
1318
|
|
|
or pv_exist_100RE["installed capacity in kW"].sum() > 0 |
1319
|
|
|
): |
1320
|
|
|
pv_parks_100RE = insert_pv_parks( |
1321
|
|
|
pv_rora_100RE, |
1322
|
|
|
pv_agri_100RE, |
1323
|
|
|
pv_exist_100RE, |
1324
|
|
|
pv_per_distr_100RE, |
1325
|
|
|
"eGon100RE", |
1326
|
|
|
) |
1327
|
|
|
|
1328
|
|
|
else: |
1329
|
|
|
pv_parks_100RE = gpd.GeoDataFrame() |
1330
|
|
|
else: |
1331
|
|
|
pv_parks_100RE = gpd.GeoDataFrame() |
1332
|
|
|
|
1333
|
|
|
return pv_parks, pv_parks_100RE |
1334
|
|
|
|