Total Complexity | 110 |
Total Lines | 2204 |
Duplicated Lines | 5.54 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like data.datasets.electrical_neighbours often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | """The central module containing all code dealing with electrical neighbours""" |
||
2 | |||
3 | from os import path |
||
4 | from pathlib import Path |
||
5 | import datetime |
||
6 | import logging |
||
7 | import os.path |
||
8 | import zipfile |
||
9 | |||
10 | from shapely.geometry import LineString |
||
11 | from sqlalchemy.orm import sessionmaker |
||
12 | import entsoe |
||
13 | import geopandas as gpd |
||
14 | import pandas as pd |
||
15 | import requests |
||
16 | |||
17 | from egon.data import config, db, logger |
||
18 | from egon.data.datasets import Dataset, wrapped_partial |
||
19 | from egon.data.datasets.fill_etrago_gen import add_marginal_costs |
||
20 | from egon.data.datasets.fix_ehv_subnetworks import select_bus_id |
||
21 | from egon.data.datasets.pypsaeur import prepared_network |
||
22 | from egon.data.datasets.scenario_parameters import get_sector_parameters |
||
23 | from egon.data.db import session_scope |
||
24 | import egon.data.datasets.etrago_setup as etrago |
||
25 | import egon.data.datasets.scenario_parameters.parameters as scenario_parameters |
||
26 | |||
27 | |||
28 | def get_cross_border_buses(scenario, sources): |
||
29 | """Returns buses from osmTGmod which are outside of Germany. |
||
30 | |||
31 | Parameters |
||
32 | ---------- |
||
33 | sources : dict |
||
34 | List of sources |
||
35 | |||
36 | Returns |
||
37 | ------- |
||
38 | geopandas.GeoDataFrame |
||
39 | Electricity buses outside of Germany |
||
40 | |||
41 | """ |
||
42 | return db.select_geodataframe( |
||
43 | f""" |
||
44 | SELECT * |
||
45 | FROM {sources['electricity_buses']['schema']}. |
||
46 | {sources['electricity_buses']['table']} |
||
47 | WHERE |
||
48 | NOT ST_INTERSECTS ( |
||
49 | geom, |
||
50 | (SELECT ST_Transform(ST_Buffer(geometry, 5), 4326) FROM |
||
51 | {sources['german_borders']['schema']}. |
||
52 | {sources['german_borders']['table']})) |
||
53 | AND (bus_id IN ( |
||
54 | SELECT bus0 FROM |
||
55 | {sources['lines']['schema']}.{sources['lines']['table']}) |
||
56 | OR bus_id IN ( |
||
57 | SELECT bus1 FROM |
||
58 | {sources['lines']['schema']}.{sources['lines']['table']})) |
||
59 | AND scn_name = '{scenario}'; |
||
60 | """, |
||
61 | epsg=4326, |
||
62 | ) |
||
63 | |||
64 | |||
65 | def get_cross_border_lines(scenario, sources): |
||
66 | """Returns lines from osmTGmod which end or start outside of Germany. |
||
67 | |||
68 | Parameters |
||
69 | ---------- |
||
70 | sources : dict |
||
71 | List of sources |
||
72 | |||
73 | Returns |
||
74 | ------- |
||
75 | geopandas.GeoDataFrame |
||
76 | AC-lines outside of Germany |
||
77 | |||
78 | """ |
||
79 | return db.select_geodataframe( |
||
80 | f""" |
||
81 | SELECT * |
||
82 | FROM {sources['lines']['schema']}.{sources['lines']['table']} a |
||
83 | WHERE |
||
84 | ST_INTERSECTS ( |
||
85 | a.topo, |
||
86 | (SELECT ST_Transform(ST_boundary(geometry), 4326) |
||
87 | FROM {sources['german_borders']['schema']}. |
||
88 | {sources['german_borders']['table']})) |
||
89 | AND scn_name = '{scenario}'; |
||
90 | """, |
||
91 | epsg=4326, |
||
92 | ) |
||
93 | |||
94 | |||
95 | def central_buses_pypsaeur(sources, scenario): |
||
96 | """Returns buses in the middle of foreign countries based on prepared pypsa-eur network |
||
97 | |||
98 | Parameters |
||
99 | ---------- |
||
100 | sources : dict |
||
101 | List of sources |
||
102 | |||
103 | Returns |
||
104 | ------- |
||
105 | pandas.DataFrame |
||
106 | Buses in the center of foreign countries |
||
107 | |||
108 | """ |
||
109 | |||
110 | wanted_countries = [ |
||
111 | "AT", |
||
112 | "CH", |
||
113 | "CZ", |
||
114 | "PL", |
||
115 | "SE", |
||
116 | "NO", |
||
117 | "DK", |
||
118 | "GB", |
||
119 | "NL", |
||
120 | "BE", |
||
121 | "FR", |
||
122 | "LU", |
||
123 | ] |
||
124 | network = prepared_network() |
||
125 | |||
126 | df = network.buses[ |
||
127 | (network.buses.carrier == "AC") |
||
128 | & (network.buses.country.isin(wanted_countries)) |
||
129 | ] |
||
130 | |||
131 | return df |
||
132 | |||
133 | |||
134 | def buses(scenario, sources, targets): |
||
135 | """Insert central buses in foreign countries per scenario |
||
136 | |||
137 | Parameters |
||
138 | ---------- |
||
139 | sources : dict |
||
140 | List of dataset sources |
||
141 | targets : dict |
||
142 | List of dataset targets |
||
143 | |||
144 | Returns |
||
145 | ------- |
||
146 | central_buses : geoapndas.GeoDataFrame |
||
147 | Buses in the center of foreign countries |
||
148 | |||
149 | """ |
||
150 | sql_delete = f""" |
||
151 | DELETE FROM {sources['electricity_buses']['schema']}. |
||
152 | {sources['electricity_buses']['table']} |
||
153 | WHERE country != 'DE' AND scn_name = '{scenario}' |
||
154 | AND carrier = 'AC' |
||
155 | AND bus_id NOT IN ( |
||
156 | SELECT bus_i |
||
157 | FROM {sources['osmtgmod_bus']['schema']}. |
||
158 | {sources['osmtgmod_bus']['table']}) |
||
159 | """ |
||
160 | |||
161 | # Delete existing buses |
||
162 | db.execute_sql(sql_delete) |
||
163 | |||
164 | central_buses = central_buses_pypsaeur(sources, scenario) |
||
165 | |||
166 | central_buses["bus_id"] = db.next_etrago_id("bus", len(central_buses)) |
||
167 | |||
168 | # if in test mode, add bus in center of Germany |
||
169 | if config.settings()["egon-data"]["--dataset-boundary"] != "Everything": |
||
170 | central_buses = pd.concat( |
||
171 | [ |
||
172 | central_buses, |
||
173 | pd.DataFrame( |
||
174 | index=[db.next_etrago_id("bus")], |
||
175 | data={ |
||
176 | "scn_name": scenario, |
||
177 | "bus_id": db.next_etrago_id("bus"), |
||
178 | "x": 10.4234469, |
||
179 | "y": 51.0834196, |
||
180 | "country": "DE", |
||
181 | "carrier": "AC", |
||
182 | "v_nom": 380.0, |
||
183 | }, |
||
184 | ), |
||
185 | ], |
||
186 | ignore_index=True, |
||
187 | ) |
||
188 | |||
189 | # Add buses for other voltage levels |
||
190 | foreign_buses = get_cross_border_buses(scenario, sources) |
||
191 | if config.settings()["egon-data"]["--dataset-boundary"] == "Everything": |
||
192 | foreign_buses = foreign_buses[foreign_buses.country != "DE"] |
||
193 | vnom_per_country = foreign_buses.groupby("country").v_nom.unique().copy() |
||
194 | for cntr in vnom_per_country.index: |
||
195 | print(cntr) |
||
196 | View Code Duplication | if 110.0 in vnom_per_country[cntr]: |
|
|
|||
197 | central_buses = pd.concat( |
||
198 | [ |
||
199 | central_buses, |
||
200 | pd.DataFrame( |
||
201 | index=[db.next_etrago_id("bus")], |
||
202 | data={ |
||
203 | "scn_name": scenario, |
||
204 | "bus_id": db.next_etrago_id("bus"), |
||
205 | "x": central_buses[ |
||
206 | central_buses.country == cntr |
||
207 | ].x.unique()[0], |
||
208 | "y": central_buses[ |
||
209 | central_buses.country == cntr |
||
210 | ].y.unique()[0], |
||
211 | "country": cntr, |
||
212 | "carrier": "AC", |
||
213 | "v_nom": 110.0, |
||
214 | }, |
||
215 | ), |
||
216 | ], |
||
217 | ignore_index=True, |
||
218 | ) |
||
219 | |||
220 | View Code Duplication | if 220.0 in vnom_per_country[cntr]: |
|
221 | central_buses = pd.concat( |
||
222 | [ |
||
223 | central_buses, |
||
224 | pd.DataFrame( |
||
225 | index=[db.next_etrago_id("bus")], |
||
226 | data={ |
||
227 | "scn_name": scenario, |
||
228 | "bus_id": db.next_etrago_id("bus"), |
||
229 | "x": central_buses[ |
||
230 | central_buses.country == cntr |
||
231 | ].x.unique()[0], |
||
232 | "y": central_buses[ |
||
233 | central_buses.country == cntr |
||
234 | ].y.unique()[0], |
||
235 | "country": cntr, |
||
236 | "carrier": "AC", |
||
237 | "v_nom": 220.0, |
||
238 | }, |
||
239 | ), |
||
240 | ], |
||
241 | ignore_index=True, |
||
242 | ) |
||
243 | |||
244 | # Add geometry column |
||
245 | central_buses = gpd.GeoDataFrame( |
||
246 | central_buses, |
||
247 | geometry=gpd.points_from_xy(central_buses.x, central_buses.y), |
||
248 | crs="EPSG:4326", |
||
249 | ) |
||
250 | central_buses["geom"] = central_buses.geometry.copy() |
||
251 | central_buses = central_buses.set_geometry("geom").drop( |
||
252 | "geometry", axis="columns" |
||
253 | ) |
||
254 | central_buses.scn_name = scenario |
||
255 | |||
256 | central_buses.drop( |
||
257 | [ |
||
258 | "control", |
||
259 | "generator", |
||
260 | "location", |
||
261 | "unit", |
||
262 | "sub_network", |
||
263 | "substation_off", |
||
264 | "substation_lv", |
||
265 | ], |
||
266 | axis="columns", |
||
267 | inplace=True, |
||
268 | errors="ignore", |
||
269 | ) |
||
270 | |||
271 | # Insert all central buses for eGon2035 |
||
272 | if scenario in [ |
||
273 | "eGon2035", |
||
274 | "status2019", |
||
275 | "status2023", |
||
276 | ]: # TODO: status2023 this is hardcoded shit |
||
277 | central_buses.to_postgis( |
||
278 | targets["buses"]["table"], |
||
279 | schema=targets["buses"]["schema"], |
||
280 | if_exists="append", |
||
281 | con=db.engine(), |
||
282 | index=False, |
||
283 | ) |
||
284 | # Insert only buses for eGon100RE that are not coming from pypsa-eur-sec |
||
285 | # (buses with another voltage_level or inside Germany in test mode) |
||
286 | else: |
||
287 | central_buses[central_buses.carrier == "AC"].to_postgis( |
||
288 | targets["buses"]["table"], |
||
289 | schema=targets["buses"]["schema"], |
||
290 | if_exists="append", |
||
291 | con=db.engine(), |
||
292 | index=False, |
||
293 | ) |
||
294 | |||
295 | return central_buses |
||
296 | |||
297 | |||
298 | def lines_between_foreign_countries(scenario, sorces, targets, central_buses): |
||
299 | # import network from pypsa-eur |
||
300 | network = prepared_network() |
||
301 | |||
302 | gdf_buses = gpd.GeoDataFrame( |
||
303 | network.buses, |
||
304 | geometry=gpd.points_from_xy(network.buses.x, network.buses.y), |
||
305 | ) |
||
306 | |||
307 | central_buses_pypsaeur = gpd.sjoin( |
||
308 | gdf_buses[gdf_buses.carrier == "AC"], central_buses |
||
309 | ) |
||
310 | |||
311 | central_buses_pypsaeur = central_buses_pypsaeur[ |
||
312 | central_buses_pypsaeur.v_nom_right == 380 |
||
313 | ] |
||
314 | |||
315 | lines_to_add = network.lines[ |
||
316 | (network.lines.bus0.isin(central_buses_pypsaeur.index)) |
||
317 | & (network.lines.bus1.isin(central_buses_pypsaeur.index)) |
||
318 | ] |
||
319 | |||
320 | lines_to_add.loc[:, "lifetime"] = get_sector_parameters( |
||
321 | "electricity", scenario |
||
322 | )["lifetime"]["ac_ehv_overhead_line"] |
||
323 | lines_to_add.loc[:, "line_id"] = db.next_etrago_id( |
||
324 | "line", len(lines_to_add.index)) |
||
325 | |||
326 | links_to_add = network.links[ |
||
327 | (network.links.bus0.isin(central_buses_pypsaeur.index)) |
||
328 | & (network.links.bus1.isin(central_buses_pypsaeur.index)) |
||
329 | ] |
||
330 | |||
331 | links_to_add.loc[:, "lifetime"] = get_sector_parameters( |
||
332 | "electricity", scenario |
||
333 | )["lifetime"]["dc_overhead_line"] |
||
334 | links_to_add.loc[:, "link_id"] = db.next_etrago_id( |
||
335 | "link", len(links_to_add.index)) |
||
336 | |||
337 | for df in [lines_to_add, links_to_add]: |
||
338 | df.loc[:, "scn_name"] = scenario |
||
339 | gdf = gpd.GeoDataFrame(df) |
||
340 | gdf["geom_bus0"] = gdf_buses.geometry[df.bus0].values |
||
341 | gdf["geom_bus1"] = gdf_buses.geometry[df.bus1].values |
||
342 | gdf["geometry"] = gdf.apply( |
||
343 | lambda x: LineString([x["geom_bus0"], x["geom_bus1"]]), |
||
344 | axis=1, |
||
345 | ) |
||
346 | |||
347 | gdf = gdf.set_geometry("geometry") |
||
348 | gdf = gdf.set_crs(4326) |
||
349 | |||
350 | gdf = gdf.rename_geometry("topo") |
||
351 | |||
352 | gdf.loc[:, "bus0"] = central_buses_pypsaeur.bus_id.loc[df.bus0].values |
||
353 | gdf.loc[:, "bus1"] = central_buses_pypsaeur.bus_id.loc[df.bus1].values |
||
354 | |||
355 | gdf.drop(["geom_bus0", "geom_bus1"], inplace=True, axis="columns") |
||
356 | if "link_id" in df.columns: |
||
357 | table_name = "link" |
||
358 | gdf.drop( |
||
359 | [ |
||
360 | "tags", |
||
361 | "under_construction", |
||
362 | "underground", |
||
363 | "underwater_fraction", |
||
364 | "bus2", |
||
365 | "efficiency2", |
||
366 | "length_original", |
||
367 | "bus4", |
||
368 | "efficiency4", |
||
369 | "reversed", |
||
370 | "ramp_limit_up", |
||
371 | "ramp_limit_down", |
||
372 | "p_nom_opt", |
||
373 | "bus3", |
||
374 | "efficiency3", |
||
375 | "location", |
||
376 | "project_status", |
||
377 | "dc", |
||
378 | "voltage", |
||
379 | ], |
||
380 | axis="columns", |
||
381 | inplace=True, |
||
382 | ) |
||
383 | else: |
||
384 | table_name = "line" |
||
385 | gdf.drop( |
||
386 | [ |
||
387 | "i_nom", |
||
388 | "sub_network", |
||
389 | "x_pu", |
||
390 | "r_pu", |
||
391 | "g_pu", |
||
392 | "b_pu", |
||
393 | "x_pu_eff", |
||
394 | "r_pu_eff", |
||
395 | "s_nom_opt", |
||
396 | "dc", |
||
397 | ], |
||
398 | axis="columns", |
||
399 | inplace=True, |
||
400 | ) |
||
401 | |||
402 | gdf = gdf.set_index(f"{table_name}_id") |
||
403 | gdf.to_postgis( |
||
404 | f"egon_etrago_{table_name}", |
||
405 | db.engine(), |
||
406 | schema="grid", |
||
407 | if_exists="append", |
||
408 | index=True, |
||
409 | index_label=f"{table_name}_id", |
||
410 | ) |
||
411 | |||
412 | |||
413 | def cross_border_lines(scenario, sources, targets, central_buses): |
||
414 | """Adds lines which connect border-crossing lines from osmtgmod |
||
415 | to the central buses in the corresponding neigbouring country |
||
416 | |||
417 | Parameters |
||
418 | ---------- |
||
419 | sources : dict |
||
420 | List of dataset sources |
||
421 | targets : dict |
||
422 | List of dataset targets |
||
423 | central_buses : geopandas.GeoDataFrame |
||
424 | Buses in the center of foreign countries |
||
425 | |||
426 | Returns |
||
427 | ------- |
||
428 | new_lines : geopandas.GeoDataFrame |
||
429 | Lines that connect cross-border lines to central bus per country |
||
430 | |||
431 | """ |
||
432 | # Delete existing data |
||
433 | db.execute_sql( |
||
434 | f""" |
||
435 | DELETE FROM {targets['lines']['schema']}. |
||
436 | {targets['lines']['table']} |
||
437 | WHERE scn_name = '{scenario}' |
||
438 | AND line_id NOT IN ( |
||
439 | SELECT branch_id |
||
440 | FROM {sources['osmtgmod_branch']['schema']}. |
||
441 | {sources['osmtgmod_branch']['table']} |
||
442 | WHERE result_id = 1 and (link_type = 'line' or |
||
443 | link_type = 'cable')) |
||
444 | AND bus0 IN ( |
||
445 | SELECT bus_i |
||
446 | FROM {sources['osmtgmod_bus']['schema']}. |
||
447 | {sources['osmtgmod_bus']['table']}) |
||
448 | AND bus1 NOT IN ( |
||
449 | SELECT bus_i |
||
450 | FROM {sources['osmtgmod_bus']['schema']}. |
||
451 | {sources['osmtgmod_bus']['table']}) |
||
452 | """ |
||
453 | ) |
||
454 | |||
455 | # Calculate cross-border busses and lines from osmtgmod |
||
456 | foreign_buses = get_cross_border_buses(scenario, sources) |
||
457 | foreign_buses.dropna(subset="country", inplace=True) |
||
458 | |||
459 | if config.settings()["egon-data"]["--dataset-boundary"] == "Everything": |
||
460 | foreign_buses = foreign_buses[foreign_buses.country != "DE"] |
||
461 | lines = get_cross_border_lines(scenario, sources) |
||
462 | |||
463 | # Select bus outside of Germany from border-crossing lines |
||
464 | lines.loc[ |
||
465 | lines[lines.bus0.isin(foreign_buses.bus_id)].index, "foreign_bus" |
||
466 | ] = lines.loc[lines[lines.bus0.isin(foreign_buses.bus_id)].index, "bus0"] |
||
467 | lines.loc[ |
||
468 | lines[lines.bus1.isin(foreign_buses.bus_id)].index, "foreign_bus" |
||
469 | ] = lines.loc[lines[lines.bus1.isin(foreign_buses.bus_id)].index, "bus1"] |
||
470 | |||
471 | # Drop lines with start and endpoint in Germany |
||
472 | lines = lines[lines.foreign_bus.notnull()] |
||
473 | lines.loc[:, "foreign_bus"] = lines.loc[:, "foreign_bus"].astype(int) |
||
474 | |||
475 | # Copy all parameters from border-crossing lines |
||
476 | new_lines = lines.copy().set_crs(4326) |
||
477 | |||
478 | # Set bus0 as foreign_bus from osmtgmod |
||
479 | new_lines.bus0 = new_lines.foreign_bus.copy() |
||
480 | new_lines.bus0 = new_lines.bus0.astype(int) |
||
481 | |||
482 | # Add country tag and set index |
||
483 | new_lines["country"] = ( |
||
484 | foreign_buses.set_index("bus_id") |
||
485 | .loc[lines.foreign_bus, "country"] |
||
486 | .values |
||
487 | ) |
||
488 | |||
489 | if config.settings()["egon-data"]["--dataset-boundary"] == "Everything": |
||
490 | new_lines = new_lines[~new_lines.country.isnull()] |
||
491 | new_lines.line_id = db.next_etrago_id("line", len(new_lines.index)) |
||
492 | |||
493 | # Set bus in center of foreign countries as bus1 |
||
494 | for i, row in new_lines.iterrows(): |
||
495 | print(row) |
||
496 | new_lines.loc[i, "bus1"] = central_buses.bus_id[ |
||
497 | (central_buses.country == row.country) |
||
498 | & (central_buses.v_nom == row.v_nom) |
||
499 | ].values[0] |
||
500 | |||
501 | # Create geometry for new lines |
||
502 | new_lines["geom_bus0"] = ( |
||
503 | foreign_buses.set_index("bus_id").geom[new_lines.bus0].values |
||
504 | ) |
||
505 | new_lines["geom_bus1"] = ( |
||
506 | central_buses.set_index("bus_id").geom[new_lines.bus1].values |
||
507 | ) |
||
508 | new_lines["topo"] = new_lines.apply( |
||
509 | lambda x: LineString([x["geom_bus0"], x["geom_bus1"]]), axis=1 |
||
510 | ) |
||
511 | |||
512 | # Set topo as geometry column |
||
513 | new_lines = new_lines.set_geometry("topo").set_crs(4326) |
||
514 | # Calcultae length of lines based on topology |
||
515 | old_length = new_lines["length"].copy() |
||
516 | new_lines["length"] = new_lines.to_crs(3035).length / 1000 |
||
517 | |||
518 | if (new_lines["length"] == 0).any(): |
||
519 | print("WARNING! THERE ARE LINES WITH LENGTH = 0") |
||
520 | condition = new_lines["length"] != 0 |
||
521 | new_lines["length"] = new_lines["length"].where(condition, 1) |
||
522 | |||
523 | # Set electrical parameters based on lines from osmtgmod |
||
524 | for parameter in ["x", "r"]: |
||
525 | new_lines[parameter] = ( |
||
526 | new_lines[parameter] / old_length * new_lines["length"] |
||
527 | ) |
||
528 | for parameter in ["b", "g"]: |
||
529 | new_lines[parameter] = ( |
||
530 | new_lines[parameter] * old_length / new_lines["length"] |
||
531 | ) |
||
532 | |||
533 | # Drop intermediate columns |
||
534 | new_lines.drop( |
||
535 | ["foreign_bus", "country", "geom_bus0", "geom_bus1", "geom"], |
||
536 | axis="columns", |
||
537 | inplace=True, |
||
538 | ) |
||
539 | |||
540 | new_lines = new_lines[new_lines.bus0 != new_lines.bus1] |
||
541 | |||
542 | new_lines["cables"] = new_lines["cables"].apply(int) |
||
543 | |||
544 | # Insert lines to the database |
||
545 | new_lines.to_postgis( |
||
546 | targets["lines"]["table"], |
||
547 | schema=targets["lines"]["schema"], |
||
548 | if_exists="append", |
||
549 | con=db.engine(), |
||
550 | index=False, |
||
551 | ) |
||
552 | |||
553 | return new_lines |
||
554 | |||
555 | |||
556 | def choose_transformer(s_nom): |
||
557 | """Select transformer and parameters from existing data in the grid model |
||
558 | |||
559 | It is assumed that transformers in the foreign countries are not limiting |
||
560 | the electricity flow, so the capacitiy s_nom is set to the minimum sum |
||
561 | of attached AC-lines. |
||
562 | The electrical parameters are set according to already inserted |
||
563 | transformers in the grid model for Germany. |
||
564 | |||
565 | Parameters |
||
566 | ---------- |
||
567 | s_nom : float |
||
568 | Minimal sum of nominal power of lines at one side |
||
569 | |||
570 | Returns |
||
571 | ------- |
||
572 | int |
||
573 | Selected transformer nominal power |
||
574 | float |
||
575 | Selected transformer nominal impedance |
||
576 | |||
577 | """ |
||
578 | |||
579 | if s_nom <= 600: |
||
580 | return 600, 0.0002 |
||
581 | elif (s_nom > 600) & (s_nom <= 1200): |
||
582 | return 1200, 0.0001 |
||
583 | elif (s_nom > 1200) & (s_nom <= 1600): |
||
584 | return 1600, 0.000075 |
||
585 | elif (s_nom > 1600) & (s_nom <= 2100): |
||
586 | return 2100, 0.00006667 |
||
587 | elif (s_nom > 2100) & (s_nom <= 2600): |
||
588 | return 2600, 0.0000461538 |
||
589 | elif (s_nom > 2600) & (s_nom <= 4800): |
||
590 | return 4800, 0.000025 |
||
591 | elif (s_nom > 4800) & (s_nom <= 6000): |
||
592 | return 6000, 0.0000225 |
||
593 | elif (s_nom > 6000) & (s_nom <= 7200): |
||
594 | return 7200, 0.0000194444 |
||
595 | elif (s_nom > 7200) & (s_nom <= 8000): |
||
596 | return 8000, 0.000016875 |
||
597 | elif (s_nom > 8000) & (s_nom <= 9000): |
||
598 | return 9000, 0.000015 |
||
599 | elif (s_nom > 9000) & (s_nom <= 13000): |
||
600 | return 13000, 0.0000103846 |
||
601 | elif (s_nom > 13000) & (s_nom <= 20000): |
||
602 | return 20000, 0.00000675 |
||
603 | elif (s_nom > 20000) & (s_nom <= 33000): |
||
604 | return 33000, 0.00000409091 |
||
605 | |||
606 | |||
607 | def central_transformer(scenario, sources, targets, central_buses, new_lines): |
||
608 | """Connect central foreign buses with different voltage levels |
||
609 | |||
610 | Parameters |
||
611 | ---------- |
||
612 | sources : dict |
||
613 | List of dataset sources |
||
614 | targets : dict |
||
615 | List of dataset targets |
||
616 | central_buses : geopandas.GeoDataFrame |
||
617 | Buses in the center of foreign countries |
||
618 | new_lines : geopandas.GeoDataFrame |
||
619 | Lines that connect cross-border lines to central bus per country |
||
620 | |||
621 | Returns |
||
622 | ------- |
||
623 | None. |
||
624 | |||
625 | """ |
||
626 | # Delete existing transformers in foreign countries |
||
627 | db.execute_sql( |
||
628 | f""" |
||
629 | DELETE FROM {targets['transformers']['schema']}. |
||
630 | {targets['transformers']['table']} |
||
631 | WHERE scn_name = '{scenario}' |
||
632 | AND trafo_id NOT IN ( |
||
633 | SELECT branch_id |
||
634 | FROM {sources['osmtgmod_branch']['schema']}. |
||
635 | {sources['osmtgmod_branch']['table']} |
||
636 | WHERE result_id = 1 and link_type = 'transformer') |
||
637 | """ |
||
638 | ) |
||
639 | |||
640 | # Initalize the dataframe for transformers |
||
641 | trafo = gpd.GeoDataFrame( |
||
642 | columns=["trafo_id", "bus0", "bus1", "s_nom"], dtype=int |
||
643 | ) |
||
644 | trafo_id = db.next_etrago_id("transformer") |
||
645 | |||
646 | # Add one transformer per central foreign bus with v_nom != 380 |
||
647 | for i, row in central_buses[central_buses.v_nom != 380].iterrows(): |
||
648 | s_nom_0 = new_lines[new_lines.bus0 == row.bus_id].s_nom.sum() |
||
649 | s_nom_1 = new_lines[new_lines.bus1 == row.bus_id].s_nom.sum() |
||
650 | if s_nom_0 == 0.0: |
||
651 | s_nom = s_nom_1 |
||
652 | elif s_nom_1 == 0.0: |
||
653 | s_nom = s_nom_0 |
||
654 | else: |
||
655 | s_nom = min([s_nom_0, s_nom_1]) |
||
656 | |||
657 | s_nom, x = choose_transformer(s_nom) |
||
658 | |||
659 | trafo = pd.concat( |
||
660 | [ |
||
661 | trafo, |
||
662 | pd.DataFrame( |
||
663 | index=[trafo.index.max() + 1], |
||
664 | data={ |
||
665 | "trafo_id": trafo_id, |
||
666 | "bus0": row.bus_id, |
||
667 | "bus1": central_buses[ |
||
668 | (central_buses.v_nom == 380) |
||
669 | & (central_buses.country == row.country) |
||
670 | ].bus_id.values[0], |
||
671 | "s_nom": s_nom, |
||
672 | "x": x, |
||
673 | }, |
||
674 | ), |
||
675 | ], |
||
676 | ignore_index=True, |
||
677 | ) |
||
678 | trafo_id += 1 |
||
679 | |||
680 | # Set data type |
||
681 | trafo = trafo.astype({"trafo_id": "int", "bus0": "int", "bus1": "int"}) |
||
682 | trafo["scn_name"] = scenario |
||
683 | |||
684 | # Insert transformers to the database |
||
685 | trafo.to_sql( |
||
686 | targets["transformers"]["table"], |
||
687 | schema=targets["transformers"]["schema"], |
||
688 | if_exists="append", |
||
689 | con=db.engine(), |
||
690 | index=False, |
||
691 | ) |
||
692 | |||
693 | |||
694 | def foreign_dc_lines(scenario, sources, targets, central_buses): |
||
695 | """Insert DC lines to foreign countries manually |
||
696 | |||
697 | Parameters |
||
698 | ---------- |
||
699 | sources : dict |
||
700 | List of dataset sources |
||
701 | targets : dict |
||
702 | List of dataset targets |
||
703 | central_buses : geopandas.GeoDataFrame |
||
704 | Buses in the center of foreign countries |
||
705 | |||
706 | Returns |
||
707 | ------- |
||
708 | None. |
||
709 | |||
710 | """ |
||
711 | # Delete existing dc lines to foreign countries |
||
712 | db.execute_sql( |
||
713 | f""" |
||
714 | DELETE FROM {targets['links']['schema']}. |
||
715 | {targets['links']['table']} |
||
716 | WHERE scn_name = '{scenario}' |
||
717 | AND carrier = 'DC' |
||
718 | AND bus0 IN ( |
||
719 | SELECT bus_id |
||
720 | FROM {sources['electricity_buses']['schema']}. |
||
721 | {sources['electricity_buses']['table']} |
||
722 | WHERE scn_name = '{scenario}' |
||
723 | AND carrier = 'AC' |
||
724 | AND country = 'DE') |
||
725 | AND bus1 IN ( |
||
726 | SELECT bus_id |
||
727 | FROM {sources['electricity_buses']['schema']}. |
||
728 | {sources['electricity_buses']['table']} |
||
729 | WHERE scn_name = '{scenario}' |
||
730 | AND carrier = 'AC' |
||
731 | AND country != 'DE') |
||
732 | """ |
||
733 | ) |
||
734 | capital_cost = get_sector_parameters("electricity", scenario)[ |
||
735 | "capital_cost" |
||
736 | ] |
||
737 | |||
738 | # Add DC line from Lübeck to Sweden |
||
739 | converter_luebeck = select_bus_id( |
||
740 | 10.802358024202768, |
||
741 | 53.897547401787, |
||
742 | 380, |
||
743 | scenario, |
||
744 | "AC", |
||
745 | find_closest=True, |
||
746 | ) |
||
747 | |||
748 | foreign_links = pd.DataFrame( |
||
749 | index=[0], |
||
750 | data={ |
||
751 | "link_id": db.next_etrago_id("link"), |
||
752 | "bus0": converter_luebeck, |
||
753 | "bus1": central_buses[ |
||
754 | (central_buses.country == "SE") & (central_buses.v_nom == 380) |
||
755 | ] |
||
756 | .iloc[0] |
||
757 | .squeeze() |
||
758 | .bus_id, |
||
759 | "p_nom": 600, |
||
760 | "length": 262, |
||
761 | }, |
||
762 | ) |
||
763 | |||
764 | # When not in test-mode, add DC line from Bentwisch to Denmark |
||
765 | if config.settings()["egon-data"]["--dataset-boundary"] == "Everything": |
||
766 | converter_bentwisch = select_bus_id( |
||
767 | 12.213671694775988, |
||
768 | 54.09974494662279, |
||
769 | 380, |
||
770 | scenario, |
||
771 | "AC", |
||
772 | find_closest=True, |
||
773 | ) |
||
774 | |||
775 | foreign_links = pd.concat( |
||
776 | [ |
||
777 | foreign_links, |
||
778 | pd.DataFrame( |
||
779 | index=[1], |
||
780 | data={ |
||
781 | "link_id": db.next_etrago_id("link"), |
||
782 | "bus0": converter_bentwisch, |
||
783 | "bus1": central_buses[ |
||
784 | (central_buses.country == "DK") |
||
785 | & (central_buses.v_nom == 380) |
||
786 | & (central_buses.x > 10) |
||
787 | ] |
||
788 | .iloc[0] |
||
789 | .squeeze() |
||
790 | .bus_id, |
||
791 | "p_nom": 600, |
||
792 | "length": 170, |
||
793 | }, |
||
794 | ), |
||
795 | ] |
||
796 | ) |
||
797 | |||
798 | # Set parameters for all DC lines |
||
799 | foreign_links["capital_cost"] = ( |
||
800 | capital_cost["dc_cable"] * foreign_links.length |
||
801 | + 2 * capital_cost["dc_inverter"] |
||
802 | ) |
||
803 | foreign_links["p_min_pu"] = -1 |
||
804 | foreign_links["p_nom_extendable"] = True |
||
805 | foreign_links["p_nom_min"] = foreign_links["p_nom"] |
||
806 | foreign_links["scn_name"] = scenario |
||
807 | foreign_links["carrier"] = "DC" |
||
808 | foreign_links["efficiency"] = 1 |
||
809 | |||
810 | # Add topology |
||
811 | foreign_links = etrago.link_geom_from_buses(foreign_links, scenario) |
||
812 | |||
813 | # Insert DC lines to the database |
||
814 | foreign_links.to_postgis( |
||
815 | targets["links"]["table"], |
||
816 | schema=targets["links"]["schema"], |
||
817 | if_exists="append", |
||
818 | con=db.engine(), |
||
819 | index=False, |
||
820 | ) |
||
821 | |||
822 | |||
823 | def grid(): |
||
824 | """Insert electrical grid compoenents for neighbouring countries |
||
825 | |||
826 | Returns |
||
827 | ------- |
||
828 | None. |
||
829 | |||
830 | """ |
||
831 | # Select sources and targets from dataset configuration |
||
832 | sources = config.datasets()["electrical_neighbours"]["sources"] |
||
833 | targets = config.datasets()["electrical_neighbours"]["targets"] |
||
834 | |||
835 | for scenario in config.settings()["egon-data"]["--scenarios"]: |
||
836 | central_buses = buses(scenario, sources, targets) |
||
837 | |||
838 | foreign_lines = cross_border_lines( |
||
839 | scenario, sources, targets, central_buses |
||
840 | ) |
||
841 | |||
842 | central_transformer( |
||
843 | scenario, sources, targets, central_buses, foreign_lines |
||
844 | ) |
||
845 | |||
846 | foreign_dc_lines(scenario, sources, targets, central_buses) |
||
847 | |||
848 | if scenario != "eGon100RE": |
||
849 | lines_between_foreign_countries( |
||
850 | scenario, sources, targets, central_buses |
||
851 | ) |
||
852 | |||
853 | |||
854 | def map_carriers_tyndp(): |
||
855 | """Map carriers from TYNDP-data to carriers used in eGon |
||
856 | Returns |
||
857 | ------- |
||
858 | dict |
||
859 | Carrier from TYNDP and eGon |
||
860 | """ |
||
861 | return { |
||
862 | "Battery": "battery", |
||
863 | "DSR": "demand_side_response", |
||
864 | "Gas CCGT new": "gas", |
||
865 | "Gas CCGT old 2": "gas", |
||
866 | "Gas CCGT present 1": "gas", |
||
867 | "Gas CCGT present 2": "gas", |
||
868 | "Gas conventional old 1": "gas", |
||
869 | "Gas conventional old 2": "gas", |
||
870 | "Gas OCGT new": "gas", |
||
871 | "Gas OCGT old": "gas", |
||
872 | "Gas CCGT old 1": "gas", |
||
873 | "Gas CCGT old 2 Bio": "biogas", |
||
874 | "Gas conventional old 2 Bio": "biogas", |
||
875 | "Hard coal new": "coal", |
||
876 | "Hard coal old 1": "coal", |
||
877 | "Hard coal old 2": "coal", |
||
878 | "Hard coal old 2 Bio": "coal", |
||
879 | "Heavy oil old 1": "oil", |
||
880 | "Heavy oil old 1 Bio": "oil", |
||
881 | "Heavy oil old 2": "oil", |
||
882 | "Light oil": "oil", |
||
883 | "Lignite new": "lignite", |
||
884 | "Lignite old 1": "lignite", |
||
885 | "Lignite old 2": "lignite", |
||
886 | "Lignite old 1 Bio": "lignite", |
||
887 | "Lignite old 2 Bio": "lignite", |
||
888 | "Nuclear": "nuclear", |
||
889 | "Offshore Wind": "wind_offshore", |
||
890 | "Onshore Wind": "wind_onshore", |
||
891 | "Other non-RES": "others", |
||
892 | "Other RES": "others", |
||
893 | "P2G": "power_to_gas", |
||
894 | "PS Closed": "pumped_hydro", |
||
895 | "PS Open": "reservoir", |
||
896 | "Reservoir": "reservoir", |
||
897 | "Run-of-River": "run_of_river", |
||
898 | "Solar PV": "solar", |
||
899 | "Solar Thermal": "others", |
||
900 | "Waste": "Other RES", |
||
901 | } |
||
902 | |||
903 | |||
904 | View Code Duplication | def get_foreign_bus_id(scenario): |
|
905 | """Calculte the etrago bus id from Nodes of TYNDP based on the geometry |
||
906 | |||
907 | Returns |
||
908 | ------- |
||
909 | pandas.Series |
||
910 | List of mapped node_ids from TYNDP and etragos bus_id |
||
911 | |||
912 | """ |
||
913 | |||
914 | sources = config.datasets()["electrical_neighbours"]["sources"] |
||
915 | |||
916 | bus_id = db.select_geodataframe( |
||
917 | f"""SELECT bus_id, ST_Buffer(geom, 1) as geom, country |
||
918 | FROM grid.egon_etrago_bus |
||
919 | WHERE scn_name = '{scenario}' |
||
920 | AND carrier = 'AC' |
||
921 | AND v_nom = 380. |
||
922 | AND country != 'DE' |
||
923 | AND bus_id NOT IN ( |
||
924 | SELECT bus_i |
||
925 | FROM osmtgmod_results.bus_data) |
||
926 | """, |
||
927 | epsg=3035, |
||
928 | ) |
||
929 | |||
930 | # insert installed capacities |
||
931 | file = zipfile.ZipFile(f"tyndp/{sources['tyndp_capacities']}") |
||
932 | |||
933 | # Select buses in neighbouring countries as geodataframe |
||
934 | buses = pd.read_excel( |
||
935 | file.open("TYNDP-2020-Scenario-Datafile.xlsx").read(), |
||
936 | sheet_name="Nodes - Dict", |
||
937 | ).query("longitude==longitude") |
||
938 | buses = gpd.GeoDataFrame( |
||
939 | buses, |
||
940 | crs=4326, |
||
941 | geometry=gpd.points_from_xy(buses.longitude, buses.latitude), |
||
942 | ).to_crs(3035) |
||
943 | |||
944 | buses["bus_id"] = 0 |
||
945 | |||
946 | # Select bus_id from etrago with shortest distance to TYNDP node |
||
947 | for i, row in buses.iterrows(): |
||
948 | distance = bus_id.set_index("bus_id").geom.distance(row.geometry) |
||
949 | buses.loc[i, "bus_id"] = distance[ |
||
950 | distance == distance.min() |
||
951 | ].index.values[0] |
||
952 | |||
953 | return buses.set_index("node_id").bus_id |
||
954 | |||
955 | |||
956 | def calc_capacities(): |
||
957 | """Calculates installed capacities from TYNDP data |
||
958 | |||
959 | Returns |
||
960 | ------- |
||
961 | pandas.DataFrame |
||
962 | Installed capacities per foreign node and energy carrier |
||
963 | |||
964 | """ |
||
965 | |||
966 | sources = config.datasets()["electrical_neighbours"]["sources"] |
||
967 | |||
968 | countries = [ |
||
969 | "AT", |
||
970 | "BE", |
||
971 | "CH", |
||
972 | "CZ", |
||
973 | "DK", |
||
974 | "FR", |
||
975 | "NL", |
||
976 | "NO", |
||
977 | "SE", |
||
978 | "PL", |
||
979 | "UK", |
||
980 | ] |
||
981 | |||
982 | # insert installed capacities |
||
983 | file = zipfile.ZipFile(f"tyndp/{sources['tyndp_capacities']}") |
||
984 | df = pd.read_excel( |
||
985 | file.open("TYNDP-2020-Scenario-Datafile.xlsx").read(), |
||
986 | sheet_name="Capacity", |
||
987 | ) |
||
988 | |||
989 | # differneces between different climate years are very small (<1MW) |
||
990 | # choose 1984 because it is the mean value |
||
991 | df_2030 = ( |
||
992 | df.rename({"Climate Year": "Climate_Year"}, axis="columns") |
||
993 | .query( |
||
994 | 'Scenario == "Distributed Energy" & Year == 2030 & ' |
||
995 | "Climate_Year == 1984" |
||
996 | ) |
||
997 | .set_index(["Node/Line", "Generator_ID"]) |
||
998 | ) |
||
999 | |||
1000 | df_2040 = ( |
||
1001 | df.rename({"Climate Year": "Climate_Year"}, axis="columns") |
||
1002 | .query( |
||
1003 | 'Scenario == "Distributed Energy" & Year == 2040 & ' |
||
1004 | "Climate_Year == 1984" |
||
1005 | ) |
||
1006 | .set_index(["Node/Line", "Generator_ID"]) |
||
1007 | ) |
||
1008 | |||
1009 | # interpolate linear between 2030 and 2040 for 2035 accordning to |
||
1010 | # scenario report of TSO's and the approval by BNetzA |
||
1011 | df_2035 = pd.DataFrame(index=df_2030.index) |
||
1012 | df_2035["cap_2030"] = df_2030.Value |
||
1013 | df_2035["cap_2040"] = df_2040.Value |
||
1014 | df_2035.fillna(0.0, inplace=True) |
||
1015 | df_2035["cap_2035"] = ( |
||
1016 | df_2035["cap_2030"] + (df_2035["cap_2040"] - df_2035["cap_2030"]) / 2 |
||
1017 | ) |
||
1018 | df_2035 = df_2035.reset_index() |
||
1019 | df_2035["carrier"] = df_2035.Generator_ID.map(map_carriers_tyndp()) |
||
1020 | |||
1021 | # group capacities by new carriers |
||
1022 | grouped_capacities = ( |
||
1023 | df_2035.groupby(["carrier", "Node/Line"]).cap_2035.sum().reset_index() |
||
1024 | ) |
||
1025 | |||
1026 | # choose capacities for considered countries |
||
1027 | return grouped_capacities[ |
||
1028 | grouped_capacities["Node/Line"].str[:2].isin(countries) |
||
1029 | ] |
||
1030 | |||
1031 | |||
1032 | def insert_generators_tyndp(capacities): |
||
1033 | """Insert generators for foreign countries based on TYNDP-data |
||
1034 | |||
1035 | Parameters |
||
1036 | ---------- |
||
1037 | capacities : pandas.DataFrame |
||
1038 | Installed capacities per foreign node and energy carrier |
||
1039 | |||
1040 | Returns |
||
1041 | ------- |
||
1042 | None. |
||
1043 | |||
1044 | """ |
||
1045 | targets = config.datasets()["electrical_neighbours"]["targets"] |
||
1046 | map_buses = get_map_buses() |
||
1047 | |||
1048 | # Delete existing data |
||
1049 | db.execute_sql( |
||
1050 | f""" |
||
1051 | DELETE FROM |
||
1052 | {targets['generators']['schema']}.{targets['generators']['table']} |
||
1053 | WHERE bus IN ( |
||
1054 | SELECT bus_id FROM |
||
1055 | {targets['buses']['schema']}.{targets['buses']['table']} |
||
1056 | WHERE country != 'DE' |
||
1057 | AND scn_name = 'eGon2035') |
||
1058 | AND scn_name = 'eGon2035' |
||
1059 | AND carrier != 'CH4' |
||
1060 | """ |
||
1061 | ) |
||
1062 | |||
1063 | db.execute_sql( |
||
1064 | f""" |
||
1065 | DELETE FROM |
||
1066 | {targets['generators_timeseries']['schema']}. |
||
1067 | {targets['generators_timeseries']['table']} |
||
1068 | WHERE generator_id NOT IN ( |
||
1069 | SELECT generator_id FROM |
||
1070 | {targets['generators']['schema']}.{targets['generators']['table']} |
||
1071 | ) |
||
1072 | AND scn_name = 'eGon2035' |
||
1073 | """ |
||
1074 | ) |
||
1075 | |||
1076 | # Select generators from TYNDP capacities |
||
1077 | gen = capacities[ |
||
1078 | capacities.carrier.isin( |
||
1079 | [ |
||
1080 | "others", |
||
1081 | "wind_offshore", |
||
1082 | "wind_onshore", |
||
1083 | "solar", |
||
1084 | "reservoir", |
||
1085 | "run_of_river", |
||
1086 | "lignite", |
||
1087 | "coal", |
||
1088 | "oil", |
||
1089 | "nuclear", |
||
1090 | ] |
||
1091 | ) |
||
1092 | ] |
||
1093 | |||
1094 | # Set bus_id |
||
1095 | gen.loc[ |
||
1096 | gen[gen["Node/Line"].isin(map_buses.keys())].index, "Node/Line" |
||
1097 | ] = gen.loc[ |
||
1098 | gen[gen["Node/Line"].isin(map_buses.keys())].index, "Node/Line" |
||
1099 | ].map( |
||
1100 | map_buses |
||
1101 | ) |
||
1102 | |||
1103 | gen.loc[:, "bus"] = ( |
||
1104 | get_foreign_bus_id(scenario="eGon2035") |
||
1105 | .loc[gen.loc[:, "Node/Line"]] |
||
1106 | .values |
||
1107 | ) |
||
1108 | |||
1109 | # Add scenario column |
||
1110 | gen["scenario"] = "eGon2035" |
||
1111 | |||
1112 | # Add marginal costs |
||
1113 | gen = add_marginal_costs(gen) |
||
1114 | |||
1115 | # insert generators data |
||
1116 | session = sessionmaker(bind=db.engine())() |
||
1117 | for i, row in gen.iterrows(): |
||
1118 | entry = etrago.EgonPfHvGenerator( |
||
1119 | scn_name=row.scenario, |
||
1120 | generator_id=int(db.next_etrago_id("generator")), |
||
1121 | bus=row.bus, |
||
1122 | carrier=row.carrier, |
||
1123 | p_nom=row.cap_2035, |
||
1124 | marginal_cost=row.marginal_cost, |
||
1125 | ) |
||
1126 | |||
1127 | session.add(entry) |
||
1128 | session.commit() |
||
1129 | |||
1130 | # assign generators time-series data |
||
1131 | |||
1132 | renewable_timeseries_pypsaeur("eGon2035") |
||
1133 | |||
1134 | |||
1135 | def insert_storage_tyndp(capacities): |
||
1136 | """Insert storage units for foreign countries based on TYNDP-data |
||
1137 | |||
1138 | Parameters |
||
1139 | ---------- |
||
1140 | capacities : pandas.DataFrame |
||
1141 | Installed capacities per foreign node and energy carrier |
||
1142 | |||
1143 | |||
1144 | Returns |
||
1145 | ------- |
||
1146 | None. |
||
1147 | |||
1148 | """ |
||
1149 | targets = config.datasets()["electrical_neighbours"]["targets"] |
||
1150 | map_buses = get_map_buses() |
||
1151 | |||
1152 | # Delete existing data |
||
1153 | db.execute_sql( |
||
1154 | f""" |
||
1155 | DELETE FROM {targets['storage']['schema']}.{targets['storage']['table']} |
||
1156 | WHERE bus IN ( |
||
1157 | SELECT bus_id FROM |
||
1158 | {targets['buses']['schema']}.{targets['buses']['table']} |
||
1159 | WHERE country != 'DE' |
||
1160 | AND scn_name = 'eGon2035') |
||
1161 | AND scn_name = 'eGon2035' |
||
1162 | """ |
||
1163 | ) |
||
1164 | |||
1165 | # Add missing information suitable for eTraGo selected from scenario_parameter table |
||
1166 | parameters_pumped_hydro = scenario_parameters.electricity("eGon2035")[ |
||
1167 | "efficiency" |
||
1168 | ]["pumped_hydro"] |
||
1169 | |||
1170 | parameters_battery = scenario_parameters.electricity("eGon2035")[ |
||
1171 | "efficiency" |
||
1172 | ]["battery"] |
||
1173 | |||
1174 | # Select storage capacities from TYNDP-data |
||
1175 | store = capacities[capacities.carrier.isin(["battery", "pumped_hydro"])] |
||
1176 | |||
1177 | # Set bus_id |
||
1178 | store.loc[ |
||
1179 | store[store["Node/Line"].isin(map_buses.keys())].index, "Node/Line" |
||
1180 | ] = store.loc[ |
||
1181 | store[store["Node/Line"].isin(map_buses.keys())].index, "Node/Line" |
||
1182 | ].map( |
||
1183 | map_buses |
||
1184 | ) |
||
1185 | |||
1186 | store.loc[:, "bus"] = ( |
||
1187 | get_foreign_bus_id(scenario="eGon2035") |
||
1188 | .loc[store.loc[:, "Node/Line"]] |
||
1189 | .values |
||
1190 | ) |
||
1191 | |||
1192 | # Add columns for additional parameters to df |
||
1193 | ( |
||
1194 | store["dispatch"], |
||
1195 | store["store"], |
||
1196 | store["standing_loss"], |
||
1197 | store["max_hours"], |
||
1198 | ) = (None, None, None, None) |
||
1199 | |||
1200 | # Insert carrier specific parameters |
||
1201 | |||
1202 | parameters = ["dispatch", "store", "standing_loss", "max_hours"] |
||
1203 | |||
1204 | for x in parameters: |
||
1205 | store.loc[store["carrier"] == "battery", x] = parameters_battery[x] |
||
1206 | store.loc[store["carrier"] == "pumped_hydro", x] = ( |
||
1207 | parameters_pumped_hydro[x] |
||
1208 | ) |
||
1209 | |||
1210 | # insert data |
||
1211 | session = sessionmaker(bind=db.engine())() |
||
1212 | for i, row in store.iterrows(): |
||
1213 | entry = etrago.EgonPfHvStorage( |
||
1214 | scn_name="eGon2035", |
||
1215 | storage_id=int(db.next_etrago_id("storage")), |
||
1216 | bus=row.bus, |
||
1217 | max_hours=row.max_hours, |
||
1218 | efficiency_store=row.store, |
||
1219 | efficiency_dispatch=row.dispatch, |
||
1220 | standing_loss=row.standing_loss, |
||
1221 | carrier=row.carrier, |
||
1222 | p_nom=row.cap_2035, |
||
1223 | ) |
||
1224 | |||
1225 | session.add(entry) |
||
1226 | session.commit() |
||
1227 | |||
1228 | |||
1229 | def get_map_buses(): |
||
1230 | """Returns a dictonary of foreign regions which are aggregated to another |
||
1231 | |||
1232 | Returns |
||
1233 | ------- |
||
1234 | Combination of aggregated regions |
||
1235 | |||
1236 | |||
1237 | """ |
||
1238 | return { |
||
1239 | "DK00": "DKW1", |
||
1240 | "DKKF": "DKE1", |
||
1241 | "FR15": "FR00", |
||
1242 | "NON1": "NOM1", |
||
1243 | "NOS0": "NOM1", |
||
1244 | "NOS1": "NOM1", |
||
1245 | "PLE0": "PL00", |
||
1246 | "PLI0": "PL00", |
||
1247 | "SE00": "SE02", |
||
1248 | "SE01": "SE02", |
||
1249 | "SE03": "SE02", |
||
1250 | "SE04": "SE02", |
||
1251 | "RU": "RU00", |
||
1252 | } |
||
1253 | |||
1254 | |||
1255 | def tyndp_generation(): |
||
1256 | """Insert data from TYNDP 2020 accordning to NEP 2021 |
||
1257 | Scenario 'Distributed Energy', linear interpolate between 2030 and 2040 |
||
1258 | |||
1259 | Returns |
||
1260 | ------- |
||
1261 | None. |
||
1262 | """ |
||
1263 | |||
1264 | capacities = calc_capacities() |
||
1265 | |||
1266 | insert_generators_tyndp(capacities) |
||
1267 | |||
1268 | insert_storage_tyndp(capacities) |
||
1269 | |||
1270 | |||
1271 | def tyndp_demand(): |
||
1272 | """Copy load timeseries data from TYNDP 2020. |
||
1273 | According to NEP 2021, the data for 2030 and 2040 is interpolated linearly. |
||
1274 | |||
1275 | Returns |
||
1276 | ------- |
||
1277 | None. |
||
1278 | |||
1279 | """ |
||
1280 | map_buses = get_map_buses() |
||
1281 | |||
1282 | sources = config.datasets()["electrical_neighbours"]["sources"] |
||
1283 | targets = config.datasets()["electrical_neighbours"]["targets"] |
||
1284 | |||
1285 | # Delete existing data |
||
1286 | db.execute_sql( |
||
1287 | f""" |
||
1288 | DELETE FROM {targets['loads']['schema']}. |
||
1289 | {targets['loads']['table']} |
||
1290 | WHERE |
||
1291 | scn_name = 'eGon2035' |
||
1292 | AND carrier = 'AC' |
||
1293 | AND bus NOT IN ( |
||
1294 | SELECT bus_i |
||
1295 | FROM {sources['osmtgmod_bus']['schema']}. |
||
1296 | {sources['osmtgmod_bus']['table']}) |
||
1297 | """ |
||
1298 | ) |
||
1299 | |||
1300 | # Connect to database |
||
1301 | engine = db.engine() |
||
1302 | session = sessionmaker(bind=engine)() |
||
1303 | |||
1304 | nodes = [ |
||
1305 | "AT00", |
||
1306 | "BE00", |
||
1307 | "CH00", |
||
1308 | "CZ00", |
||
1309 | "DKE1", |
||
1310 | "DKW1", |
||
1311 | "FR00", |
||
1312 | "NL00", |
||
1313 | "LUB1", |
||
1314 | "LUF1", |
||
1315 | "LUG1", |
||
1316 | "NOM1", |
||
1317 | "NON1", |
||
1318 | "NOS0", |
||
1319 | "SE01", |
||
1320 | "SE02", |
||
1321 | "SE03", |
||
1322 | "SE04", |
||
1323 | "PL00", |
||
1324 | "UK00", |
||
1325 | "UKNI", |
||
1326 | ] |
||
1327 | # Assign etrago bus_id to TYNDP nodes |
||
1328 | buses = pd.DataFrame({"nodes": nodes}) |
||
1329 | buses.loc[buses[buses.nodes.isin(map_buses.keys())].index, "nodes"] = ( |
||
1330 | buses[buses.nodes.isin(map_buses.keys())].nodes.map(map_buses) |
||
1331 | ) |
||
1332 | buses.loc[:, "bus"] = ( |
||
1333 | get_foreign_bus_id(scenario="eGon2035") |
||
1334 | .loc[buses.loc[:, "nodes"]] |
||
1335 | .values |
||
1336 | ) |
||
1337 | buses.set_index("nodes", inplace=True) |
||
1338 | buses = buses[~buses.index.duplicated(keep="first")] |
||
1339 | |||
1340 | # Read in data from TYNDP for 2030 and 2040 |
||
1341 | dataset_2030 = pd.read_excel( |
||
1342 | f"tyndp/{sources['tyndp_demand_2030']}", sheet_name=nodes, skiprows=10 |
||
1343 | ) |
||
1344 | |||
1345 | dataset_2040 = pd.read_excel( |
||
1346 | f"tyndp/{sources['tyndp_demand_2040']}", sheet_name=None, skiprows=10 |
||
1347 | ) |
||
1348 | |||
1349 | # Transform map_buses to pandas.Series and select only used values |
||
1350 | map_series = pd.Series(map_buses) |
||
1351 | map_series = map_series[map_series.index.isin(nodes)] |
||
1352 | |||
1353 | # Calculate and insert demand timeseries per etrago bus_id |
||
1354 | for bus in buses.index: |
||
1355 | nodes = [bus] |
||
1356 | |||
1357 | if bus in map_series.values: |
||
1358 | nodes.extend(list(map_series[map_series == bus].index.values)) |
||
1359 | |||
1360 | load_id = db.next_etrago_id("load") |
||
1361 | |||
1362 | # Some etrago bus_ids represent multiple TYNDP nodes, |
||
1363 | # in this cases the loads are summed |
||
1364 | data_2030 = pd.Series(index=range(8760), data=0.0) |
||
1365 | for node in nodes: |
||
1366 | data_2030 = dataset_2030[node][2011] + data_2030 |
||
1367 | |||
1368 | try: |
||
1369 | data_2040 = pd.Series(index=range(8760), data=0.0) |
||
1370 | |||
1371 | for node in nodes: |
||
1372 | data_2040 = dataset_2040[node][2011] + data_2040 |
||
1373 | except: |
||
1374 | data_2040 = data_2030 |
||
1375 | |||
1376 | # According to the NEP, data for 2030 and 2040 is linear interpolated |
||
1377 | data_2035 = ((data_2030 + data_2040) / 2)[:8760] |
||
1378 | |||
1379 | entry = etrago.EgonPfHvLoad( |
||
1380 | scn_name="eGon2035", |
||
1381 | load_id=int(load_id), |
||
1382 | carrier="AC", |
||
1383 | bus=int(buses.bus[bus]), |
||
1384 | ) |
||
1385 | |||
1386 | entry_ts = etrago.EgonPfHvLoadTimeseries( |
||
1387 | scn_name="eGon2035", |
||
1388 | load_id=int(load_id), |
||
1389 | temp_id=1, |
||
1390 | p_set=list(data_2035.values), |
||
1391 | ) |
||
1392 | |||
1393 | session.add(entry) |
||
1394 | session.add(entry_ts) |
||
1395 | session.commit() |
||
1396 | |||
1397 | |||
1398 | def get_entsoe_token(): |
||
1399 | """Check for token in home dir. If not exists, check in working dir""" |
||
1400 | token_path = path.join(path.expanduser("~"), ".entsoe-token") |
||
1401 | if not os.path.isfile(token_path): |
||
1402 | logger.info( |
||
1403 | f"Token file not found at {token_path}. Will check in working directory." |
||
1404 | ) |
||
1405 | token_path = Path(".entsoe-token") |
||
1406 | if os.path.isfile(token_path): |
||
1407 | logger.info(f"Token found at {token_path}") |
||
1408 | entsoe_token = open(token_path, "r").read(36) |
||
1409 | if entsoe_token is None: |
||
1410 | raise FileNotFoundError("No entsoe-token found.") |
||
1411 | return entsoe_token |
||
1412 | |||
1413 | |||
1414 | def entsoe_historic_generation_capacities( |
||
1415 | year_start="20190101", year_end="20200101" |
||
1416 | ): |
||
1417 | entsoe_token = get_entsoe_token() |
||
1418 | client = entsoe.EntsoePandasClient(api_key=entsoe_token) |
||
1419 | |||
1420 | start = pd.Timestamp(year_start, tz="Europe/Brussels") |
||
1421 | end = pd.Timestamp(year_end, tz="Europe/Brussels") |
||
1422 | start_gb = pd.Timestamp(year_start, tz="Europe/London") |
||
1423 | end_gb = pd.Timestamp(year_end, tz="Europe/London") |
||
1424 | countries = [ |
||
1425 | "LU", |
||
1426 | "AT", |
||
1427 | "FR", |
||
1428 | "NL", |
||
1429 | "CZ", |
||
1430 | "DK_1", |
||
1431 | "DK_2", |
||
1432 | "PL", |
||
1433 | "CH", |
||
1434 | "NO", |
||
1435 | "BE", |
||
1436 | "SE", |
||
1437 | "GB", |
||
1438 | ] |
||
1439 | # No GB data after Brexit |
||
1440 | if int(year_start[:4]) > 2021: |
||
1441 | logger.warning( |
||
1442 | "No GB data after Brexit. GB is dropped from entsoe query!" |
||
1443 | ) |
||
1444 | countries = [c for c in countries if c != "GB"] |
||
1445 | # todo: define wanted countries |
||
1446 | |||
1447 | not_retrieved = [] |
||
1448 | dfs = [] |
||
1449 | for country in countries: |
||
1450 | if country == "GB": |
||
1451 | kwargs = dict(start=start_gb, end=end_gb) |
||
1452 | else: |
||
1453 | kwargs = dict(start=start, end=end) |
||
1454 | try: |
||
1455 | country_data = client.query_installed_generation_capacity( |
||
1456 | country, **kwargs |
||
1457 | ) |
||
1458 | dfs.append(country_data) |
||
1459 | except (entsoe.exceptions.NoMatchingDataError, requests.HTTPError): |
||
1460 | logger.warning( |
||
1461 | f"Data for country: {country} could not be retrieved." |
||
1462 | ) |
||
1463 | not_retrieved.append(country) |
||
1464 | pass |
||
1465 | |||
1466 | if dfs: |
||
1467 | df = pd.concat(dfs) |
||
1468 | df["country"] = [c for c in countries if c not in not_retrieved] |
||
1469 | df.set_index("country", inplace=True) |
||
1470 | if int(year_start[:4]) == 2023: |
||
1471 | # https://www.bmreports.com/bmrs/?q=foregeneration/capacityaggregated |
||
1472 | # could probably somehow be automised |
||
1473 | # https://www.elexonportal.co.uk/category/view/178 |
||
1474 | # in MW |
||
1475 | installed_capacity_gb = pd.Series( |
||
1476 | { |
||
1477 | "Biomass": 4438, |
||
1478 | "Fossil Gas": 37047, |
||
1479 | "Fossil Hard coal": 1491, |
||
1480 | "Hydro Pumped Storage": 5603, |
||
1481 | "Hydro Run-of-river and poundage": 2063, |
||
1482 | "Nuclear": 4950, |
||
1483 | "Other": 3313, |
||
1484 | "Other renewable": 1462, |
||
1485 | "Solar": 14518, |
||
1486 | "Wind Offshore": 13038, |
||
1487 | "Wind Onshore": 13907, |
||
1488 | }, |
||
1489 | name="GB", |
||
1490 | ) |
||
1491 | df = pd.concat([df.T, installed_capacity_gb], axis=1).T |
||
1492 | logger.info("Manually added generation capacities for GB 2023.") |
||
1493 | not_retrieved = [c for c in not_retrieved if c != "GB"] |
||
1494 | df.fillna(0, inplace=True) |
||
1495 | else: |
||
1496 | df = pd.DataFrame() |
||
1497 | return df, not_retrieved |
||
1498 | |||
1499 | |||
1500 | def entsoe_historic_demand(year_start="20190101", year_end="20200101"): |
||
1501 | entsoe_token = get_entsoe_token() |
||
1502 | client = entsoe.EntsoePandasClient(api_key=entsoe_token) |
||
1503 | |||
1504 | start = pd.Timestamp(year_start, tz="Europe/Brussels") |
||
1505 | end = pd.Timestamp(year_end, tz="Europe/Brussels") |
||
1506 | start_gb = start.tz_convert("Europe/London") |
||
1507 | end_gb = end.tz_convert("Europe/London") |
||
1508 | |||
1509 | countries = [ |
||
1510 | "LU", |
||
1511 | "AT", |
||
1512 | "FR", |
||
1513 | "NL", |
||
1514 | "CZ", |
||
1515 | "DK_1", |
||
1516 | "DK_2", |
||
1517 | "PL", |
||
1518 | "CH", |
||
1519 | "NO", |
||
1520 | "BE", |
||
1521 | "SE", |
||
1522 | "GB", |
||
1523 | ] |
||
1524 | |||
1525 | # todo: define wanted countries |
||
1526 | |||
1527 | not_retrieved = [] |
||
1528 | dfs = [] |
||
1529 | |||
1530 | for country in countries: |
||
1531 | if country == "GB": |
||
1532 | kwargs = dict(start=start_gb, end=end_gb) |
||
1533 | else: |
||
1534 | kwargs = dict(start=start, end=end) |
||
1535 | try: |
||
1536 | country_data = ( |
||
1537 | client.query_load(country, **kwargs) |
||
1538 | .resample("H")["Actual Load"] |
||
1539 | .mean() |
||
1540 | ) |
||
1541 | if country == "GB": |
||
1542 | country_data.index = country_data.index.tz_convert( |
||
1543 | "Europe/Brussels" |
||
1544 | ) |
||
1545 | dfs.append(country_data) |
||
1546 | except (entsoe.exceptions.NoMatchingDataError, requests.HTTPError): |
||
1547 | not_retrieved.append(country) |
||
1548 | logger.warning( |
||
1549 | f"Data for country: {country} could not be retrieved." |
||
1550 | ) |
||
1551 | pass |
||
1552 | |||
1553 | if dfs: |
||
1554 | df = pd.concat(dfs, axis=1) |
||
1555 | df.columns = [c for c in countries if c not in not_retrieved] |
||
1556 | df.index = pd.date_range(year_start, periods=8760, freq="H") |
||
1557 | else: |
||
1558 | df = pd.DataFrame() |
||
1559 | return df, not_retrieved |
||
1560 | |||
1561 | |||
1562 | def map_carriers_entsoe(): |
||
1563 | """Map carriers from entsoe-data to carriers used in eGon |
||
1564 | Returns |
||
1565 | ------- |
||
1566 | dict |
||
1567 | Carrier from entsoe to eGon |
||
1568 | """ |
||
1569 | return { |
||
1570 | "Biomass": "biomass", |
||
1571 | "Fossil Brown coal/Lignite": "lignite", |
||
1572 | "Fossil Coal-derived gas": "coal", |
||
1573 | "Fossil Gas": "OCGT", |
||
1574 | "Fossil Hard coal": "coal", |
||
1575 | "Fossil Oil": "oil", |
||
1576 | "Fossil Oil shale": "oil", |
||
1577 | "Fossil Peat": "others", |
||
1578 | "Geothermal": "geo_thermal", |
||
1579 | "Hydro Pumped Storage": "Hydro Pumped Storage", |
||
1580 | "Hydro Run-of-river and poundage": "run_of_river", |
||
1581 | "Hydro Water Reservoir": "reservoir", |
||
1582 | "Marine": "others", |
||
1583 | "Nuclear": "nuclear", |
||
1584 | "Other": "others", |
||
1585 | "Other renewable": "others", |
||
1586 | "Solar": "solar", |
||
1587 | "Waste": "others", |
||
1588 | "Wind Offshore": "wind_offshore", |
||
1589 | "Wind Onshore": "wind_onshore", |
||
1590 | } |
||
1591 | |||
1592 | |||
1593 | def entsoe_to_bus_etrago(scenario="status2019"): |
||
1594 | map_entsoe = pd.Series( |
||
1595 | { |
||
1596 | "LU": "LU00", |
||
1597 | "AT": "AT00", |
||
1598 | "FR": "FR00", |
||
1599 | "NL": "NL00", |
||
1600 | "DK_1": "DK00", |
||
1601 | "DK_2": "DKE1", |
||
1602 | "PL": "PL00", |
||
1603 | "CH": "CH00", |
||
1604 | "NO": "NO00", |
||
1605 | "BE": "BE00", |
||
1606 | "SE": "SE00", |
||
1607 | "GB": "UK00", |
||
1608 | "CZ": "CZ00", |
||
1609 | } |
||
1610 | ) |
||
1611 | |||
1612 | for_bus = get_foreign_bus_id(scenario=scenario) |
||
1613 | |||
1614 | return map_entsoe.map(for_bus) |
||
1615 | |||
1616 | |||
1617 | def save_entsoe_data(df: pd.DataFrame, file_path: Path): |
||
1618 | os.makedirs(file_path.parent, exist_ok=True) |
||
1619 | if not df.empty: |
||
1620 | df.to_csv(file_path, index_label="Index") |
||
1621 | logger.info( |
||
1622 | f"Saved entsoe data for {file_path.stem} " |
||
1623 | f"to {file_path.parent} for countries: {df.index}" |
||
1624 | ) |
||
1625 | |||
1626 | |||
1627 | def fill_by_backup_data_from_former_runs(df_sq, file_path, not_retrieved): |
||
1628 | """ |
||
1629 | Fills missing data from former runs |
||
1630 | Parameters |
||
1631 | ---------- |
||
1632 | df_sq: pd.DataFrame |
||
1633 | file_path: str, Path |
||
1634 | not_retrieved: list |
||
1635 | |||
1636 | Returns |
||
1637 | ------- |
||
1638 | df_sq, not_retrieved |
||
1639 | |||
1640 | """ |
||
1641 | sq_backup = pd.read_csv(file_path, index_col="Index") |
||
1642 | # check for missing columns in backup (former runs) |
||
1643 | c_backup = [c for c in sq_backup.columns if c in not_retrieved] |
||
1644 | # remove columns, if found in backup |
||
1645 | not_retrieved = [c for c in not_retrieved if c not in c_backup] |
||
1646 | if c_backup: |
||
1647 | df_sq = pd.concat([df_sq, sq_backup.loc[:, c_backup]], axis=1) |
||
1648 | logger.info(f"Appended data from former runs for {c_backup}") |
||
1649 | return df_sq, not_retrieved |
||
1650 | |||
1651 | |||
1652 | def insert_storage_units_sq(scn_name="status2019"): |
||
1653 | """ |
||
1654 | Insert storage_units for foreign countries based on ENTSO-E data |
||
1655 | |||
1656 | Parameters |
||
1657 | ---------- |
||
1658 | scn_name : str |
||
1659 | Scenario to which the foreign storage units will be assigned. |
||
1660 | The default is "status2019". |
||
1661 | |||
1662 | Returns |
||
1663 | ------- |
||
1664 | None. |
||
1665 | |||
1666 | """ |
||
1667 | if "status" in scn_name: |
||
1668 | year = int(scn_name.split("status")[-1]) |
||
1669 | year_start_end = { |
||
1670 | "year_start": f"{year}0101", |
||
1671 | "year_end": f"{year+1}0101", |
||
1672 | } |
||
1673 | else: |
||
1674 | raise ValueError("No valid scenario name!") |
||
1675 | |||
1676 | df_gen_sq, not_retrieved = entsoe_historic_generation_capacities( |
||
1677 | **year_start_end |
||
1678 | ) |
||
1679 | |||
1680 | View Code Duplication | if not_retrieved: |
|
1681 | logger.warning("Generation data from entsoe could not be retrieved.") |
||
1682 | # check for generation backup from former runs |
||
1683 | file_path = Path( |
||
1684 | "./", |
||
1685 | "data_bundle_egon_data", |
||
1686 | "entsoe", |
||
1687 | f"gen_entsoe_{scn_name}.csv", |
||
1688 | ).resolve() |
||
1689 | if os.path.isfile(file_path): |
||
1690 | df_gen_sq, not_retrieved = fill_by_backup_data_from_former_runs( |
||
1691 | df_gen_sq, file_path, not_retrieved |
||
1692 | ) |
||
1693 | save_entsoe_data(df_gen_sq, file_path=file_path) |
||
1694 | |||
1695 | sto_sq = df_gen_sq.loc[:, df_gen_sq.columns == "Hydro Pumped Storage"] |
||
1696 | sto_sq.rename(columns={"Hydro Pumped Storage": "p_nom"}, inplace=True) |
||
1697 | |||
1698 | targets = config.datasets()["electrical_neighbours"]["targets"] |
||
1699 | |||
1700 | # Delete existing data |
||
1701 | db.execute_sql( |
||
1702 | f""" |
||
1703 | DELETE FROM {targets['storage']['schema']}.{targets['storage']['table']} |
||
1704 | WHERE bus IN ( |
||
1705 | SELECT bus_id FROM |
||
1706 | {targets['buses']['schema']}.{targets['buses']['table']} |
||
1707 | WHERE country != 'DE' |
||
1708 | AND scn_name = '{scn_name}') |
||
1709 | AND scn_name = '{scn_name}' |
||
1710 | """ |
||
1711 | ) |
||
1712 | |||
1713 | # Add missing information suitable for eTraGo selected from scenario_parameter table |
||
1714 | parameters_pumped_hydro = get_sector_parameters( |
||
1715 | sector="electricity", scenario=scn_name |
||
1716 | )["efficiency"]["pumped_hydro"] |
||
1717 | |||
1718 | # Set bus_id |
||
1719 | entsoe_to_bus = entsoe_to_bus_etrago(scenario=scn_name) |
||
1720 | sto_sq["bus"] = sto_sq.index.map(entsoe_to_bus) |
||
1721 | |||
1722 | # Insert carrier specific parameters |
||
1723 | sto_sq["carrier"] = "pumped_hydro" |
||
1724 | sto_sq["scn_name"] = scn_name |
||
1725 | sto_sq["dispatch"] = parameters_pumped_hydro["dispatch"] |
||
1726 | sto_sq["store"] = parameters_pumped_hydro["store"] |
||
1727 | sto_sq["standing_loss"] = parameters_pumped_hydro["standing_loss"] |
||
1728 | sto_sq["max_hours"] = parameters_pumped_hydro["max_hours"] |
||
1729 | sto_sq["cyclic_state_of_charge"] = parameters_pumped_hydro[ |
||
1730 | "cyclic_state_of_charge" |
||
1731 | ] |
||
1732 | |||
1733 | sto_sq["storage_id"] = db.next_etrago_id("store", len(sto_sq)) |
||
1734 | |||
1735 | # Delete entrances without any installed capacity |
||
1736 | sto_sq = sto_sq[sto_sq["p_nom"] > 0] |
||
1737 | |||
1738 | # insert data pumped_hydro storage |
||
1739 | |||
1740 | with session_scope() as session: |
||
1741 | for i, row in sto_sq.iterrows(): |
||
1742 | entry = etrago.EgonPfHvStorage( |
||
1743 | scn_name=scn_name, |
||
1744 | storage_id=row.storage_id, |
||
1745 | bus=row.bus, |
||
1746 | max_hours=row.max_hours, |
||
1747 | efficiency_store=row.store, |
||
1748 | efficiency_dispatch=row.dispatch, |
||
1749 | standing_loss=row.standing_loss, |
||
1750 | carrier=row.carrier, |
||
1751 | p_nom=row.p_nom, |
||
1752 | cyclic_state_of_charge=row.cyclic_state_of_charge, |
||
1753 | ) |
||
1754 | session.add(entry) |
||
1755 | session.commit() |
||
1756 | |||
1757 | # big scale batteries |
||
1758 | # info based on EASE data. https://ease-storage.eu/publication/emmes-7-0-march-2023/ |
||
1759 | # batteries smaller than 100MW are neglected |
||
1760 | |||
1761 | # TODO: include capacities between 2020 and 2023 |
||
1762 | bat_per_country = { |
||
1763 | "LU": [0, pd.NA, pd.NA, pd.NA, pd.NA], |
||
1764 | "AT": [0, pd.NA, pd.NA, pd.NA, pd.NA], |
||
1765 | "FR": [0, pd.NA, pd.NA, pd.NA, pd.NA], |
||
1766 | "NL": [0, pd.NA, pd.NA, pd.NA, pd.NA], |
||
1767 | "DK_1": [0, pd.NA, pd.NA, pd.NA, pd.NA], |
||
1768 | "DK_2": [0, pd.NA, pd.NA, pd.NA, pd.NA], |
||
1769 | "PL": [0, pd.NA, pd.NA, pd.NA, pd.NA], |
||
1770 | "CH": [0, pd.NA, pd.NA, pd.NA, pd.NA], |
||
1771 | "NO": [0, pd.NA, pd.NA, pd.NA, pd.NA], |
||
1772 | "BE": [0, pd.NA, pd.NA, pd.NA, pd.NA], |
||
1773 | "SE": [0, pd.NA, pd.NA, pd.NA, pd.NA], |
||
1774 | "GB": [723.8, 952.3, 1380.9, 2333.3, 3928.5], |
||
1775 | "CZ": [0, pd.NA, pd.NA, pd.NA, pd.NA], |
||
1776 | } |
||
1777 | bat_sq = pd.DataFrame(bat_per_country).T.set_axis( |
||
1778 | ["2019", "2020", "2021", "2022", "2023"], axis=1 |
||
1779 | ) |
||
1780 | |||
1781 | # Select year of interest |
||
1782 | bat_sq = bat_sq[[str(year)]] |
||
1783 | bat_sq.rename(columns={str(year): "p_nom"}, inplace=True) |
||
1784 | |||
1785 | # Add missing information suitable for eTraGo selected from scenario_parameter table |
||
1786 | parameters_batteries = get_sector_parameters( |
||
1787 | sector="electricity", scenario=scn_name |
||
1788 | )["efficiency"]["battery"] |
||
1789 | |||
1790 | # Set bus_id |
||
1791 | entsoe_to_bus = entsoe_to_bus_etrago() |
||
1792 | bat_sq["bus"] = bat_sq.index.map(entsoe_to_bus) |
||
1793 | |||
1794 | # Insert carrier specific parameters |
||
1795 | bat_sq["carrier"] = "battery" |
||
1796 | bat_sq["scn_name"] = scn_name |
||
1797 | bat_sq["dispatch"] = parameters_batteries["dispatch"] |
||
1798 | bat_sq["store"] = parameters_batteries["store"] |
||
1799 | bat_sq["standing_loss"] = parameters_batteries["standing_loss"] |
||
1800 | bat_sq["max_hours"] = parameters_batteries["max_hours"] |
||
1801 | bat_sq["cyclic_state_of_charge"] = parameters_batteries[ |
||
1802 | "cyclic_state_of_charge" |
||
1803 | ] |
||
1804 | |||
1805 | bat_sq["storage_id"] = db.next_etrago_id("storage", len(bat_sq)) |
||
1806 | |||
1807 | # Delete entrances without any installed capacity |
||
1808 | bat_sq = bat_sq[bat_sq["p_nom"] > 0] |
||
1809 | |||
1810 | # insert data pumped_hydro storage |
||
1811 | with db.session_scope() as session: |
||
1812 | for i, row in bat_sq.iterrows(): |
||
1813 | entry = etrago.EgonPfHvStorage( |
||
1814 | scn_name=scn_name, |
||
1815 | storage_id=row.storage_id, |
||
1816 | bus=row.bus, |
||
1817 | max_hours=row.max_hours, |
||
1818 | efficiency_store=row.store, |
||
1819 | efficiency_dispatch=row.dispatch, |
||
1820 | standing_loss=row.standing_loss, |
||
1821 | carrier=row.carrier, |
||
1822 | p_nom=row.p_nom, |
||
1823 | cyclic_state_of_charge=row.cyclic_state_of_charge, |
||
1824 | ) |
||
1825 | session.add(entry) |
||
1826 | session.commit() |
||
1827 | |||
1828 | |||
1829 | def insert_generators_sq(scn_name="status2019"): |
||
1830 | """ |
||
1831 | Insert generators for foreign countries based on ENTSO-E data |
||
1832 | |||
1833 | Parameters |
||
1834 | ---------- |
||
1835 | gen_sq : pandas dataframe |
||
1836 | df with all the foreign generators produced by the function |
||
1837 | entsoe_historic_generation_capacities |
||
1838 | scn_name : str |
||
1839 | The default is "status2019". |
||
1840 | |||
1841 | Returns |
||
1842 | ------- |
||
1843 | None. |
||
1844 | |||
1845 | """ |
||
1846 | if "status" in scn_name: |
||
1847 | year = int(scn_name.split("status")[-1]) |
||
1848 | year_start_end = { |
||
1849 | "year_start": f"{year}0101", |
||
1850 | "year_end": f"{year+1}0101", |
||
1851 | } |
||
1852 | else: |
||
1853 | raise ValueError("No valid scenario name!") |
||
1854 | |||
1855 | df_gen_sq, not_retrieved = entsoe_historic_generation_capacities( |
||
1856 | **year_start_end |
||
1857 | ) |
||
1858 | |||
1859 | View Code Duplication | if not_retrieved: |
|
1860 | logger.warning("Generation data from entsoe could not be retrieved.") |
||
1861 | # check for generation backup from former runs |
||
1862 | file_path = Path( |
||
1863 | "./", |
||
1864 | "data_bundle_egon_data", |
||
1865 | "entsoe", |
||
1866 | f"gen_entsoe_{scn_name}.csv", |
||
1867 | ).resolve() |
||
1868 | if os.path.isfile(file_path): |
||
1869 | df_gen_sq, not_retrieved = fill_by_backup_data_from_former_runs( |
||
1870 | df_gen_sq, file_path, not_retrieved |
||
1871 | ) |
||
1872 | save_entsoe_data(df_gen_sq, file_path=file_path) |
||
1873 | |||
1874 | targets = config.datasets()["electrical_neighbours"]["targets"] |
||
1875 | # Delete existing data |
||
1876 | db.execute_sql( |
||
1877 | f""" |
||
1878 | DELETE FROM |
||
1879 | {targets['generators']['schema']}.{targets['generators']['table']} |
||
1880 | WHERE bus IN ( |
||
1881 | SELECT bus_id FROM |
||
1882 | {targets['buses']['schema']}.{targets['buses']['table']} |
||
1883 | WHERE country != 'DE' |
||
1884 | AND scn_name = '{scn_name}') |
||
1885 | AND scn_name = '{scn_name}' |
||
1886 | AND carrier != 'CH4' |
||
1887 | """ |
||
1888 | ) |
||
1889 | |||
1890 | db.execute_sql( |
||
1891 | f""" |
||
1892 | DELETE FROM |
||
1893 | {targets['generators_timeseries']['schema']}. |
||
1894 | {targets['generators_timeseries']['table']} |
||
1895 | WHERE generator_id NOT IN ( |
||
1896 | SELECT generator_id FROM |
||
1897 | {targets['generators']['schema']}.{targets['generators']['table']} |
||
1898 | ) |
||
1899 | AND scn_name = '{scn_name}' |
||
1900 | """ |
||
1901 | ) |
||
1902 | entsoe_to_bus = entsoe_to_bus_etrago(scn_name) |
||
1903 | carrier_entsoe = map_carriers_entsoe() |
||
1904 | df_gen_sq = df_gen_sq.groupby(axis=1, by=carrier_entsoe).sum() |
||
1905 | |||
1906 | # Filter generators modeled as storage and geothermal |
||
1907 | df_gen_sq = df_gen_sq.loc[ |
||
1908 | :, ~df_gen_sq.columns.isin(["Hydro Pumped Storage", "geo_thermal"]) |
||
1909 | ] |
||
1910 | |||
1911 | list_gen_sq = pd.DataFrame( |
||
1912 | dtype=int, columns=["carrier", "country", "capacity"] |
||
1913 | ) |
||
1914 | for carrier in df_gen_sq.columns: |
||
1915 | gen_carry = df_gen_sq[carrier] |
||
1916 | for country, cap in gen_carry.items(): |
||
1917 | gen = pd.DataFrame( |
||
1918 | {"carrier": carrier, "country": country, "capacity": cap}, |
||
1919 | index=[1], |
||
1920 | ) |
||
1921 | # print(gen) |
||
1922 | list_gen_sq = pd.concat([list_gen_sq, gen], ignore_index=True) |
||
1923 | |||
1924 | list_gen_sq = list_gen_sq[list_gen_sq.capacity > 0] |
||
1925 | list_gen_sq["scenario"] = scn_name |
||
1926 | |||
1927 | # Add marginal costs |
||
1928 | list_gen_sq = add_marginal_costs(list_gen_sq) |
||
1929 | |||
1930 | # Find foreign bus to assign the generator |
||
1931 | list_gen_sq["bus"] = list_gen_sq.country.map(entsoe_to_bus) |
||
1932 | |||
1933 | # insert generators data |
||
1934 | session = sessionmaker(bind=db.engine())() |
||
1935 | for i, row in list_gen_sq.iterrows(): |
||
1936 | entry = etrago.EgonPfHvGenerator( |
||
1937 | scn_name=row.scenario, |
||
1938 | generator_id=int(db.next_etrago_id("generator")), |
||
1939 | bus=row.bus, |
||
1940 | carrier=row.carrier, |
||
1941 | p_nom=row.capacity, |
||
1942 | marginal_cost=row.marginal_cost, |
||
1943 | ) |
||
1944 | |||
1945 | session.add(entry) |
||
1946 | session.commit() |
||
1947 | |||
1948 | renewable_timeseries_pypsaeur(scn_name) |
||
1949 | |||
1950 | |||
1951 | def renewable_timeseries_pypsaeur(scn_name): |
||
1952 | # select generators from database to get index values |
||
1953 | foreign_re_generators = db.select_dataframe( |
||
1954 | f""" |
||
1955 | SELECT generator_id, a.carrier, country, x, y |
||
1956 | FROM grid.egon_etrago_generator a |
||
1957 | JOIN grid.egon_etrago_bus b |
||
1958 | ON a.bus = b.bus_id |
||
1959 | WHERE a.scn_name = '{scn_name}' |
||
1960 | AND b.scn_name = '{scn_name}' |
||
1961 | AND b.carrier = 'AC' |
||
1962 | AND b.country != 'DE' |
||
1963 | AND a.carrier IN ('wind_onshore', 'wind_offshore', 'solar') |
||
1964 | """ |
||
1965 | ) |
||
1966 | |||
1967 | # Import prepared network from pypsa-eur |
||
1968 | network = prepared_network() |
||
1969 | |||
1970 | # Select fluctuating renewable generators |
||
1971 | generators_pypsa_eur = network.generators.loc[ |
||
1972 | network.generators[ |
||
1973 | network.generators.carrier.isin(["onwind", "offwind-ac", "solar"]) |
||
1974 | ].index, |
||
1975 | ["bus", "carrier"], |
||
1976 | ] |
||
1977 | |||
1978 | # Align carrier names for wind turbines |
||
1979 | generators_pypsa_eur.loc[ |
||
1980 | generators_pypsa_eur[generators_pypsa_eur.carrier == "onwind"].index, |
||
1981 | "carrier", |
||
1982 | ] = "wind_onshore" |
||
1983 | generators_pypsa_eur.loc[ |
||
1984 | generators_pypsa_eur[ |
||
1985 | generators_pypsa_eur.carrier == "offwind-ac" |
||
1986 | ].index, |
||
1987 | "carrier", |
||
1988 | ] = "wind_offshore" |
||
1989 | |||
1990 | # Set coordinates from bus table |
||
1991 | generators_pypsa_eur["x"] = network.buses.loc[ |
||
1992 | generators_pypsa_eur.bus.values, "x" |
||
1993 | ].values |
||
1994 | generators_pypsa_eur["y"] = network.buses.loc[ |
||
1995 | generators_pypsa_eur.bus.values, "y" |
||
1996 | ].values |
||
1997 | |||
1998 | # Get p_max_pu time series from pypsa-eur |
||
1999 | generators_pypsa_eur["p_max_pu"] = network.generators_t.p_max_pu[ |
||
2000 | generators_pypsa_eur.index |
||
2001 | ].T.values.tolist() |
||
2002 | |||
2003 | session = sessionmaker(bind=db.engine())() |
||
2004 | |||
2005 | # Insert p_max_pu timeseries based on geometry and carrier |
||
2006 | for gen in foreign_re_generators.index: |
||
2007 | entry = etrago.EgonPfHvGeneratorTimeseries( |
||
2008 | scn_name=scn_name, |
||
2009 | generator_id=foreign_re_generators.loc[gen, "generator_id"], |
||
2010 | temp_id=1, |
||
2011 | p_max_pu=generators_pypsa_eur[ |
||
2012 | ( |
||
2013 | ( |
||
2014 | generators_pypsa_eur.x |
||
2015 | - foreign_re_generators.loc[gen, "x"] |
||
2016 | ).abs() |
||
2017 | < 0.01 |
||
2018 | ) |
||
2019 | & ( |
||
2020 | ( |
||
2021 | generators_pypsa_eur.y |
||
2022 | - foreign_re_generators.loc[gen, "y"] |
||
2023 | ).abs() |
||
2024 | < 0.01 |
||
2025 | ) |
||
2026 | & ( |
||
2027 | generators_pypsa_eur.carrier |
||
2028 | == foreign_re_generators.loc[gen, "carrier"] |
||
2029 | ) |
||
2030 | ].p_max_pu.iloc[0], |
||
2031 | ) |
||
2032 | |||
2033 | session.add(entry) |
||
2034 | session.commit() |
||
2035 | |||
2036 | |||
2037 | def insert_loads_sq(scn_name="status2019"): |
||
2038 | """ |
||
2039 | Copy load timeseries data from entso-e. |
||
2040 | |||
2041 | Returns |
||
2042 | ------- |
||
2043 | None. |
||
2044 | |||
2045 | """ |
||
2046 | sources = config.datasets()["electrical_neighbours"]["sources"] |
||
2047 | targets = config.datasets()["electrical_neighbours"]["targets"] |
||
2048 | |||
2049 | if scn_name == "status2019": |
||
2050 | year_start_end = {"year_start": "20190101", "year_end": "20200101"} |
||
2051 | elif scn_name == "status2023": |
||
2052 | year_start_end = {"year_start": "20230101", "year_end": "20240101"} |
||
2053 | else: |
||
2054 | raise ValueError("No valid scenario name!") |
||
2055 | |||
2056 | df_load_sq, not_retrieved = entsoe_historic_demand(**year_start_end) |
||
2057 | |||
2058 | if not_retrieved: |
||
2059 | logger.warning("Demand data from entsoe could not be retrieved.") |
||
2060 | # check for generation backup from former runs |
||
2061 | file_path = Path( |
||
2062 | "./", |
||
2063 | "data_bundle_egon_data", |
||
2064 | "entsoe", |
||
2065 | f"load_entsoe_{scn_name}.csv", |
||
2066 | ).resolve() |
||
2067 | if os.path.isfile(file_path): |
||
2068 | df_load_sq, not_retrieved = fill_by_backup_data_from_former_runs( |
||
2069 | df_load_sq, file_path, not_retrieved |
||
2070 | ) |
||
2071 | save_entsoe_data(df_load_sq, file_path=file_path) |
||
2072 | |||
2073 | # Delete existing data |
||
2074 | db.execute_sql( |
||
2075 | f""" |
||
2076 | DELETE FROM {targets['load_timeseries']['schema']}. |
||
2077 | {targets['load_timeseries']['table']} |
||
2078 | WHERE |
||
2079 | scn_name = '{scn_name}' |
||
2080 | AND load_id IN ( |
||
2081 | SELECT load_id FROM {targets['loads']['schema']}. |
||
2082 | {targets['loads']['table']} |
||
2083 | WHERE |
||
2084 | scn_name = '{scn_name}' |
||
2085 | AND carrier = 'AC' |
||
2086 | AND bus NOT IN ( |
||
2087 | SELECT bus_i |
||
2088 | FROM {sources['osmtgmod_bus']['schema']}. |
||
2089 | {sources['osmtgmod_bus']['table']})) |
||
2090 | """ |
||
2091 | ) |
||
2092 | |||
2093 | db.execute_sql( |
||
2094 | f""" |
||
2095 | DELETE FROM {targets['loads']['schema']}. |
||
2096 | {targets['loads']['table']} |
||
2097 | WHERE |
||
2098 | scn_name = '{scn_name}' |
||
2099 | AND carrier = 'AC' |
||
2100 | AND bus NOT IN ( |
||
2101 | SELECT bus_i |
||
2102 | FROM {sources['osmtgmod_bus']['schema']}. |
||
2103 | {sources['osmtgmod_bus']['table']}) |
||
2104 | """ |
||
2105 | ) |
||
2106 | |||
2107 | # get the corresponding bus per foreign country |
||
2108 | entsoe_to_bus = entsoe_to_bus_etrago(scn_name) |
||
2109 | |||
2110 | # Calculate and insert demand timeseries per etrago bus_id |
||
2111 | with session_scope() as session: |
||
2112 | for country in df_load_sq.columns: |
||
2113 | load_id = db.next_etrago_id("load") |
||
2114 | |||
2115 | entry = etrago.EgonPfHvLoad( |
||
2116 | scn_name=scn_name, |
||
2117 | load_id=int(load_id), |
||
2118 | carrier="AC", |
||
2119 | bus=int(entsoe_to_bus[country]), |
||
2120 | ) |
||
2121 | |||
2122 | entry_ts = etrago.EgonPfHvLoadTimeseries( |
||
2123 | scn_name=scn_name, |
||
2124 | load_id=int(load_id), |
||
2125 | temp_id=1, |
||
2126 | p_set=list(df_load_sq[country]), |
||
2127 | ) |
||
2128 | |||
2129 | session.add(entry) |
||
2130 | session.add(entry_ts) |
||
2131 | session.commit() |
||
2132 | |||
2133 | |||
2134 | tasks = (grid,) |
||
2135 | |||
2136 | insert_per_scenario = set() |
||
2137 | |||
2138 | for scn_name in config.settings()["egon-data"]["--scenarios"]: |
||
2139 | |||
2140 | if scn_name == "eGon2035": |
||
2141 | insert_per_scenario.update([tyndp_generation, tyndp_demand]) |
||
2142 | |||
2143 | if "status" in scn_name: |
||
2144 | postfix = f"_{scn_name.split('status')[-1]}" |
||
2145 | insert_per_scenario.update( |
||
2146 | [ |
||
2147 | wrapped_partial( |
||
2148 | insert_generators_sq, scn_name=scn_name, postfix=postfix |
||
2149 | ), |
||
2150 | wrapped_partial( |
||
2151 | insert_loads_sq, scn_name=scn_name, postfix=postfix |
||
2152 | ), |
||
2153 | wrapped_partial( |
||
2154 | insert_storage_units_sq, scn_name=scn_name, postfix=postfix |
||
2155 | ), |
||
2156 | ] |
||
2157 | ) |
||
2158 | |||
2159 | tasks = tasks + (insert_per_scenario,) |
||
2160 | |||
2161 | |||
2162 | class ElectricalNeighbours(Dataset): |
||
2163 | """ |
||
2164 | Add lines, loads, generation and storage for electrical neighbours |
||
2165 | |||
2166 | This dataset creates data for modelling the considered foreign countries and writes |
||
2167 | that data into the database tables that can be read by the eTraGo tool. |
||
2168 | Neighbouring countries are modelled in a lower spatial resolution, in general one node per |
||
2169 | country is considered. |
||
2170 | Defined load timeseries as well as generatrion and storage capacities are connected to these nodes. |
||
2171 | The nodes are connected by AC and DC transmission lines with the German grid and other neighbouring countries |
||
2172 | considering the grid topology from ENTSO-E. |
||
2173 | |||
2174 | |||
2175 | *Dependencies* |
||
2176 | * :py:class:`Tyndp <egon.data.datasets.tyndp.Tyndp>` |
||
2177 | * :py:class:`PypsaEurSec <egon.data.datasets.pypsaeursec.PypsaEurSec>` |
||
2178 | |||
2179 | |||
2180 | *Resulting tables* |
||
2181 | * :py:class:`grid.egon_etrago_bus <egon.data.datasets.etrago_setup.EgonPfHvBus>` is extended |
||
2182 | * :py:class:`grid.egon_etrago_link <egon.data.datasets.etrago_setup.EgonPfHvLink>` is extended |
||
2183 | * :py:class:`grid.egon_etrago_line <egon.data.datasets.etrago_setup.EgonPfHvLine>` is extended |
||
2184 | * :py:class:`grid.egon_etrago_load <egon.data.datasets.etrago_setup.EgonPfHvLoad>` is extended |
||
2185 | * :py:class:`grid.egon_etrago_load_timeseries <egon.data.datasets.etrago_setup.EgonPfHvLoadTimeseries>` is extended |
||
2186 | * :py:class:`grid.egon_etrago_storage <egon.data.datasets.etrago_setup.EgonPfHvStorageUnit>` is extended |
||
2187 | * :py:class:`grid.egon_etrago_generator <egon.data.datasets.etrago_setup.EgonPfHvGenerator>` is extended |
||
2188 | * :py:class:`grid.egon_etrago_generator_timeseries <egon.data.datasets.etrago_setup.EgonPfHvGeneratorTimeseries>` is extended |
||
2189 | * :py:class:`grid.egon_etrago_transformer <egon.data.datasets.etrago_setup.EgonPfHvTransformer>` is extended |
||
2190 | |||
2191 | """ |
||
2192 | |||
2193 | #: |
||
2194 | name: str = "ElectricalNeighbours" |
||
2195 | #: |
||
2196 | version: str = "0.0.11" |
||
2197 | |||
2198 | def __init__(self, dependencies): |
||
2199 | super().__init__( |
||
2200 | name=self.name, |
||
2201 | version=self.version, |
||
2202 | dependencies=dependencies, |
||
2203 | tasks=tasks, |
||
2204 | ) |
||
2205 |