| Total Complexity | 72 |
| Total Lines | 1677 |
| Duplicated Lines | 15.98 % |
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like data.datasets.electricity_demand_timeseries.cts_buildings often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | """ |
||
| 2 | CTS electricity and heat demand time series for scenarios in 2035 and 2050 |
||
| 3 | assigned to OSM-buildings are generated. |
||
| 4 | |||
| 5 | Disaggregation of CTS heat & electricity demand time series from MV substation |
||
| 6 | to census cells via annual demand and then to OSM buildings via |
||
| 7 | amenity tags or randomly if no sufficient OSM-data is available in the |
||
| 8 | respective census cell. If no OSM-buildings or synthetic residential buildings |
||
| 9 | are available new synthetic 5x5m buildings are generated. |
||
| 10 | """ |
||
| 11 | |||
| 12 | from geoalchemy2 import Geometry |
||
| 13 | from geoalchemy2.shape import to_shape |
||
| 14 | from psycopg2.extensions import AsIs, register_adapter |
||
| 15 | from sqlalchemy import REAL, Column, Integer, String, cast, func |
||
| 16 | from sqlalchemy.ext.declarative import declarative_base |
||
| 17 | import geopandas as gpd |
||
| 18 | import numpy as np |
||
| 19 | import pandas as pd |
||
| 20 | import saio |
||
| 21 | |||
| 22 | from egon.data import config, db |
||
| 23 | from egon.data import logger as log |
||
| 24 | from egon.data.datasets import Dataset |
||
| 25 | from egon.data.datasets.electricity_demand import ( |
||
| 26 | EgonDemandRegioZensusElectricity, |
||
| 27 | ) |
||
| 28 | from egon.data.datasets.electricity_demand.temporal import ( |
||
| 29 | EgonEtragoElectricityCts, |
||
| 30 | ) |
||
| 31 | from egon.data.datasets.electricity_demand_timeseries.hh_buildings import ( |
||
| 32 | BuildingElectricityPeakLoads, |
||
| 33 | OsmBuildingsSynthetic, |
||
| 34 | ) |
||
| 35 | from egon.data.datasets.electricity_demand_timeseries.mapping import ( |
||
| 36 | map_all_used_buildings, |
||
| 37 | ) |
||
| 38 | from egon.data.datasets.electricity_demand_timeseries.tools import ( |
||
| 39 | random_ints_until_sum, |
||
| 40 | random_point_in_square, |
||
| 41 | specific_int_until_sum, |
||
| 42 | write_table_to_postgis, |
||
| 43 | write_table_to_postgres, |
||
| 44 | ) |
||
| 45 | from egon.data.datasets.heat_demand import EgonPetaHeat |
||
| 46 | from egon.data.datasets.heat_demand_timeseries import EgonEtragoHeatCts |
||
| 47 | from egon.data.datasets.zensus_mv_grid_districts import MapZensusGridDistricts |
||
| 48 | from egon.data.datasets.zensus_vg250 import DestatisZensusPopulationPerHa |
||
| 49 | |||
| 50 | engine = db.engine() |
||
| 51 | Base = declarative_base() |
||
| 52 | |||
| 53 | # import db tables |
||
| 54 | saio.register_schema("openstreetmap", engine=engine) |
||
| 55 | saio.register_schema("boundaries", engine=engine) |
||
| 56 | |||
| 57 | |||
| 58 | class EgonCtsElectricityDemandBuildingShare(Base): |
||
| 59 | """ |
||
| 60 | Class definition of table demand.egon_cts_electricity_demand_building_share. |
||
| 61 | |||
| 62 | Table including the MV substation electricity profile share of all selected |
||
| 63 | CTS buildings for scenario eGon2035 and eGon100RE. This table is created |
||
| 64 | within :func:`cts_electricity()`. |
||
| 65 | """ |
||
| 66 | |||
| 67 | __tablename__ = "egon_cts_electricity_demand_building_share" |
||
| 68 | __table_args__ = {"schema": "demand"} |
||
| 69 | |||
| 70 | building_id = Column(Integer, primary_key=True) |
||
| 71 | scenario = Column(String, primary_key=True) |
||
| 72 | bus_id = Column(Integer, index=True) |
||
| 73 | profile_share = Column(REAL) |
||
| 74 | |||
| 75 | |||
| 76 | class EgonCtsHeatDemandBuildingShare(Base): |
||
| 77 | """ |
||
| 78 | Class definition of table demand.egon_cts_heat_demand_building_share. |
||
| 79 | |||
| 80 | Table including the MV substation heat profile share of all selected |
||
| 81 | CTS buildings for scenario eGon2035 and eGon100RE. This table is created |
||
| 82 | within :func:`cts_heat()`. |
||
| 83 | """ |
||
| 84 | |||
| 85 | __tablename__ = "egon_cts_heat_demand_building_share" |
||
| 86 | __table_args__ = {"schema": "demand"} |
||
| 87 | |||
| 88 | building_id = Column(Integer, primary_key=True) |
||
| 89 | scenario = Column(String, primary_key=True) |
||
| 90 | bus_id = Column(Integer, index=True) |
||
| 91 | profile_share = Column(REAL) |
||
| 92 | |||
| 93 | |||
| 94 | class CtsBuildings(Base): |
||
| 95 | """ |
||
| 96 | Class definition of table openstreetmap.egon_cts_buildings. |
||
| 97 | |||
| 98 | Table of all selected CTS buildings with id, census cell id, geometry and |
||
| 99 | amenity count in building. This table is created within |
||
| 100 | :func:`cts_buildings()`. |
||
| 101 | """ |
||
| 102 | |||
| 103 | __tablename__ = "egon_cts_buildings" |
||
| 104 | __table_args__ = {"schema": "openstreetmap"} |
||
| 105 | |||
| 106 | serial = Column(Integer, primary_key=True) |
||
| 107 | id = Column(Integer, index=True) |
||
| 108 | zensus_population_id = Column(Integer, index=True) |
||
| 109 | geom_building = Column(Geometry("Polygon", 3035)) |
||
| 110 | n_amenities_inside = Column(Integer) |
||
| 111 | source = Column(String) |
||
| 112 | |||
| 113 | |||
| 114 | View Code Duplication | class BuildingHeatPeakLoads(Base): |
|
|
|
|||
| 115 | """ |
||
| 116 | Class definition of table demand.egon_building_heat_peak_loads. |
||
| 117 | |||
| 118 | """ |
||
| 119 | |||
| 120 | __tablename__ = "egon_building_heat_peak_loads" |
||
| 121 | __table_args__ = {"schema": "demand"} |
||
| 122 | |||
| 123 | building_id = Column(Integer, primary_key=True) |
||
| 124 | scenario = Column(String, primary_key=True) |
||
| 125 | sector = Column(String, primary_key=True) |
||
| 126 | peak_load_in_w = Column(REAL) |
||
| 127 | |||
| 128 | |||
| 129 | class CtsDemandBuildings(Dataset): |
||
| 130 | """ |
||
| 131 | Generates CTS electricity and heat demand time series for scenarios in 2035 and 2050 |
||
| 132 | assigned to OSM-buildings. |
||
| 133 | |||
| 134 | Disaggregation of CTS heat & electricity demand time series from HV-MV substation |
||
| 135 | to census cells via annual demand per census cell and then to OSM buildings via |
||
| 136 | amenity tags or randomly if no sufficient OSM-data is available in the |
||
| 137 | respective census cell. If no OSM-buildings or synthetic residential buildings |
||
| 138 | are available new synthetic 5x5m buildings are generated. |
||
| 139 | |||
| 140 | For more information see data documentation on :ref:`disagg-cts-elec-ref`. |
||
| 141 | |||
| 142 | *Dependencies* |
||
| 143 | * :py:class:`OsmBuildingsStreets <egon.data.datasets.osm_buildings_streets.OsmBuildingsStreets>` |
||
| 144 | * :py:class:`CtsElectricityDemand <egon.data.datasets.electricity_demand.CtsElectricityDemand>` |
||
| 145 | * :py:class:`hh_buildings <egon.data.datasets.electricity_demand_timeseries.hh_buildings>` |
||
| 146 | * :py:class:`HeatTimeSeries <egon.data.datasets.heat_demand_timeseries.HeatTimeSeries>` (more specifically the :func:`export_etrago_cts_heat_profiles <egon.data.datasets.heat_demand_timeseries.export_etrago_cts_heat_profiles>` task) |
||
| 147 | |||
| 148 | *Resulting tables* |
||
| 149 | * :py:class:`openstreetmap.osm_buildings_synthetic <egon.data.datasets.electricity_demand_timeseries.hh_buildings.OsmBuildingsSynthetic>` is extended |
||
| 150 | * :py:class:`openstreetmap.egon_cts_buildings <egon.data.datasets.electricity_demand_timeseries.cts_buildings.CtsBuildings>` is created |
||
| 151 | * :py:class:`demand.egon_cts_electricity_demand_building_share <egon.data.datasets.electricity_demand_timeseries.cts_buildings.EgonCtsElectricityDemandBuildingShare>` is created |
||
| 152 | * :py:class:`demand.egon_cts_heat_demand_building_share <egon.data.datasets.electricity_demand_timeseries.cts_buildings.EgonCtsHeatDemandBuildingShare>` is created |
||
| 153 | * :py:class:`demand.egon_building_electricity_peak_loads <egon.data.datasets.electricity_demand_timeseries.hh_buildings.BuildingElectricityPeakLoads>` is extended |
||
| 154 | * :py:class:`boundaries.egon_map_zensus_mvgd_buildings <egon.data.datasets.electricity_demand_timeseries.mapping.EgonMapZensusMvgdBuildings>` is extended. |
||
| 155 | |||
| 156 | **The following datasets from the database are mainly used for creation:** |
||
| 157 | |||
| 158 | * `openstreetmap.osm_buildings_filtered`: |
||
| 159 | Table of OSM-buildings filtered by tags to selecting residential and cts |
||
| 160 | buildings only. |
||
| 161 | * `openstreetmap.osm_amenities_shops_filtered`: |
||
| 162 | Table of OSM-amenities filtered by tags to select cts only. |
||
| 163 | * `openstreetmap.osm_amenities_not_in_buildings_filtered`: |
||
| 164 | Table of amenities which do not intersect with any building from |
||
| 165 | `openstreetmap.osm_buildings_filtered` |
||
| 166 | * `openstreetmap.osm_buildings_synthetic`: |
||
| 167 | Table of synthetic residential buildings |
||
| 168 | * `boundaries.egon_map_zensus_buildings_filtered_all`: |
||
| 169 | Mapping table of census cells and buildings filtered even if population |
||
| 170 | in census cell = 0. |
||
| 171 | * `demand.egon_demandregio_zensus_electricity`: |
||
| 172 | Table of annual electricity load demand for residential and cts at census |
||
| 173 | cell level. Residential load demand is derived from aggregated residential |
||
| 174 | building profiles. DemandRegio CTS load demand at NUTS3 is distributed to |
||
| 175 | census cells linearly to heat demand from peta5. |
||
| 176 | * `demand.egon_peta_heat`: |
||
| 177 | Table of annual heat load demand for residential and cts at census cell |
||
| 178 | level from peta5. |
||
| 179 | * `demand.egon_etrago_electricity_cts`: |
||
| 180 | Scaled cts electricity time series for every MV substation. Derived from |
||
| 181 | DemandRegio SLP for selected economic sectors at nuts3. Scaled with annual |
||
| 182 | demand from `demand.egon_demandregio_zensus_electricity` |
||
| 183 | * `demand.egon_etrago_heat_cts`: |
||
| 184 | Scaled cts heat time series for every MV substation. Derived from |
||
| 185 | DemandRegio SLP Gas for selected economic sectors at nuts3. Scaled with |
||
| 186 | annual demand from `demand.egon_peta_heat`. |
||
| 187 | |||
| 188 | **What is the challenge?** |
||
| 189 | |||
| 190 | The OSM, DemandRegio and Peta5 dataset differ from each other. The OSM dataset |
||
| 191 | is a community based dataset which is extended throughout and does not claim to |
||
| 192 | be complete. Therefore, not all census cells which have a demand assigned by |
||
| 193 | DemandRegio or Peta5 methodology also have buildings with respective tags or |
||
| 194 | sometimes even any building at all. Furthermore, the substation load areas are |
||
| 195 | determined dynamically in a previous dataset. Merging these datasets different |
||
| 196 | scopes (census cell shapes, building shapes) and their inconsistencies need to |
||
| 197 | be addressed. For example: not yet tagged buildings or amenities in OSM, or |
||
| 198 | building shapes exceeding census cells. |
||
| 199 | |||
| 200 | **What are central assumptions during the data processing?** |
||
| 201 | |||
| 202 | * We assume OSM data to be the most reliable and complete open source dataset. |
||
| 203 | * We assume building and amenity tags to be truthful and accurate. |
||
| 204 | * Mapping census to OSM data is not trivial. Discrepancies are substituted. |
||
| 205 | * Missing OSM buildings are generated for each amenity. |
||
| 206 | * Missing amenities are generated by median value of amenities/census cell. |
||
| 207 | |||
| 208 | **Drawbacks and limitations of the data** |
||
| 209 | |||
| 210 | * Shape of profiles for each building is similar within a MVGD and only scaled |
||
| 211 | with a different factor. |
||
| 212 | * MVGDs are generated dynamically. In case of buildings with amenities |
||
| 213 | exceeding MVGD borders, amenities which are assigned to a different MVGD than |
||
| 214 | the assigned building centroid, the amenities are dropped for sake of |
||
| 215 | simplicity. One building should not have a connection to two MVGDs. |
||
| 216 | * The completeness of the OSM data depends on community contribution and is |
||
| 217 | crucial to the quality of our results. |
||
| 218 | * Randomly selected buildings and generated amenities may inadequately reflect |
||
| 219 | reality, but are chosen for sake of simplicity as a measure to fill data gaps. |
||
| 220 | * Since this dataset is a cascade after generation of synthetic residential |
||
| 221 | buildings also check drawbacks and limitations in hh_buildings.py. |
||
| 222 | * Synthetic buildings may be placed within osm buildings which exceed multiple |
||
| 223 | census cells. This is currently accepted but may be solved in #953. |
||
| 224 | * Scattered high peak loads occur and might lead to single MV grid connections |
||
| 225 | in ding0. In some cases this might not be viable. Postprocessing is needed and |
||
| 226 | may be solved in #954. |
||
| 227 | |||
| 228 | """ |
||
| 229 | |||
| 230 | #: |
||
| 231 | name: str = "CtsDemandBuildings" |
||
| 232 | #: |
||
| 233 | version: str = "0.0.4" |
||
| 234 | |||
| 235 | def __init__(self, dependencies): |
||
| 236 | super().__init__( |
||
| 237 | name=self.name, |
||
| 238 | version=self.version, |
||
| 239 | dependencies=dependencies, |
||
| 240 | tasks=( |
||
| 241 | cts_buildings, # TODO: status2023, currently fixed for only 2023 |
||
| 242 | {cts_electricity, cts_heat}, |
||
| 243 | get_cts_electricity_peak_load, |
||
| 244 | map_all_used_buildings, |
||
| 245 | assign_voltage_level_to_buildings, |
||
| 246 | ), |
||
| 247 | ) |
||
| 248 | |||
| 249 | |||
| 250 | def amenities_without_buildings(): |
||
| 251 | """ |
||
| 252 | Amenities which have no buildings assigned and are in a cell with cts |
||
| 253 | demand are determined. |
||
| 254 | |||
| 255 | Returns |
||
| 256 | ------- |
||
| 257 | pd.DataFrame |
||
| 258 | Table of amenities without buildings |
||
| 259 | """ |
||
| 260 | from saio.openstreetmap import osm_amenities_not_in_buildings_filtered |
||
| 261 | |||
| 262 | with db.session_scope() as session: |
||
| 263 | scn_query = session.query( |
||
| 264 | func.distinct(EgonDemandRegioZensusElectricity.scenario) |
||
| 265 | ) |
||
| 266 | |||
| 267 | # FIXME: Cells with CTS demand, amenities and buildings do not change within the |
||
| 268 | # scenarios, only the demand itself. Therefore any scenario can be used |
||
| 269 | # universally to determine the cts buildings but not for the demand share. |
||
| 270 | scn = db.select_dataframe(scn_query.statement).iat[0, 0] |
||
| 271 | |||
| 272 | with db.session_scope() as session: |
||
| 273 | cells_query = ( |
||
| 274 | session.query( |
||
| 275 | DestatisZensusPopulationPerHa.id.label("zensus_population_id"), |
||
| 276 | osm_amenities_not_in_buildings_filtered.geom_amenity, |
||
| 277 | osm_amenities_not_in_buildings_filtered.egon_amenity_id, |
||
| 278 | ) |
||
| 279 | .filter( |
||
| 280 | func.st_within( |
||
| 281 | osm_amenities_not_in_buildings_filtered.geom_amenity, |
||
| 282 | DestatisZensusPopulationPerHa.geom, |
||
| 283 | ) |
||
| 284 | ) |
||
| 285 | .filter( |
||
| 286 | DestatisZensusPopulationPerHa.id |
||
| 287 | == EgonDemandRegioZensusElectricity.zensus_population_id |
||
| 288 | ) |
||
| 289 | .filter( |
||
| 290 | EgonDemandRegioZensusElectricity.sector == "service", |
||
| 291 | EgonDemandRegioZensusElectricity.scenario == scn, |
||
| 292 | ) |
||
| 293 | ) |
||
| 294 | |||
| 295 | df_amenities_without_buildings = gpd.read_postgis( |
||
| 296 | cells_query.statement, |
||
| 297 | cells_query.session.bind, |
||
| 298 | geom_col="geom_amenity", |
||
| 299 | ) |
||
| 300 | return df_amenities_without_buildings |
||
| 301 | |||
| 302 | |||
| 303 | def place_buildings_with_amenities(df, amenities=None, max_amenities=None): |
||
| 304 | """ |
||
| 305 | Building centroids are placed randomly within census cells. |
||
| 306 | The Number of buildings is derived from n_amenity_inside, the selected |
||
| 307 | method and number of amenities per building. |
||
| 308 | |||
| 309 | Returns |
||
| 310 | ------- |
||
| 311 | df: gpd.GeoDataFrame |
||
| 312 | Table of buildings centroids |
||
| 313 | """ |
||
| 314 | if isinstance(max_amenities, int): |
||
| 315 | # amount of amenities is randomly generated within bounds |
||
| 316 | # (max_amenities, amenities per cell) |
||
| 317 | df["n_amenities_inside"] = df["n_amenities_inside"].apply( |
||
| 318 | random_ints_until_sum, args=[max_amenities] |
||
| 319 | ) |
||
| 320 | if isinstance(amenities, int): |
||
| 321 | # Specific amount of amenities per building |
||
| 322 | df["n_amenities_inside"] = df["n_amenities_inside"].apply( |
||
| 323 | specific_int_until_sum, args=[amenities] |
||
| 324 | ) |
||
| 325 | |||
| 326 | # Unnest each building |
||
| 327 | df = df.explode(column="n_amenities_inside") |
||
| 328 | |||
| 329 | # building count per cell |
||
| 330 | df["building_count"] = df.groupby(["zensus_population_id"]).cumcount() + 1 |
||
| 331 | |||
| 332 | # generate random synthetic buildings |
||
| 333 | edge_length = 5 |
||
| 334 | # create random points within census cells |
||
| 335 | points = random_point_in_square(geom=df["geom"], tol=edge_length / 2) |
||
| 336 | |||
| 337 | df.reset_index(drop=True, inplace=True) |
||
| 338 | # Store center of polygon |
||
| 339 | df["geom_point"] = points |
||
| 340 | # Drop geometry of census cell |
||
| 341 | df = df.drop(columns=["geom"]) |
||
| 342 | |||
| 343 | return df |
||
| 344 | |||
| 345 | |||
| 346 | def create_synthetic_buildings(df, points=None, crs="EPSG:3035"): |
||
| 347 | """ |
||
| 348 | Synthetic buildings are generated around points. |
||
| 349 | |||
| 350 | Parameters |
||
| 351 | ---------- |
||
| 352 | df: pd.DataFrame |
||
| 353 | Table of census cells |
||
| 354 | points: gpd.GeoSeries or str |
||
| 355 | List of points to place buildings around or column name of df |
||
| 356 | crs: str |
||
| 357 | CRS of result table |
||
| 358 | |||
| 359 | Returns |
||
| 360 | ------- |
||
| 361 | df: gpd.GeoDataFrame |
||
| 362 | Synthetic buildings |
||
| 363 | """ |
||
| 364 | |||
| 365 | if isinstance(points, str) and points in df.columns: |
||
| 366 | points = df[points] |
||
| 367 | elif isinstance(points, gpd.GeoSeries): |
||
| 368 | pass |
||
| 369 | else: |
||
| 370 | raise ValueError("Points are of the wrong type") |
||
| 371 | |||
| 372 | # Create building using a square around point |
||
| 373 | edge_length = 5 |
||
| 374 | df["geom_building"] = points.buffer(distance=edge_length / 2, cap_style=3) |
||
| 375 | |||
| 376 | if "geom_point" not in df.columns: |
||
| 377 | df["geom_point"] = df["geom_building"].centroid |
||
| 378 | |||
| 379 | df = gpd.GeoDataFrame( |
||
| 380 | df, |
||
| 381 | crs=crs, |
||
| 382 | geometry="geom_building", |
||
| 383 | ) |
||
| 384 | |||
| 385 | # TODO remove after #772 implementation of egon_building_id |
||
| 386 | df.rename(columns={"id": "egon_building_id"}, inplace=True) |
||
| 387 | |||
| 388 | # get max number of building ids from synthetic table |
||
| 389 | with db.session_scope() as session: |
||
| 390 | max_synth_building_id = session.execute( |
||
| 391 | func.max(cast(OsmBuildingsSynthetic.id, Integer)) |
||
| 392 | ).scalar() |
||
| 393 | max_synth_building_id = int(max_synth_building_id) |
||
| 394 | |||
| 395 | # create sequential ids |
||
| 396 | df["egon_building_id"] = range( |
||
| 397 | max_synth_building_id + 1, |
||
| 398 | max_synth_building_id + df.shape[0] + 1, |
||
| 399 | ) |
||
| 400 | |||
| 401 | df["area"] = df["geom_building"].area |
||
| 402 | # set building type of synthetic building |
||
| 403 | df["building"] = "cts" |
||
| 404 | # TODO remove after #772 |
||
| 405 | df = df.rename( |
||
| 406 | columns={ |
||
| 407 | # "zensus_population_id": "cell_id", |
||
| 408 | "egon_building_id": "id", |
||
| 409 | } |
||
| 410 | ) |
||
| 411 | return df |
||
| 412 | |||
| 413 | |||
| 414 | def buildings_with_amenities(): |
||
| 415 | """ |
||
| 416 | Amenities which are assigned to buildings are determined and grouped per |
||
| 417 | building and zensus cell. Buildings covering multiple cells therefore |
||
| 418 | exist multiple times but in different zensus cells. This is necessary to |
||
| 419 | cover as many cells with a cts demand as possible. If buildings exist in |
||
| 420 | multiple mvgds (bus_id), only the amenities within the same as the |
||
| 421 | building centroid are kept. If as a result, a census cell is uncovered |
||
| 422 | by any buildings, a synthetic amenity is placed. The buildings are |
||
| 423 | aggregated afterwards during the calculation of the profile_share. |
||
| 424 | |||
| 425 | Returns |
||
| 426 | ------- |
||
| 427 | df_buildings_with_amenities: gpd.GeoDataFrame |
||
| 428 | Contains all buildings with amenities per zensus cell. |
||
| 429 | df_lost_cells: gpd.GeoDataFrame |
||
| 430 | Contains synthetic amenities in lost cells. Might be empty |
||
| 431 | """ |
||
| 432 | |||
| 433 | from saio.boundaries import egon_map_zensus_buildings_filtered_all |
||
| 434 | from saio.openstreetmap import osm_amenities_in_buildings_filtered |
||
| 435 | |||
| 436 | for scn in config.settings()["egon-data"]["--scenarios"]: |
||
| 437 | with db.session_scope() as session: |
||
| 438 | cells_query = ( |
||
| 439 | session.query( |
||
| 440 | osm_amenities_in_buildings_filtered, |
||
| 441 | MapZensusGridDistricts.bus_id, |
||
| 442 | ) |
||
| 443 | .filter( |
||
| 444 | MapZensusGridDistricts.zensus_population_id |
||
| 445 | == osm_amenities_in_buildings_filtered.zensus_population_id |
||
| 446 | ) |
||
| 447 | .filter( |
||
| 448 | EgonDemandRegioZensusElectricity.zensus_population_id |
||
| 449 | == osm_amenities_in_buildings_filtered.zensus_population_id |
||
| 450 | ) |
||
| 451 | .filter( |
||
| 452 | EgonDemandRegioZensusElectricity.sector == "service", |
||
| 453 | EgonDemandRegioZensusElectricity.scenario == scn, |
||
| 454 | ) |
||
| 455 | ) |
||
| 456 | df_amenities_in_buildings = pd.read_sql( |
||
| 457 | cells_query.statement, con=session.connection(), index_col=None |
||
| 458 | ) |
||
| 459 | if df_amenities_in_buildings.empty: |
||
| 460 | break |
||
| 461 | |||
| 462 | df_amenities_in_buildings["geom_building"] = df_amenities_in_buildings[ |
||
| 463 | "geom_building" |
||
| 464 | ].apply(to_shape) |
||
| 465 | df_amenities_in_buildings["geom_amenity"] = df_amenities_in_buildings[ |
||
| 466 | "geom_amenity" |
||
| 467 | ].apply(to_shape) |
||
| 468 | |||
| 469 | # retrieve building centroid bus_id |
||
| 470 | with db.session_scope() as session: |
||
| 471 | cells_query = session.query( |
||
| 472 | egon_map_zensus_buildings_filtered_all.id, |
||
| 473 | MapZensusGridDistricts.bus_id.label("building_bus_id"), |
||
| 474 | ).filter( |
||
| 475 | egon_map_zensus_buildings_filtered_all.zensus_population_id |
||
| 476 | == MapZensusGridDistricts.zensus_population_id |
||
| 477 | ) |
||
| 478 | |||
| 479 | df_building_bus_id = pd.read_sql( |
||
| 480 | cells_query.statement, con=session.connection(), index_col=None |
||
| 481 | ) |
||
| 482 | |||
| 483 | df_amenities_in_buildings = pd.merge( |
||
| 484 | left=df_amenities_in_buildings, right=df_building_bus_id, on="id" |
||
| 485 | ) |
||
| 486 | |||
| 487 | # identify amenities with differing bus_id as building |
||
| 488 | identified_amenities = df_amenities_in_buildings.loc[ |
||
| 489 | df_amenities_in_buildings["bus_id"] |
||
| 490 | != df_amenities_in_buildings["building_bus_id"] |
||
| 491 | ].index |
||
| 492 | |||
| 493 | lost_cells = df_amenities_in_buildings.loc[ |
||
| 494 | identified_amenities, "zensus_population_id" |
||
| 495 | ].unique() |
||
| 496 | |||
| 497 | # check if lost zensus cells are already covered |
||
| 498 | if not ( |
||
| 499 | df_amenities_in_buildings["zensus_population_id"] |
||
| 500 | .isin(lost_cells) |
||
| 501 | .empty |
||
| 502 | ): |
||
| 503 | # query geom data for cell if not |
||
| 504 | with db.session_scope() as session: |
||
| 505 | cells_query = session.query( |
||
| 506 | DestatisZensusPopulationPerHa.id, |
||
| 507 | DestatisZensusPopulationPerHa.geom, |
||
| 508 | ).filter( |
||
| 509 | DestatisZensusPopulationPerHa.id.in_(pd.Index(lost_cells)) |
||
| 510 | ) |
||
| 511 | |||
| 512 | df_lost_cells = gpd.read_postgis( |
||
| 513 | cells_query.statement, |
||
| 514 | cells_query.session.bind, |
||
| 515 | geom_col="geom", |
||
| 516 | ) |
||
| 517 | |||
| 518 | # place random amenity in cell |
||
| 519 | df_lost_cells["n_amenities_inside"] = 1 |
||
| 520 | df_lost_cells.rename( |
||
| 521 | columns={ |
||
| 522 | "id": "zensus_population_id", |
||
| 523 | }, |
||
| 524 | inplace=True, |
||
| 525 | ) |
||
| 526 | df_lost_cells = place_buildings_with_amenities( |
||
| 527 | df_lost_cells, amenities=1 |
||
| 528 | ) |
||
| 529 | df_lost_cells.rename( |
||
| 530 | columns={ |
||
| 531 | # "id": "zensus_population_id", |
||
| 532 | "geom_point": "geom_amenity", |
||
| 533 | }, |
||
| 534 | inplace=True, |
||
| 535 | ) |
||
| 536 | df_lost_cells.drop( |
||
| 537 | columns=["building_count", "n_amenities_inside"], inplace=True |
||
| 538 | ) |
||
| 539 | else: |
||
| 540 | df_lost_cells = None |
||
| 541 | |||
| 542 | df_amenities_in_buildings.drop(identified_amenities, inplace=True) |
||
| 543 | df_amenities_in_buildings.drop(columns="building_bus_id", inplace=True) |
||
| 544 | |||
| 545 | df_amenities_in_buildings["n_amenities_inside"] = 1 |
||
| 546 | |||
| 547 | # sum amenities per building and cell |
||
| 548 | df_amenities_in_buildings["n_amenities_inside"] = ( |
||
| 549 | df_amenities_in_buildings.groupby(["zensus_population_id", "id"])[ |
||
| 550 | "n_amenities_inside" |
||
| 551 | ].transform("sum") |
||
| 552 | ) |
||
| 553 | # drop duplicated buildings |
||
| 554 | df_buildings_with_amenities = df_amenities_in_buildings.drop_duplicates( |
||
| 555 | ["id", "zensus_population_id"] |
||
| 556 | ) |
||
| 557 | df_buildings_with_amenities.reset_index(inplace=True, drop=True) |
||
| 558 | |||
| 559 | df_buildings_with_amenities = df_buildings_with_amenities[ |
||
| 560 | ["id", "zensus_population_id", "geom_building", "n_amenities_inside"] |
||
| 561 | ] |
||
| 562 | df_buildings_with_amenities.rename( |
||
| 563 | columns={ |
||
| 564 | # "zensus_population_id": "cell_id", |
||
| 565 | "egon_building_id": "id" |
||
| 566 | }, |
||
| 567 | inplace=True, |
||
| 568 | ) |
||
| 569 | |||
| 570 | return df_buildings_with_amenities, df_lost_cells |
||
| 571 | |||
| 572 | |||
| 573 | def buildings_without_amenities(): |
||
| 574 | """ |
||
| 575 | Buildings (filtered and synthetic) in cells with |
||
| 576 | cts demand but no amenities are determined. |
||
| 577 | |||
| 578 | Returns |
||
| 579 | ------- |
||
| 580 | df_buildings_without_amenities: gpd.GeoDataFrame |
||
| 581 | Table of buildings without amenities in zensus cells |
||
| 582 | with cts demand. |
||
| 583 | """ |
||
| 584 | from saio.boundaries import egon_map_zensus_buildings_filtered_all |
||
| 585 | from saio.openstreetmap import ( |
||
| 586 | osm_amenities_shops_filtered, |
||
| 587 | osm_buildings_filtered, |
||
| 588 | osm_buildings_synthetic, |
||
| 589 | ) |
||
| 590 | |||
| 591 | with db.session_scope() as session: |
||
| 592 | scn_query = session.query( |
||
| 593 | func.distinct(EgonDemandRegioZensusElectricity.scenario) |
||
| 594 | ) |
||
| 595 | |||
| 596 | # FIXME: Cells with CTS demand, amenities and buildings do not change within the |
||
| 597 | # scenarios, only the demand itself. Therefore any scenario can be used |
||
| 598 | # universally to determine the cts buildings but not for the demand share. |
||
| 599 | scn = db.select_dataframe(scn_query.statement).iat[0, 0] |
||
| 600 | |||
| 601 | # buildings_filtered in cts-demand-cells without amenities |
||
| 602 | with db.session_scope() as session: |
||
| 603 | # Synthetic Buildings |
||
| 604 | q_synth_buildings = session.query( |
||
| 605 | osm_buildings_synthetic.cell_id.cast(Integer).label( |
||
| 606 | "zensus_population_id" |
||
| 607 | ), |
||
| 608 | osm_buildings_synthetic.id.cast(Integer).label("id"), |
||
| 609 | osm_buildings_synthetic.area.label("area"), |
||
| 610 | osm_buildings_synthetic.geom_building.label("geom_building"), |
||
| 611 | osm_buildings_synthetic.geom_point.label("geom_point"), |
||
| 612 | ) |
||
| 613 | |||
| 614 | # Buildings filtered |
||
| 615 | q_buildings_filtered = session.query( |
||
| 616 | egon_map_zensus_buildings_filtered_all.zensus_population_id, |
||
| 617 | osm_buildings_filtered.id, |
||
| 618 | osm_buildings_filtered.area, |
||
| 619 | osm_buildings_filtered.geom_building, |
||
| 620 | osm_buildings_filtered.geom_point, |
||
| 621 | ).filter( |
||
| 622 | osm_buildings_filtered.id |
||
| 623 | == egon_map_zensus_buildings_filtered_all.id |
||
| 624 | ) |
||
| 625 | |||
| 626 | # Amenities + zensus_population_id |
||
| 627 | q_amenities = ( |
||
| 628 | session.query( |
||
| 629 | DestatisZensusPopulationPerHa.id.label("zensus_population_id"), |
||
| 630 | ) |
||
| 631 | .filter( |
||
| 632 | func.st_within( |
||
| 633 | osm_amenities_shops_filtered.geom_amenity, |
||
| 634 | DestatisZensusPopulationPerHa.geom, |
||
| 635 | ) |
||
| 636 | ) |
||
| 637 | .distinct(DestatisZensusPopulationPerHa.id) |
||
| 638 | ) |
||
| 639 | |||
| 640 | # Cells with CTS demand but without amenities |
||
| 641 | q_cts_without_amenities = ( |
||
| 642 | session.query( |
||
| 643 | EgonDemandRegioZensusElectricity.zensus_population_id, |
||
| 644 | ) |
||
| 645 | .filter( |
||
| 646 | EgonDemandRegioZensusElectricity.sector == "service", |
||
| 647 | EgonDemandRegioZensusElectricity.scenario == scn, |
||
| 648 | ) |
||
| 649 | .filter( |
||
| 650 | EgonDemandRegioZensusElectricity.zensus_population_id.notin_( |
||
| 651 | q_amenities |
||
| 652 | ) |
||
| 653 | ) |
||
| 654 | .distinct() |
||
| 655 | ) |
||
| 656 | |||
| 657 | # Buildings filtered + synthetic buildings residential in |
||
| 658 | # cells with CTS demand but without amenities |
||
| 659 | cells_query = q_synth_buildings.union(q_buildings_filtered).filter( |
||
| 660 | egon_map_zensus_buildings_filtered_all.zensus_population_id.in_( |
||
| 661 | q_cts_without_amenities |
||
| 662 | ) |
||
| 663 | ) |
||
| 664 | |||
| 665 | # df_buildings_without_amenities = pd.read_sql( |
||
| 666 | # cells_query.statement, cells_query.session.bind, index_col=None) |
||
| 667 | df_buildings_without_amenities = gpd.read_postgis( |
||
| 668 | cells_query.statement, |
||
| 669 | cells_query.session.bind, |
||
| 670 | geom_col="geom_building", |
||
| 671 | ) |
||
| 672 | |||
| 673 | df_buildings_without_amenities = df_buildings_without_amenities.rename( |
||
| 674 | columns={ |
||
| 675 | # "zensus_population_id": "cell_id", |
||
| 676 | "egon_building_id": "id", |
||
| 677 | } |
||
| 678 | ) |
||
| 679 | |||
| 680 | return df_buildings_without_amenities |
||
| 681 | |||
| 682 | |||
| 683 | def select_cts_buildings(df_buildings_wo_amenities, max_n): |
||
| 684 | """ |
||
| 685 | N Buildings (filtered and synthetic) in each cell with |
||
| 686 | cts demand are selected. Only the first n buildings |
||
| 687 | are taken for each cell. The buildings are sorted by surface |
||
| 688 | area. |
||
| 689 | |||
| 690 | Returns |
||
| 691 | ------- |
||
| 692 | df_buildings_with_cts_demand: gpd.GeoDataFrame |
||
| 693 | Table of buildings |
||
| 694 | """ |
||
| 695 | |||
| 696 | df_buildings_wo_amenities.sort_values( |
||
| 697 | "area", ascending=False, inplace=True |
||
| 698 | ) |
||
| 699 | # select first n ids each census cell if available |
||
| 700 | df_buildings_with_cts_demand = ( |
||
| 701 | df_buildings_wo_amenities.groupby("zensus_population_id") |
||
| 702 | .nth(list(range(max_n))) |
||
| 703 | .reset_index() |
||
| 704 | ) |
||
| 705 | df_buildings_with_cts_demand.reset_index(drop=True, inplace=True) |
||
| 706 | |||
| 707 | return df_buildings_with_cts_demand |
||
| 708 | |||
| 709 | |||
| 710 | def cells_with_cts_demand_only(df_buildings_without_amenities): |
||
| 711 | """ |
||
| 712 | Cells with cts demand but no amenities or buildilngs |
||
| 713 | are determined. |
||
| 714 | |||
| 715 | Returns |
||
| 716 | ------- |
||
| 717 | df_cells_only_cts_demand: gpd.GeoDataFrame |
||
| 718 | Table of cells with cts demand but no amenities or buildings |
||
| 719 | """ |
||
| 720 | from saio.openstreetmap import osm_amenities_shops_filtered |
||
| 721 | |||
| 722 | with db.session_scope() as session: |
||
| 723 | scn_query = session.query( |
||
| 724 | func.distinct(EgonDemandRegioZensusElectricity.scenario) |
||
| 725 | ) |
||
| 726 | |||
| 727 | # FIXME: Cells with CTS demand, amenities and buildings do not change within the |
||
| 728 | # scenarios, only the demand itself. Therefore any scenario can be used |
||
| 729 | # universally to determine the cts buildings but not for the demand share. |
||
| 730 | scn = db.select_dataframe(scn_query.statement).iat[0, 0] |
||
| 731 | |||
| 732 | # cells mit amenities |
||
| 733 | with db.session_scope() as session: |
||
| 734 | sub_query = ( |
||
| 735 | session.query( |
||
| 736 | DestatisZensusPopulationPerHa.id.label("zensus_population_id"), |
||
| 737 | ) |
||
| 738 | .filter( |
||
| 739 | func.st_within( |
||
| 740 | osm_amenities_shops_filtered.geom_amenity, |
||
| 741 | DestatisZensusPopulationPerHa.geom, |
||
| 742 | ) |
||
| 743 | ) |
||
| 744 | .distinct(DestatisZensusPopulationPerHa.id) |
||
| 745 | ) |
||
| 746 | |||
| 747 | cells_query = ( |
||
| 748 | session.query( |
||
| 749 | EgonDemandRegioZensusElectricity.zensus_population_id, |
||
| 750 | EgonDemandRegioZensusElectricity.scenario, |
||
| 751 | EgonDemandRegioZensusElectricity.sector, |
||
| 752 | EgonDemandRegioZensusElectricity.demand, |
||
| 753 | DestatisZensusPopulationPerHa.geom, |
||
| 754 | ) |
||
| 755 | .filter( |
||
| 756 | EgonDemandRegioZensusElectricity.sector == "service", |
||
| 757 | EgonDemandRegioZensusElectricity.scenario == scn, |
||
| 758 | ) |
||
| 759 | .filter( |
||
| 760 | EgonDemandRegioZensusElectricity.zensus_population_id.notin_( |
||
| 761 | sub_query |
||
| 762 | ) |
||
| 763 | ) |
||
| 764 | .filter( |
||
| 765 | EgonDemandRegioZensusElectricity.zensus_population_id |
||
| 766 | == DestatisZensusPopulationPerHa.id |
||
| 767 | ) |
||
| 768 | ) |
||
| 769 | |||
| 770 | df_cts_cell_without_amenities = gpd.read_postgis( |
||
| 771 | cells_query.statement, |
||
| 772 | cells_query.session.bind, |
||
| 773 | geom_col="geom", |
||
| 774 | index_col=None, |
||
| 775 | ) |
||
| 776 | |||
| 777 | # TODO remove after #722 |
||
| 778 | df_buildings_without_amenities = df_buildings_without_amenities.rename( |
||
| 779 | columns={"cell_id": "zensus_population_id"} |
||
| 780 | ) |
||
| 781 | |||
| 782 | # Census cells with only cts demand |
||
| 783 | df_cells_only_cts_demand = df_cts_cell_without_amenities.loc[ |
||
| 784 | ~df_cts_cell_without_amenities["zensus_population_id"].isin( |
||
| 785 | df_buildings_without_amenities["zensus_population_id"].unique() |
||
| 786 | ) |
||
| 787 | ] |
||
| 788 | |||
| 789 | df_cells_only_cts_demand.reset_index(drop=True, inplace=True) |
||
| 790 | |||
| 791 | return df_cells_only_cts_demand |
||
| 792 | |||
| 793 | |||
| 794 | def calc_census_cell_share(scenario, sector): |
||
| 795 | """ |
||
| 796 | The profile share for each census cell is calculated by it's |
||
| 797 | share of annual demand per substation bus. The annual demand |
||
| 798 | per cell is defined by DemandRegio/Peta5. The share is for both |
||
| 799 | scenarios identical as the annual demand is linearly scaled. |
||
| 800 | |||
| 801 | Parameters |
||
| 802 | ---------- |
||
| 803 | scenario: str |
||
| 804 | Scenario for which the share is calculated: "eGon2035" or "eGon100RE" |
||
| 805 | sector: str |
||
| 806 | Scenario for which the share is calculated: "electricity" or "heat" |
||
| 807 | |||
| 808 | Returns |
||
| 809 | ------- |
||
| 810 | df_census_share: pd.DataFrame |
||
| 811 | """ |
||
| 812 | if sector == "electricity": |
||
| 813 | with db.session_scope() as session: |
||
| 814 | cells_query = ( |
||
| 815 | session.query( |
||
| 816 | EgonDemandRegioZensusElectricity, |
||
| 817 | MapZensusGridDistricts.bus_id, |
||
| 818 | ) |
||
| 819 | .filter(EgonDemandRegioZensusElectricity.sector == "service") |
||
| 820 | .filter(EgonDemandRegioZensusElectricity.scenario == scenario) |
||
| 821 | .filter( |
||
| 822 | EgonDemandRegioZensusElectricity.zensus_population_id |
||
| 823 | == MapZensusGridDistricts.zensus_population_id |
||
| 824 | ) |
||
| 825 | ) |
||
| 826 | |||
| 827 | elif sector == "heat": |
||
| 828 | with db.session_scope() as session: |
||
| 829 | cells_query = ( |
||
| 830 | session.query(EgonPetaHeat, MapZensusGridDistricts.bus_id) |
||
| 831 | .filter(EgonPetaHeat.sector == "service") |
||
| 832 | .filter(EgonPetaHeat.scenario == scenario) |
||
| 833 | .filter( |
||
| 834 | EgonPetaHeat.zensus_population_id |
||
| 835 | == MapZensusGridDistricts.zensus_population_id |
||
| 836 | ) |
||
| 837 | ) |
||
| 838 | |||
| 839 | df_demand = pd.read_sql( |
||
| 840 | cells_query.statement, |
||
| 841 | cells_query.session.bind, |
||
| 842 | index_col="zensus_population_id", |
||
| 843 | ) |
||
| 844 | |||
| 845 | # get demand share of cell per bus |
||
| 846 | df_census_share = df_demand["demand"] / df_demand.groupby("bus_id")[ |
||
| 847 | "demand" |
||
| 848 | ].transform("sum") |
||
| 849 | df_census_share = df_census_share.rename("cell_share") |
||
| 850 | |||
| 851 | df_census_share = pd.concat( |
||
| 852 | [ |
||
| 853 | df_census_share, |
||
| 854 | df_demand[["bus_id", "scenario"]], |
||
| 855 | ], |
||
| 856 | axis=1, |
||
| 857 | ) |
||
| 858 | |||
| 859 | df_census_share.reset_index(inplace=True) |
||
| 860 | return df_census_share |
||
| 861 | |||
| 862 | |||
| 863 | def calc_building_demand_profile_share( |
||
| 864 | df_cts_buildings, scenario="eGon2035", sector="electricity" |
||
| 865 | ): |
||
| 866 | """ |
||
| 867 | Share of cts electricity demand profile per bus for every selected building |
||
| 868 | is calculated. Building-amenity share is multiplied with census cell share |
||
| 869 | to get the substation bus profile share for each building. The share is |
||
| 870 | grouped and aggregated per building as some buildings exceed the shape of |
||
| 871 | census cells and have amenities assigned from multiple cells. Building |
||
| 872 | therefore get the amenity share of all census cells. |
||
| 873 | |||
| 874 | Parameters |
||
| 875 | ---------- |
||
| 876 | df_cts_buildings: gpd.GeoDataFrame |
||
| 877 | Table of all buildings with cts demand assigned |
||
| 878 | scenario: str |
||
| 879 | Scenario for which the share is calculated. |
||
| 880 | sector: str |
||
| 881 | Sector for which the share is calculated. |
||
| 882 | |||
| 883 | Returns |
||
| 884 | ------- |
||
| 885 | df_building_share: pd.DataFrame |
||
| 886 | Table of bus profile share per building |
||
| 887 | |||
| 888 | """ |
||
| 889 | |||
| 890 | def calc_building_amenity_share(df_cts_buildings): |
||
| 891 | """ |
||
| 892 | Calculate the building share by the number amenities per building |
||
| 893 | within a census cell. Building ids can exist multiple time but with |
||
| 894 | different zensus_population_ids. |
||
| 895 | """ |
||
| 896 | df_building_amenity_share = df_cts_buildings[ |
||
| 897 | "n_amenities_inside" |
||
| 898 | ] / df_cts_buildings.groupby("zensus_population_id")[ |
||
| 899 | "n_amenities_inside" |
||
| 900 | ].transform( |
||
| 901 | "sum" |
||
| 902 | ) |
||
| 903 | df_building_amenity_share = pd.concat( |
||
| 904 | [ |
||
| 905 | df_building_amenity_share.rename("building_amenity_share"), |
||
| 906 | df_cts_buildings[["zensus_population_id", "id"]], |
||
| 907 | ], |
||
| 908 | axis=1, |
||
| 909 | ) |
||
| 910 | return df_building_amenity_share |
||
| 911 | |||
| 912 | df_building_amenity_share = calc_building_amenity_share(df_cts_buildings) |
||
| 913 | |||
| 914 | df_census_cell_share = calc_census_cell_share( |
||
| 915 | scenario=scenario, sector=sector |
||
| 916 | ) |
||
| 917 | |||
| 918 | df_demand_share = pd.merge( |
||
| 919 | left=df_building_amenity_share, |
||
| 920 | right=df_census_cell_share, |
||
| 921 | left_on="zensus_population_id", |
||
| 922 | right_on="zensus_population_id", |
||
| 923 | ) |
||
| 924 | df_demand_share["profile_share"] = df_demand_share[ |
||
| 925 | "building_amenity_share" |
||
| 926 | ].multiply(df_demand_share["cell_share"]) |
||
| 927 | |||
| 928 | # only pass selected columns |
||
| 929 | df_demand_share = df_demand_share[ |
||
| 930 | ["id", "bus_id", "scenario", "profile_share"] |
||
| 931 | ] |
||
| 932 | |||
| 933 | # Group and aggregate per building for multi cell buildings |
||
| 934 | df_demand_share = ( |
||
| 935 | df_demand_share.groupby(["scenario", "id", "bus_id"]) |
||
| 936 | .sum() |
||
| 937 | .reset_index() |
||
| 938 | ) |
||
| 939 | if df_demand_share.duplicated("id", keep=False).any(): |
||
| 940 | print( |
||
| 941 | df_demand_share.loc[df_demand_share.duplicated("id", keep=False)] |
||
| 942 | ) |
||
| 943 | return df_demand_share |
||
| 944 | |||
| 945 | |||
| 946 | View Code Duplication | def get_peta_demand(mvgd, scenario): |
|
| 947 | """ |
||
| 948 | Retrieve annual peta heat demand for CTS for either |
||
| 949 | eGon2035 or eGon100RE scenario. |
||
| 950 | |||
| 951 | Parameters |
||
| 952 | ---------- |
||
| 953 | mvgd : int |
||
| 954 | ID of substation for which to get CTS demand. |
||
| 955 | scenario : str |
||
| 956 | Possible options are eGon2035 or eGon100RE |
||
| 957 | |||
| 958 | Returns |
||
| 959 | ------- |
||
| 960 | df_peta_demand : pd.DataFrame |
||
| 961 | Annual residential heat demand per building and scenario. Columns of |
||
| 962 | the dataframe are zensus_population_id and demand. |
||
| 963 | |||
| 964 | """ |
||
| 965 | |||
| 966 | with db.session_scope() as session: |
||
| 967 | query = ( |
||
| 968 | session.query( |
||
| 969 | MapZensusGridDistricts.zensus_population_id, |
||
| 970 | EgonPetaHeat.demand, |
||
| 971 | ) |
||
| 972 | .filter(MapZensusGridDistricts.bus_id == int(mvgd)) |
||
| 973 | .filter( |
||
| 974 | MapZensusGridDistricts.zensus_population_id |
||
| 975 | == EgonPetaHeat.zensus_population_id |
||
| 976 | ) |
||
| 977 | .filter( |
||
| 978 | EgonPetaHeat.sector == "service", |
||
| 979 | EgonPetaHeat.scenario == scenario, |
||
| 980 | ) |
||
| 981 | ) |
||
| 982 | |||
| 983 | df_peta_demand = pd.read_sql( |
||
| 984 | query.statement, query.session.bind, index_col=None |
||
| 985 | ) |
||
| 986 | |||
| 987 | return df_peta_demand |
||
| 988 | |||
| 989 | |||
| 990 | def calc_cts_building_profiles( |
||
| 991 | bus_ids, |
||
| 992 | scenario, |
||
| 993 | sector, |
||
| 994 | ): |
||
| 995 | """ |
||
| 996 | Calculate the cts demand profile for each building. The profile is |
||
| 997 | calculated by the demand share of the building per substation bus. |
||
| 998 | |||
| 999 | Parameters |
||
| 1000 | ---------- |
||
| 1001 | bus_ids: list of int |
||
| 1002 | Ids of the substation for which selected building profiles are |
||
| 1003 | calculated. |
||
| 1004 | scenario: str |
||
| 1005 | Scenario for which the share is calculated: "eGon2035" or "eGon100RE" |
||
| 1006 | sector: str |
||
| 1007 | Sector for which the share is calculated: "electricity" or "heat" |
||
| 1008 | |||
| 1009 | Returns |
||
| 1010 | ------- |
||
| 1011 | df_building_profiles: pd.DataFrame |
||
| 1012 | Table of demand profile per building. Column names are building IDs |
||
| 1013 | and index is hour of the year as int (0-8759). |
||
| 1014 | |||
| 1015 | """ |
||
| 1016 | if sector == "electricity": |
||
| 1017 | # Get cts building electricity demand share of selected buildings |
||
| 1018 | with db.session_scope() as session: |
||
| 1019 | cells_query = ( |
||
| 1020 | session.query( |
||
| 1021 | EgonCtsElectricityDemandBuildingShare, |
||
| 1022 | ) |
||
| 1023 | .filter( |
||
| 1024 | EgonCtsElectricityDemandBuildingShare.scenario == scenario |
||
| 1025 | ) |
||
| 1026 | .filter( |
||
| 1027 | EgonCtsElectricityDemandBuildingShare.bus_id.in_(bus_ids) |
||
| 1028 | ) |
||
| 1029 | ) |
||
| 1030 | |||
| 1031 | df_demand_share = pd.read_sql( |
||
| 1032 | cells_query.statement, cells_query.session.bind, index_col=None |
||
| 1033 | ) |
||
| 1034 | |||
| 1035 | # Get substation cts electricity load profiles of selected bus_ids |
||
| 1036 | with db.session_scope() as session: |
||
| 1037 | cells_query = ( |
||
| 1038 | session.query(EgonEtragoElectricityCts).filter( |
||
| 1039 | EgonEtragoElectricityCts.scn_name == scenario |
||
| 1040 | ) |
||
| 1041 | ).filter(EgonEtragoElectricityCts.bus_id.in_(bus_ids)) |
||
| 1042 | |||
| 1043 | df_cts_substation_profiles = pd.read_sql( |
||
| 1044 | cells_query.statement, |
||
| 1045 | cells_query.session.bind, |
||
| 1046 | ) |
||
| 1047 | df_cts_substation_profiles = pd.DataFrame.from_dict( |
||
| 1048 | df_cts_substation_profiles.set_index("bus_id")["p_set"].to_dict(), |
||
| 1049 | orient="index", |
||
| 1050 | ) |
||
| 1051 | # df_cts_profiles = calc_load_curves_cts(scenario) |
||
| 1052 | |||
| 1053 | elif sector == "heat": |
||
| 1054 | # Get cts building heat demand share of selected buildings |
||
| 1055 | with db.session_scope() as session: |
||
| 1056 | cells_query = ( |
||
| 1057 | session.query( |
||
| 1058 | EgonCtsHeatDemandBuildingShare, |
||
| 1059 | ) |
||
| 1060 | .filter(EgonCtsHeatDemandBuildingShare.scenario == scenario) |
||
| 1061 | .filter(EgonCtsHeatDemandBuildingShare.bus_id.in_(bus_ids)) |
||
| 1062 | ) |
||
| 1063 | |||
| 1064 | df_demand_share = pd.read_sql( |
||
| 1065 | cells_query.statement, cells_query.session.bind, index_col=None |
||
| 1066 | ) |
||
| 1067 | |||
| 1068 | # Get substation cts heat load profiles of selected bus_ids |
||
| 1069 | # (this profile only contains zensus cells with individual heating; |
||
| 1070 | # in order to obtain a profile for the whole MV grid it is afterwards |
||
| 1071 | # scaled by the grids total CTS demand from peta) |
||
| 1072 | with db.session_scope() as session: |
||
| 1073 | cells_query = ( |
||
| 1074 | session.query(EgonEtragoHeatCts).filter( |
||
| 1075 | EgonEtragoHeatCts.scn_name == scenario |
||
| 1076 | ) |
||
| 1077 | ).filter(EgonEtragoHeatCts.bus_id.in_(bus_ids)) |
||
| 1078 | |||
| 1079 | df_cts_substation_profiles = pd.read_sql( |
||
| 1080 | cells_query.statement, |
||
| 1081 | cells_query.session.bind, |
||
| 1082 | ) |
||
| 1083 | df_cts_substation_profiles = pd.DataFrame.from_dict( |
||
| 1084 | df_cts_substation_profiles.set_index("bus_id")["p_set"].to_dict(), |
||
| 1085 | orient="index", |
||
| 1086 | ) |
||
| 1087 | for bus_id in bus_ids: |
||
| 1088 | if bus_id in df_cts_substation_profiles.index: |
||
| 1089 | # get peta demand to scale load profile to |
||
| 1090 | peta_cts_demand = get_peta_demand(bus_id, scenario) |
||
| 1091 | scaling_factor = ( |
||
| 1092 | peta_cts_demand.demand.sum() |
||
| 1093 | / df_cts_substation_profiles.loc[bus_id, :].sum() |
||
| 1094 | ) |
||
| 1095 | # scale load profile |
||
| 1096 | df_cts_substation_profiles.loc[bus_id, :] *= scaling_factor |
||
| 1097 | |||
| 1098 | else: |
||
| 1099 | raise KeyError("Sector needs to be either 'electricity' or 'heat'") |
||
| 1100 | |||
| 1101 | # TODO remove after #722 |
||
| 1102 | df_demand_share.rename(columns={"id": "building_id"}, inplace=True) |
||
| 1103 | |||
| 1104 | # get demand profile for all buildings for selected demand share |
||
| 1105 | df_building_profiles = pd.DataFrame() |
||
| 1106 | for bus_id, df in df_demand_share.groupby("bus_id"): |
||
| 1107 | shares = df.set_index("building_id", drop=True)["profile_share"] |
||
| 1108 | try: |
||
| 1109 | profile_ts = df_cts_substation_profiles.loc[bus_id] |
||
| 1110 | except KeyError: |
||
| 1111 | # This should only happen within the SH cutout |
||
| 1112 | log.info( |
||
| 1113 | f"No CTS profile found for substation with bus_id:" |
||
| 1114 | f" {bus_id}" |
||
| 1115 | ) |
||
| 1116 | continue |
||
| 1117 | |||
| 1118 | building_profiles = np.outer(profile_ts, shares) |
||
| 1119 | building_profiles = pd.DataFrame( |
||
| 1120 | building_profiles, index=profile_ts.index, columns=shares.index |
||
| 1121 | ) |
||
| 1122 | df_building_profiles = pd.concat( |
||
| 1123 | [df_building_profiles, building_profiles], axis=1 |
||
| 1124 | ) |
||
| 1125 | |||
| 1126 | return df_building_profiles |
||
| 1127 | |||
| 1128 | |||
| 1129 | def delete_synthetic_cts_buildings(): |
||
| 1130 | """ |
||
| 1131 | All synthetic cts buildings are deleted from the DB. This is necessary if |
||
| 1132 | the task is run multiple times as the existing synthetic buildings |
||
| 1133 | influence the results. |
||
| 1134 | """ |
||
| 1135 | # import db tables |
||
| 1136 | from saio.openstreetmap import osm_buildings_synthetic |
||
| 1137 | |||
| 1138 | # cells mit amenities |
||
| 1139 | with db.session_scope() as session: |
||
| 1140 | session.query(osm_buildings_synthetic).filter( |
||
| 1141 | osm_buildings_synthetic.building == "cts" |
||
| 1142 | ).delete() |
||
| 1143 | |||
| 1144 | |||
| 1145 | def remove_double_bus_id(df_cts_buildings): |
||
| 1146 | """This is an backup adhoc fix if there should still be a building which |
||
| 1147 | is assigned to 2 substations. In this case one of the buildings is just |
||
| 1148 | dropped. As this currently accounts for only one building with one amenity |
||
| 1149 | the deviation is neglectable.""" |
||
| 1150 | # assign bus_id via census cell of amenity |
||
| 1151 | with db.session_scope() as session: |
||
| 1152 | cells_query = session.query( |
||
| 1153 | MapZensusGridDistricts.zensus_population_id, |
||
| 1154 | MapZensusGridDistricts.bus_id, |
||
| 1155 | ) |
||
| 1156 | |||
| 1157 | df_egon_map_zensus_buildings_buses = pd.read_sql( |
||
| 1158 | cells_query.statement, |
||
| 1159 | cells_query.session.bind, |
||
| 1160 | index_col=None, |
||
| 1161 | ) |
||
| 1162 | df_cts_buildings = pd.merge( |
||
| 1163 | left=df_cts_buildings, |
||
| 1164 | right=df_egon_map_zensus_buildings_buses, |
||
| 1165 | on="zensus_population_id", |
||
| 1166 | ) |
||
| 1167 | |||
| 1168 | substation_per_building = df_cts_buildings.groupby("id")[ |
||
| 1169 | "bus_id" |
||
| 1170 | ].nunique() |
||
| 1171 | building_id = substation_per_building.loc[ |
||
| 1172 | substation_per_building > 1 |
||
| 1173 | ].index |
||
| 1174 | df_duplicates = df_cts_buildings.loc[ |
||
| 1175 | df_cts_buildings["id"].isin(building_id) |
||
| 1176 | ] |
||
| 1177 | for unique_id in df_duplicates["id"].unique(): |
||
| 1178 | drop_index = df_duplicates[df_duplicates["id"] == unique_id].index[0] |
||
| 1179 | print( |
||
| 1180 | f"Buildings {df_cts_buildings.loc[drop_index, 'id']}" |
||
| 1181 | f" dropped because of double substation" |
||
| 1182 | ) |
||
| 1183 | df_cts_buildings.drop(index=drop_index, inplace=True) |
||
| 1184 | |||
| 1185 | df_cts_buildings.drop(columns="bus_id", inplace=True) |
||
| 1186 | |||
| 1187 | return df_cts_buildings |
||
| 1188 | |||
| 1189 | |||
| 1190 | def cts_buildings(): |
||
| 1191 | """ |
||
| 1192 | Assigns CTS demand to buildings and calculates the respective demand |
||
| 1193 | profiles. The demand profile per substation are disaggregated per |
||
| 1194 | annual demand share of each census cell and by the number of amenities |
||
| 1195 | per building within the cell. If no building data is available, |
||
| 1196 | synthetic buildings are generated around the amenities. If no amenities |
||
| 1197 | but cts demand is available, buildings are randomly selected. If no |
||
| 1198 | building nor amenity is available, random synthetic buildings are |
||
| 1199 | generated. The demand share is stored in the database. |
||
| 1200 | |||
| 1201 | Note |
||
| 1202 | ----- |
||
| 1203 | Cells with CTS demand, amenities and buildings do not change within |
||
| 1204 | the scenarios, only the demand itself. Therefore any scenario |
||
| 1205 | can be used universally to determine the cts buildings but not for |
||
| 1206 | the demand share. |
||
| 1207 | """ |
||
| 1208 | |||
| 1209 | # ========== Register np datatypes with SQLA ========== |
||
| 1210 | def adapt_numpy_float64(numpy_float64): |
||
| 1211 | return AsIs(numpy_float64) |
||
| 1212 | |||
| 1213 | def adapt_numpy_int64(numpy_int64): |
||
| 1214 | return AsIs(numpy_int64) |
||
| 1215 | |||
| 1216 | register_adapter(np.float64, adapt_numpy_float64) |
||
| 1217 | register_adapter(np.int64, adapt_numpy_int64) |
||
| 1218 | # ===================================================== |
||
| 1219 | |||
| 1220 | log.info("Start logging!") |
||
| 1221 | # Buildings with amenities |
||
| 1222 | df_buildings_with_amenities, df_lost_cells = ( |
||
| 1223 | buildings_with_amenities() |
||
| 1224 | ) # TODO: status2023 this is fixed to 2023 |
||
| 1225 | log.info("Buildings with amenities selected!") |
||
| 1226 | |||
| 1227 | # Median number of amenities per cell |
||
| 1228 | median_n_amenities = int( |
||
| 1229 | df_buildings_with_amenities.groupby("zensus_population_id")[ |
||
| 1230 | "n_amenities_inside" |
||
| 1231 | ] |
||
| 1232 | .sum() |
||
| 1233 | .median() |
||
| 1234 | ) |
||
| 1235 | log.info(f"Median amenity value: {median_n_amenities}") |
||
| 1236 | |||
| 1237 | # Remove synthetic CTS buildings if existing |
||
| 1238 | delete_synthetic_cts_buildings() |
||
| 1239 | log.info("Old synthetic cts buildings deleted!") |
||
| 1240 | |||
| 1241 | # Amenities not assigned to buildings |
||
| 1242 | df_amenities_without_buildings = amenities_without_buildings() |
||
| 1243 | log.info("Amenities without buildings selected!") |
||
| 1244 | |||
| 1245 | # Append lost cells due to duplicated ids, to cover all demand cells |
||
| 1246 | if not df_lost_cells.empty: |
||
| 1247 | # Number of synth amenities per cell |
||
| 1248 | df_lost_cells["amenities"] = median_n_amenities |
||
| 1249 | # create row for every amenity |
||
| 1250 | df_lost_cells["amenities"] = ( |
||
| 1251 | df_lost_cells["amenities"].astype(int).apply(range) |
||
| 1252 | ) |
||
| 1253 | df_lost_cells = df_lost_cells.explode("amenities") |
||
| 1254 | df_lost_cells.drop(columns="amenities", inplace=True) |
||
| 1255 | df_amenities_without_buildings = pd.concat( |
||
| 1256 | [df_amenities_without_buildings, df_lost_cells], ignore_index=True |
||
| 1257 | ) |
||
| 1258 | log.info( |
||
| 1259 | f"{df_lost_cells.shape[0]} lost cells due to substation " |
||
| 1260 | f"intersection appended!" |
||
| 1261 | ) |
||
| 1262 | |||
| 1263 | # One building per amenity |
||
| 1264 | df_amenities_without_buildings["n_amenities_inside"] = 1 |
||
| 1265 | # Create synthetic buildings for amenites without buildings |
||
| 1266 | df_synthetic_buildings_with_amenities = create_synthetic_buildings( |
||
| 1267 | df_amenities_without_buildings, points="geom_amenity" |
||
| 1268 | ) |
||
| 1269 | log.info("Synthetic buildings created!") |
||
| 1270 | |||
| 1271 | # TODO remove renaming after #722 |
||
| 1272 | write_table_to_postgis( |
||
| 1273 | df_synthetic_buildings_with_amenities.rename( |
||
| 1274 | columns={ |
||
| 1275 | "zensus_population_id": "cell_id", |
||
| 1276 | "egon_building_id": "id", |
||
| 1277 | } |
||
| 1278 | ), |
||
| 1279 | OsmBuildingsSynthetic, |
||
| 1280 | engine=engine, |
||
| 1281 | drop=False, |
||
| 1282 | ) |
||
| 1283 | log.info("Synthetic buildings exported to DB!") |
||
| 1284 | |||
| 1285 | # Cells without amenities but CTS demand and buildings |
||
| 1286 | df_buildings_without_amenities = buildings_without_amenities() |
||
| 1287 | log.info("Buildings without amenities in demand cells identified!") |
||
| 1288 | |||
| 1289 | # Backup Bugfix for duplicated buildings which occure in SQL-Querry |
||
| 1290 | # drop building ids which have already been used |
||
| 1291 | mask = df_buildings_without_amenities.loc[ |
||
| 1292 | df_buildings_without_amenities["id"].isin( |
||
| 1293 | df_buildings_with_amenities["id"] |
||
| 1294 | ) |
||
| 1295 | ].index |
||
| 1296 | df_buildings_without_amenities = df_buildings_without_amenities.drop( |
||
| 1297 | index=mask |
||
| 1298 | ).reset_index(drop=True) |
||
| 1299 | log.info(f"{len(mask)} duplicated ids removed!") |
||
| 1300 | |||
| 1301 | # select median n buildings per cell |
||
| 1302 | df_buildings_without_amenities = select_cts_buildings( |
||
| 1303 | df_buildings_without_amenities, max_n=median_n_amenities |
||
| 1304 | ) |
||
| 1305 | df_buildings_without_amenities["n_amenities_inside"] = 1 |
||
| 1306 | log.info(f"{median_n_amenities} buildings per cell selected!") |
||
| 1307 | |||
| 1308 | # Create synthetic amenities and buildings in cells with only CTS demand |
||
| 1309 | df_cells_with_cts_demand_only = cells_with_cts_demand_only( |
||
| 1310 | df_buildings_without_amenities |
||
| 1311 | ) |
||
| 1312 | log.info("Cells with only demand identified!") |
||
| 1313 | |||
| 1314 | # TODO implement overlay prevention #953 here |
||
| 1315 | # Median n Amenities per cell |
||
| 1316 | df_cells_with_cts_demand_only["amenities"] = median_n_amenities |
||
| 1317 | # create row for every amenity |
||
| 1318 | df_cells_with_cts_demand_only["amenities"] = ( |
||
| 1319 | df_cells_with_cts_demand_only["amenities"].astype(int).apply(range) |
||
| 1320 | ) |
||
| 1321 | df_cells_with_cts_demand_only = df_cells_with_cts_demand_only.explode( |
||
| 1322 | "amenities" |
||
| 1323 | ) |
||
| 1324 | df_cells_with_cts_demand_only.drop(columns="amenities", inplace=True) |
||
| 1325 | |||
| 1326 | # Only 1 Amenity per Building |
||
| 1327 | df_cells_with_cts_demand_only["n_amenities_inside"] = 1 |
||
| 1328 | df_cells_with_cts_demand_only = place_buildings_with_amenities( |
||
| 1329 | df_cells_with_cts_demand_only, amenities=1 |
||
| 1330 | ) |
||
| 1331 | df_synthetic_buildings_without_amenities = create_synthetic_buildings( |
||
| 1332 | df_cells_with_cts_demand_only, points="geom_point" |
||
| 1333 | ) |
||
| 1334 | log.info(f"{median_n_amenities} synthetic buildings per cell created") |
||
| 1335 | |||
| 1336 | # TODO remove renaming after #722 |
||
| 1337 | write_table_to_postgis( |
||
| 1338 | df_synthetic_buildings_without_amenities.rename( |
||
| 1339 | columns={ |
||
| 1340 | "zensus_population_id": "cell_id", |
||
| 1341 | "egon_building_id": "id", |
||
| 1342 | } |
||
| 1343 | ), |
||
| 1344 | OsmBuildingsSynthetic, |
||
| 1345 | engine=engine, |
||
| 1346 | drop=False, |
||
| 1347 | ) |
||
| 1348 | log.info("Synthetic buildings exported to DB") |
||
| 1349 | |||
| 1350 | # Concat all buildings |
||
| 1351 | columns = [ |
||
| 1352 | "zensus_population_id", |
||
| 1353 | "id", |
||
| 1354 | "geom_building", |
||
| 1355 | "n_amenities_inside", |
||
| 1356 | "source", |
||
| 1357 | ] |
||
| 1358 | |||
| 1359 | df_buildings_with_amenities["source"] = "bwa" |
||
| 1360 | df_synthetic_buildings_with_amenities["source"] = "sbwa" |
||
| 1361 | df_buildings_without_amenities["source"] = "bwoa" |
||
| 1362 | df_synthetic_buildings_without_amenities["source"] = "sbwoa" |
||
| 1363 | |||
| 1364 | df_cts_buildings = pd.concat( |
||
| 1365 | [ |
||
| 1366 | df_buildings_with_amenities[columns], |
||
| 1367 | df_synthetic_buildings_with_amenities[columns], |
||
| 1368 | df_buildings_without_amenities[columns], |
||
| 1369 | df_synthetic_buildings_without_amenities[columns], |
||
| 1370 | ], |
||
| 1371 | axis=0, |
||
| 1372 | ignore_index=True, |
||
| 1373 | ) |
||
| 1374 | df_cts_buildings = remove_double_bus_id(df_cts_buildings) |
||
| 1375 | log.info("Double bus_id checked") |
||
| 1376 | |||
| 1377 | # TODO remove dypte correction after #722 |
||
| 1378 | df_cts_buildings["id"] = df_cts_buildings["id"].astype(int) |
||
| 1379 | |||
| 1380 | df_cts_buildings = gpd.GeoDataFrame( |
||
| 1381 | df_cts_buildings, geometry="geom_building", crs=3035 |
||
| 1382 | ) |
||
| 1383 | df_cts_buildings = df_cts_buildings.reset_index().rename( |
||
| 1384 | columns={"index": "serial"} |
||
| 1385 | ) |
||
| 1386 | |||
| 1387 | # Write table to db for debugging and postprocessing |
||
| 1388 | write_table_to_postgis( |
||
| 1389 | df_cts_buildings, |
||
| 1390 | CtsBuildings, |
||
| 1391 | engine=engine, |
||
| 1392 | drop=True, |
||
| 1393 | ) |
||
| 1394 | log.info("CTS buildings exported to DB!") |
||
| 1395 | |||
| 1396 | |||
| 1397 | View Code Duplication | def cts_electricity(): |
|
| 1398 | """ |
||
| 1399 | Calculate cts electricity demand share of hvmv substation profile |
||
| 1400 | for buildings. |
||
| 1401 | """ |
||
| 1402 | log.info("Start logging!") |
||
| 1403 | with db.session_scope() as session: |
||
| 1404 | cells_query = session.query(CtsBuildings) |
||
| 1405 | |||
| 1406 | df_cts_buildings = pd.read_sql( |
||
| 1407 | cells_query.statement, cells_query.session.bind, index_col=None |
||
| 1408 | ) |
||
| 1409 | log.info("CTS buildings from DB imported!") |
||
| 1410 | |||
| 1411 | df_demand_share = pd.DataFrame() |
||
| 1412 | |||
| 1413 | for scenario in config.settings()["egon-data"]["--scenarios"]: |
||
| 1414 | df_demand_share_per_scenario = calc_building_demand_profile_share( |
||
| 1415 | df_cts_buildings, scenario=scenario, sector="electricity" |
||
| 1416 | ) |
||
| 1417 | log.info(f"Profile share for {scenario} calculated!") |
||
| 1418 | |||
| 1419 | df_demand_share = pd.concat( |
||
| 1420 | [df_demand_share, df_demand_share_per_scenario], |
||
| 1421 | axis=0, |
||
| 1422 | ignore_index=True, |
||
| 1423 | ) |
||
| 1424 | |||
| 1425 | df_demand_share.rename(columns={"id": "building_id"}, inplace=True) |
||
| 1426 | |||
| 1427 | write_table_to_postgres( |
||
| 1428 | df_demand_share, |
||
| 1429 | EgonCtsElectricityDemandBuildingShare, |
||
| 1430 | drop=True, |
||
| 1431 | ) |
||
| 1432 | log.info("Profile share exported to DB!") |
||
| 1433 | |||
| 1434 | |||
| 1435 | View Code Duplication | def cts_heat(): |
|
| 1436 | """ |
||
| 1437 | Calculate cts electricity demand share of hvmv substation profile |
||
| 1438 | for buildings. |
||
| 1439 | """ |
||
| 1440 | log.info("Start logging!") |
||
| 1441 | with db.session_scope() as session: |
||
| 1442 | cells_query = session.query(CtsBuildings) |
||
| 1443 | |||
| 1444 | df_cts_buildings = pd.read_sql( |
||
| 1445 | cells_query.statement, cells_query.session.bind, index_col=None |
||
| 1446 | ) |
||
| 1447 | log.info("CTS buildings from DB imported!") |
||
| 1448 | |||
| 1449 | df_demand_share = pd.DataFrame() |
||
| 1450 | |||
| 1451 | for scenario in config.settings()["egon-data"]["--scenarios"]: |
||
| 1452 | df_demand_share_per_scenario = calc_building_demand_profile_share( |
||
| 1453 | df_cts_buildings, scenario=scenario, sector="heat" |
||
| 1454 | ) |
||
| 1455 | log.info(f"Profile share for {scenario} calculated!") |
||
| 1456 | |||
| 1457 | df_demand_share = pd.concat( |
||
| 1458 | [df_demand_share, df_demand_share_per_scenario], |
||
| 1459 | axis=0, |
||
| 1460 | ignore_index=True, |
||
| 1461 | ) |
||
| 1462 | |||
| 1463 | df_demand_share.rename(columns={"id": "building_id"}, inplace=True) |
||
| 1464 | |||
| 1465 | write_table_to_postgres( |
||
| 1466 | df_demand_share, |
||
| 1467 | EgonCtsHeatDemandBuildingShare, |
||
| 1468 | drop=True, |
||
| 1469 | ) |
||
| 1470 | log.info("Profile share exported to DB!") |
||
| 1471 | |||
| 1472 | |||
| 1473 | View Code Duplication | def get_cts_electricity_peak_load(): |
|
| 1474 | """ |
||
| 1475 | Get electricity peak load of all CTS buildings for both scenarios and |
||
| 1476 | store in DB. |
||
| 1477 | """ |
||
| 1478 | log.info("Start logging!") |
||
| 1479 | |||
| 1480 | BuildingElectricityPeakLoads.__table__.create(bind=engine, checkfirst=True) |
||
| 1481 | |||
| 1482 | # Delete rows with cts demand |
||
| 1483 | with db.session_scope() as session: |
||
| 1484 | session.query(BuildingElectricityPeakLoads).filter( |
||
| 1485 | BuildingElectricityPeakLoads.sector == "cts" |
||
| 1486 | ).delete() |
||
| 1487 | log.info("Cts electricity peak load removed from DB!") |
||
| 1488 | |||
| 1489 | for scenario in config.settings()["egon-data"]["--scenarios"]: |
||
| 1490 | with db.session_scope() as session: |
||
| 1491 | cells_query = session.query( |
||
| 1492 | EgonCtsElectricityDemandBuildingShare |
||
| 1493 | ).filter( |
||
| 1494 | EgonCtsElectricityDemandBuildingShare.scenario == scenario |
||
| 1495 | ) |
||
| 1496 | |||
| 1497 | df_demand_share = pd.read_sql( |
||
| 1498 | cells_query.statement, cells_query.session.bind, index_col=None |
||
| 1499 | ) |
||
| 1500 | |||
| 1501 | with db.session_scope() as session: |
||
| 1502 | cells_query = session.query(EgonEtragoElectricityCts).filter( |
||
| 1503 | EgonEtragoElectricityCts.scn_name == scenario |
||
| 1504 | ) |
||
| 1505 | |||
| 1506 | df_cts_profiles = pd.read_sql( |
||
| 1507 | cells_query.statement, |
||
| 1508 | cells_query.session.bind, |
||
| 1509 | ) |
||
| 1510 | df_cts_profiles = pd.DataFrame.from_dict( |
||
| 1511 | df_cts_profiles.set_index("bus_id")["p_set"].to_dict(), |
||
| 1512 | orient="columns", |
||
| 1513 | ) |
||
| 1514 | |||
| 1515 | df_peak_load = pd.merge( |
||
| 1516 | left=df_cts_profiles.max().astype(float).rename("max"), |
||
| 1517 | right=df_demand_share, |
||
| 1518 | left_index=True, |
||
| 1519 | right_on="bus_id", |
||
| 1520 | ) |
||
| 1521 | |||
| 1522 | # Convert unit from MWh to W |
||
| 1523 | df_peak_load["max"] = df_peak_load["max"] * 1e6 |
||
| 1524 | df_peak_load["peak_load_in_w"] = ( |
||
| 1525 | df_peak_load["max"] * df_peak_load["profile_share"] |
||
| 1526 | ) |
||
| 1527 | log.info(f"Peak load for {scenario} determined!") |
||
| 1528 | |||
| 1529 | # TODO remove after #772 |
||
| 1530 | df_peak_load.rename(columns={"id": "building_id"}, inplace=True) |
||
| 1531 | df_peak_load["sector"] = "cts" |
||
| 1532 | |||
| 1533 | # # Write peak loads into db |
||
| 1534 | write_table_to_postgres( |
||
| 1535 | df_peak_load, |
||
| 1536 | BuildingElectricityPeakLoads, |
||
| 1537 | drop=False, |
||
| 1538 | index=False, |
||
| 1539 | if_exists="append", |
||
| 1540 | ) |
||
| 1541 | |||
| 1542 | log.info(f"Peak load for {scenario} exported to DB!") |
||
| 1543 | |||
| 1544 | |||
| 1545 | View Code Duplication | def get_cts_heat_peak_load(): |
|
| 1546 | """ |
||
| 1547 | Get heat peak load of all CTS buildings for both scenarios and store in DB. |
||
| 1548 | """ |
||
| 1549 | log.info("Start logging!") |
||
| 1550 | |||
| 1551 | BuildingHeatPeakLoads.__table__.create(bind=engine, checkfirst=True) |
||
| 1552 | |||
| 1553 | # Delete rows with cts demand |
||
| 1554 | with db.session_scope() as session: |
||
| 1555 | session.query(BuildingHeatPeakLoads).filter( |
||
| 1556 | BuildingHeatPeakLoads.sector == "cts" |
||
| 1557 | ).delete() |
||
| 1558 | log.info("Cts heat peak load removed from DB!") |
||
| 1559 | |||
| 1560 | for scenario in config.settings()["egon-data"]["--scenarios"]: |
||
| 1561 | with db.session_scope() as session: |
||
| 1562 | cells_query = session.query( |
||
| 1563 | EgonCtsElectricityDemandBuildingShare |
||
| 1564 | ).filter( |
||
| 1565 | EgonCtsElectricityDemandBuildingShare.scenario == scenario |
||
| 1566 | ) |
||
| 1567 | |||
| 1568 | df_demand_share = pd.read_sql( |
||
| 1569 | cells_query.statement, cells_query.session.bind, index_col=None |
||
| 1570 | ) |
||
| 1571 | log.info(f"Retrieved demand share for scenario: {scenario}") |
||
| 1572 | |||
| 1573 | with db.session_scope() as session: |
||
| 1574 | cells_query = session.query(EgonEtragoHeatCts).filter( |
||
| 1575 | EgonEtragoHeatCts.scn_name == scenario |
||
| 1576 | ) |
||
| 1577 | |||
| 1578 | df_cts_profiles = pd.read_sql( |
||
| 1579 | cells_query.statement, |
||
| 1580 | cells_query.session.bind, |
||
| 1581 | ) |
||
| 1582 | log.info(f"Retrieved substation profiles for scenario: {scenario}") |
||
| 1583 | |||
| 1584 | df_cts_profiles = pd.DataFrame.from_dict( |
||
| 1585 | df_cts_profiles.set_index("bus_id")["p_set"].to_dict(), |
||
| 1586 | orient="columns", |
||
| 1587 | ) |
||
| 1588 | |||
| 1589 | df_peak_load = pd.merge( |
||
| 1590 | left=df_cts_profiles.max().astype(float).rename("max"), |
||
| 1591 | right=df_demand_share, |
||
| 1592 | left_index=True, |
||
| 1593 | right_on="bus_id", |
||
| 1594 | ) |
||
| 1595 | |||
| 1596 | # Convert unit from MWh to W |
||
| 1597 | df_peak_load["max"] = df_peak_load["max"] * 1e6 |
||
| 1598 | df_peak_load["peak_load_in_w"] = ( |
||
| 1599 | df_peak_load["max"] * df_peak_load["profile_share"] |
||
| 1600 | ) |
||
| 1601 | log.info(f"Peak load for {scenario} determined!") |
||
| 1602 | |||
| 1603 | # TODO remove after #772 |
||
| 1604 | df_peak_load.rename(columns={"id": "building_id"}, inplace=True) |
||
| 1605 | df_peak_load["sector"] = "cts" |
||
| 1606 | |||
| 1607 | # # Write peak loads into db |
||
| 1608 | write_table_to_postgres( |
||
| 1609 | df_peak_load, |
||
| 1610 | BuildingHeatPeakLoads, |
||
| 1611 | drop=False, |
||
| 1612 | index=False, |
||
| 1613 | if_exists="append", |
||
| 1614 | ) |
||
| 1615 | |||
| 1616 | log.info(f"Peak load for {scenario} exported to DB!") |
||
| 1617 | |||
| 1618 | |||
| 1619 | def assign_voltage_level_to_buildings(): |
||
| 1620 | """ |
||
| 1621 | Add voltage level to all buildings by summed peak demand. |
||
| 1622 | |||
| 1623 | All entries with same building id get the voltage level corresponding |
||
| 1624 | to their summed residential and cts peak demand. |
||
| 1625 | """ |
||
| 1626 | |||
| 1627 | with db.session_scope() as session: |
||
| 1628 | cells_query = session.query(BuildingElectricityPeakLoads) |
||
| 1629 | |||
| 1630 | df_peak_loads = pd.read_sql( |
||
| 1631 | cells_query.statement, |
||
| 1632 | cells_query.session.bind, |
||
| 1633 | ) |
||
| 1634 | |||
| 1635 | df_peak_load_buildings = df_peak_loads.groupby( |
||
| 1636 | ["building_id", "scenario"] |
||
| 1637 | )["peak_load_in_w"].sum() |
||
| 1638 | df_peak_load_buildings = df_peak_load_buildings.to_frame() |
||
| 1639 | df_peak_load_buildings.loc[:, "voltage_level"] = 0 |
||
| 1640 | |||
| 1641 | # Identify voltage_level by thresholds defined in the eGon project |
||
| 1642 | df_peak_load_buildings.loc[ |
||
| 1643 | df_peak_load_buildings["peak_load_in_w"] <= 0.1 * 1e6, "voltage_level" |
||
| 1644 | ] = 7 |
||
| 1645 | df_peak_load_buildings.loc[ |
||
| 1646 | df_peak_load_buildings["peak_load_in_w"] > 0.1 * 1e6, "voltage_level" |
||
| 1647 | ] = 6 |
||
| 1648 | df_peak_load_buildings.loc[ |
||
| 1649 | df_peak_load_buildings["peak_load_in_w"] > 0.2 * 1e6, "voltage_level" |
||
| 1650 | ] = 5 |
||
| 1651 | df_peak_load_buildings.loc[ |
||
| 1652 | df_peak_load_buildings["peak_load_in_w"] > 5.5 * 1e6, "voltage_level" |
||
| 1653 | ] = 4 |
||
| 1654 | df_peak_load_buildings.loc[ |
||
| 1655 | df_peak_load_buildings["peak_load_in_w"] > 20 * 1e6, "voltage_level" |
||
| 1656 | ] = 3 |
||
| 1657 | df_peak_load_buildings.loc[ |
||
| 1658 | df_peak_load_buildings["peak_load_in_w"] > 120 * 1e6, "voltage_level" |
||
| 1659 | ] = 1 |
||
| 1660 | |||
| 1661 | df_peak_load = pd.merge( |
||
| 1662 | left=df_peak_loads.drop(columns="voltage_level"), |
||
| 1663 | right=df_peak_load_buildings["voltage_level"], |
||
| 1664 | how="left", |
||
| 1665 | left_on=["building_id", "scenario"], |
||
| 1666 | right_index=True, |
||
| 1667 | ) |
||
| 1668 | |||
| 1669 | # Write peak loads into db |
||
| 1670 | # remove table and replace by new |
||
| 1671 | write_table_to_postgres( |
||
| 1672 | df_peak_load, |
||
| 1673 | BuildingElectricityPeakLoads, |
||
| 1674 | drop=True, |
||
| 1675 | index=False, |
||
| 1676 | if_exists="append", |
||
| 1677 | ) |
||
| 1678 |