1
|
|
|
"""The central module containing all code dealing with importing and |
2
|
|
|
adjusting data from demandRegio |
3
|
|
|
|
4
|
|
|
""" |
5
|
|
|
|
6
|
|
|
from pathlib import Path |
7
|
|
|
import os |
8
|
|
|
import zipfile |
9
|
|
|
|
10
|
|
|
from sqlalchemy import ARRAY, Column, Float, ForeignKey, Integer, String |
11
|
|
|
from sqlalchemy.ext.declarative import declarative_base |
12
|
|
|
import numpy as np |
13
|
|
|
import pandas as pd |
14
|
|
|
|
15
|
|
|
from egon.data import db, logger |
16
|
|
|
from egon.data.datasets import Dataset, wrapped_partial |
17
|
|
|
from egon.data.datasets.scenario_parameters import ( |
18
|
|
|
EgonScenario, |
19
|
|
|
get_sector_parameters, |
20
|
|
|
) |
21
|
|
|
from egon.data.datasets.zensus import download_and_check |
22
|
|
|
import egon.data.config |
23
|
|
|
import egon.data.datasets.scenario_parameters.parameters as scenario_parameters |
24
|
|
|
|
25
|
|
|
try: |
26
|
|
|
from disaggregator import config, data, spatial, temporal |
27
|
|
|
|
28
|
|
|
except ImportError as e: |
29
|
|
|
pass |
30
|
|
|
|
31
|
|
|
# will be later imported from another file ### |
32
|
|
|
Base = declarative_base() |
33
|
|
|
|
34
|
|
|
|
35
|
|
|
class DemandRegio(Dataset): |
36
|
|
|
""" |
37
|
|
|
Extract and adjust data from DemandRegio |
38
|
|
|
|
39
|
|
|
Demand data for the sectors households, CTS and industry are calculated |
40
|
|
|
using DemandRegio's diaggregator and input data. To bring the resulting |
41
|
|
|
data in line with other data used in eGon-data and the eGon project in |
42
|
|
|
general some data needed to be adjusted or extended, e.g. in function |
43
|
|
|
:py:func:`adjust_ind_pes` or function :py:func:`adjust_cts_ind_nep`. The |
44
|
|
|
resulting data is written into newly created tables. |
45
|
|
|
|
46
|
|
|
*Dependencies* |
47
|
|
|
* :py:class:`DataBundle <egon.data.datasets.data_bundle.DataBundle>` |
48
|
|
|
* :py:class:`ScenarioParameters <egon.data.datasets.scenario_parameters.ScenarioParameters>` |
49
|
|
|
* :py:class:`ZensusVg250 <egon.data.datasets.zensus_vg250.ZensusVg250>` |
50
|
|
|
|
51
|
|
|
*Resulting tables* |
52
|
|
|
* :py:class:`demand.egon_demandregio_hh <egon.data.datasets.demandregio.EgonDemandRegioHH>` is created and filled |
53
|
|
|
* :py:class:`demand.egon_demandregio_cts_ind <egon.data.datasets.demandregio.EgonDemandRegioCtsInd>` is created and filled |
54
|
|
|
* :py:class:`society.egon_demandregio_population <egon.data.datasets.demandregio.EgonDemandRegioPopulation>` is created and filled |
55
|
|
|
* :py:class:`society.egon_demandregio_household <egon.data.datasets.demandregio.EgonDemandRegioHouseholds>` is created and filled |
56
|
|
|
* :py:class:`demand.egon_demandregio_wz <egon.data.datasets.demandregio.EgonDemandRegioWz>` is created and filled |
57
|
|
|
* :py:class:`demand.egon_demandregio_timeseries_cts_ind <egon.data.datasets.demandregio.EgonDemandRegioTimeseriesCtsInd>` is created and filled |
58
|
|
|
|
59
|
|
|
""" |
60
|
|
|
|
61
|
|
|
#: |
62
|
|
|
name: str = "DemandRegio" |
63
|
|
|
#: |
64
|
|
|
version: str = "0.0.12" |
65
|
|
|
|
66
|
|
|
def __init__(self, dependencies): |
67
|
|
|
super().__init__( |
68
|
|
|
name=self.name, |
69
|
|
|
version=self.version, |
70
|
|
|
dependencies=dependencies, |
71
|
|
|
tasks=( |
72
|
|
|
get_cached_tables, # adhoc workaround #180 |
73
|
|
|
create_tables, |
74
|
|
|
{ |
75
|
|
|
insert_household_demand, |
76
|
|
|
insert_society_data, |
77
|
|
|
insert_cts_ind_demands, |
78
|
|
|
}, |
79
|
|
|
), |
80
|
|
|
) |
81
|
|
|
|
82
|
|
|
|
83
|
|
|
class DemandRegioLoadProfiles(Base): |
84
|
|
|
__tablename__ = "demandregio_household_load_profiles" |
85
|
|
|
__table_args__ = {"schema": "demand"} |
86
|
|
|
|
87
|
|
|
id = Column(Integer, primary_key=True) |
88
|
|
|
year = Column(Integer) |
89
|
|
|
nuts3 = Column(String) |
90
|
|
|
load_in_mwh = Column(ARRAY(Float())) |
91
|
|
|
|
92
|
|
|
|
93
|
|
|
class EgonDemandRegioHH(Base): |
94
|
|
|
__tablename__ = "egon_demandregio_hh" |
95
|
|
|
__table_args__ = {"schema": "demand"} |
96
|
|
|
nuts3 = Column(String(5), primary_key=True) |
97
|
|
|
hh_size = Column(Integer, primary_key=True) |
98
|
|
|
scenario = Column(String, ForeignKey(EgonScenario.name), primary_key=True) |
99
|
|
|
year = Column(Integer) |
100
|
|
|
demand = Column(Float) |
101
|
|
|
|
102
|
|
|
|
103
|
|
|
class EgonDemandRegioCtsInd(Base): |
104
|
|
|
__tablename__ = "egon_demandregio_cts_ind" |
105
|
|
|
__table_args__ = {"schema": "demand"} |
106
|
|
|
nuts3 = Column(String(5), primary_key=True) |
107
|
|
|
wz = Column(Integer, primary_key=True) |
108
|
|
|
scenario = Column(String, ForeignKey(EgonScenario.name), primary_key=True) |
109
|
|
|
year = Column(Integer) |
110
|
|
|
demand = Column(Float) |
111
|
|
|
|
112
|
|
|
|
113
|
|
|
class EgonDemandRegioPopulation(Base): |
114
|
|
|
__tablename__ = "egon_demandregio_population" |
115
|
|
|
__table_args__ = {"schema": "society"} |
116
|
|
|
nuts3 = Column(String(5), primary_key=True) |
117
|
|
|
year = Column(Integer, primary_key=True) |
118
|
|
|
population = Column(Float) |
119
|
|
|
|
120
|
|
|
|
121
|
|
|
class EgonDemandRegioHouseholds(Base): |
122
|
|
|
__tablename__ = "egon_demandregio_household" |
123
|
|
|
__table_args__ = {"schema": "society"} |
124
|
|
|
nuts3 = Column(String(5), primary_key=True) |
125
|
|
|
hh_size = Column(Integer, primary_key=True) |
126
|
|
|
year = Column(Integer, primary_key=True) |
127
|
|
|
households = Column(Integer) |
128
|
|
|
|
129
|
|
|
|
130
|
|
|
class EgonDemandRegioWz(Base): |
131
|
|
|
__tablename__ = "egon_demandregio_wz" |
132
|
|
|
__table_args__ = {"schema": "demand"} |
133
|
|
|
wz = Column(Integer, primary_key=True) |
134
|
|
|
sector = Column(String(50)) |
135
|
|
|
definition = Column(String(150)) |
136
|
|
|
|
137
|
|
|
|
138
|
|
|
class EgonDemandRegioTimeseriesCtsInd(Base): |
139
|
|
|
__tablename__ = "egon_demandregio_timeseries_cts_ind" |
140
|
|
|
__table_args__ = {"schema": "demand"} |
141
|
|
|
wz = Column(Integer, primary_key=True) |
142
|
|
|
year = Column(Integer, primary_key=True) |
143
|
|
|
slp = Column(String(50)) |
144
|
|
|
load_curve = Column(ARRAY(Float())) |
145
|
|
|
|
146
|
|
|
|
147
|
|
|
def create_tables(): |
148
|
|
|
"""Create tables for demandregio data |
149
|
|
|
Returns |
150
|
|
|
------- |
151
|
|
|
None. |
152
|
|
|
""" |
153
|
|
|
db.execute_sql("CREATE SCHEMA IF NOT EXISTS demand;") |
154
|
|
|
db.execute_sql("CREATE SCHEMA IF NOT EXISTS society;") |
155
|
|
|
engine = db.engine() |
156
|
|
|
EgonDemandRegioHH.__table__.create(bind=engine, checkfirst=True) |
157
|
|
|
EgonDemandRegioCtsInd.__table__.create(bind=engine, checkfirst=True) |
158
|
|
|
EgonDemandRegioPopulation.__table__.create(bind=engine, checkfirst=True) |
159
|
|
|
EgonDemandRegioHouseholds.__table__.create(bind=engine, checkfirst=True) |
160
|
|
|
EgonDemandRegioWz.__table__.create(bind=engine, checkfirst=True) |
161
|
|
|
DemandRegioLoadProfiles.__table__.create(bind=db.engine(), checkfirst=True) |
162
|
|
|
EgonDemandRegioTimeseriesCtsInd.__table__.drop( |
163
|
|
|
bind=engine, checkfirst=True |
164
|
|
|
) |
165
|
|
|
EgonDemandRegioTimeseriesCtsInd.__table__.create( |
166
|
|
|
bind=engine, checkfirst=True |
167
|
|
|
) |
168
|
|
|
|
169
|
|
|
|
170
|
|
|
def data_in_boundaries(df): |
171
|
|
|
"""Select rows with nuts3 code within boundaries, used for testmode |
172
|
|
|
|
173
|
|
|
Parameters |
174
|
|
|
---------- |
175
|
|
|
df : pandas.DataFrame |
176
|
|
|
Data for all nuts3 regions |
177
|
|
|
|
178
|
|
|
Returns |
179
|
|
|
------- |
180
|
|
|
pandas.DataFrame |
181
|
|
|
Data for nuts3 regions within boundaries |
182
|
|
|
|
183
|
|
|
""" |
184
|
|
|
engine = db.engine() |
185
|
|
|
|
186
|
|
|
df = df.reset_index() |
187
|
|
|
|
188
|
|
|
# Change nuts3 region names to 2016 version |
189
|
|
|
nuts_names = {"DEB16": "DEB1C", "DEB19": "DEB1D"} |
190
|
|
|
df.loc[df.nuts3.isin(nuts_names), "nuts3"] = df.loc[ |
191
|
|
|
df.nuts3.isin(nuts_names), "nuts3" |
192
|
|
|
].map(nuts_names) |
193
|
|
|
|
194
|
|
|
df = df.set_index("nuts3") |
195
|
|
|
|
196
|
|
|
return df[ |
197
|
|
|
df.index.isin( |
198
|
|
|
pd.read_sql( |
199
|
|
|
"SELECT DISTINCT ON (nuts) nuts FROM boundaries.vg250_krs", |
200
|
|
|
engine, |
201
|
|
|
).nuts |
202
|
|
|
) |
203
|
|
|
] |
204
|
|
|
|
205
|
|
|
|
206
|
|
|
def insert_cts_ind_wz_definitions(): |
207
|
|
|
"""Insert demandregio's definitions of CTS and industrial branches |
208
|
|
|
|
209
|
|
|
Returns |
210
|
|
|
------- |
211
|
|
|
None. |
212
|
|
|
|
213
|
|
|
""" |
214
|
|
|
|
215
|
|
|
source = egon.data.config.datasets()["demandregio_cts_ind_demand"][ |
216
|
|
|
"sources" |
217
|
|
|
] |
218
|
|
|
|
219
|
|
|
target = egon.data.config.datasets()["demandregio_cts_ind_demand"][ |
220
|
|
|
"targets" |
221
|
|
|
]["wz_definitions"] |
222
|
|
|
|
223
|
|
|
engine = db.engine() |
224
|
|
|
|
225
|
|
|
for sector in source["wz_definitions"]: |
226
|
|
|
file_path = ( |
227
|
|
|
Path(".") |
228
|
|
|
/ "data_bundle_egon_data" |
229
|
|
|
/ "WZ_definition" |
230
|
|
|
/ source["wz_definitions"][sector] |
231
|
|
|
) |
232
|
|
|
|
233
|
|
|
if sector == "CTS": |
234
|
|
|
delimiter = ";" |
235
|
|
|
else: |
236
|
|
|
delimiter = "," |
237
|
|
|
df = ( |
238
|
|
|
pd.read_csv(file_path, delimiter=delimiter, header=None) |
239
|
|
|
.rename({0: "wz", 1: "definition"}, axis="columns") |
240
|
|
|
.set_index("wz") |
241
|
|
|
) |
242
|
|
|
df["sector"] = sector |
243
|
|
|
df.to_sql( |
244
|
|
|
target["table"], |
245
|
|
|
engine, |
246
|
|
|
schema=target["schema"], |
247
|
|
|
if_exists="append", |
248
|
|
|
) |
249
|
|
|
|
250
|
|
|
|
251
|
|
|
def match_nuts3_bl(): |
252
|
|
|
"""Function that maps the federal state to each nuts3 region |
253
|
|
|
|
254
|
|
|
Returns |
255
|
|
|
------- |
256
|
|
|
df : pandas.DataFrame |
257
|
|
|
List of nuts3 regions and the federal state of Germany. |
258
|
|
|
|
259
|
|
|
""" |
260
|
|
|
|
261
|
|
|
engine = db.engine() |
262
|
|
|
|
263
|
|
|
df = pd.read_sql( |
264
|
|
|
"SELECT DISTINCT ON (boundaries.vg250_krs.nuts) " |
265
|
|
|
"boundaries.vg250_krs.nuts, boundaries.vg250_lan.gen " |
266
|
|
|
"FROM boundaries.vg250_lan, boundaries.vg250_krs " |
267
|
|
|
" WHERE ST_CONTAINS(" |
268
|
|
|
"boundaries.vg250_lan.geometry, " |
269
|
|
|
"boundaries.vg250_krs.geometry)", |
270
|
|
|
con=engine, |
271
|
|
|
) |
272
|
|
|
|
273
|
|
|
df.gen[df.gen == "Baden-Württemberg (Bodensee)"] = "Baden-Württemberg" |
274
|
|
|
df.gen[df.gen == "Bayern (Bodensee)"] = "Bayern" |
275
|
|
|
|
276
|
|
|
return df.set_index("nuts") |
277
|
|
|
|
278
|
|
|
|
279
|
|
|
def adjust_ind_pes(ec_cts_ind): |
280
|
|
|
""" |
281
|
|
|
Adjust electricity demand of industrial consumers due to electrification |
282
|
|
|
of process heat based on assumptions of pypsa-eur-sec. |
283
|
|
|
|
284
|
|
|
Parameters |
285
|
|
|
---------- |
286
|
|
|
ec_cts_ind : pandas.DataFrame |
287
|
|
|
Industrial demand without additional electrification |
288
|
|
|
|
289
|
|
|
Returns |
290
|
|
|
------- |
291
|
|
|
ec_cts_ind : pandas.DataFrame |
292
|
|
|
Industrial demand with additional electrification |
293
|
|
|
|
294
|
|
|
""" |
295
|
|
|
|
296
|
|
|
pes_path = ( |
297
|
|
|
Path(".") / "data_bundle_powerd_data" / "pypsa_eur" / "resources" |
298
|
|
|
) |
299
|
|
|
|
300
|
|
|
sources = egon.data.config.datasets()["demandregio_cts_ind_demand"][ |
301
|
|
|
"sources" |
302
|
|
|
]["new_consumers_2050"] |
303
|
|
|
|
304
|
|
|
# Extract today's industrial demand from pypsa-eur-sec |
305
|
|
|
demand_today = pd.read_csv( |
306
|
|
|
pes_path / sources["pes-demand-today"], |
307
|
|
|
header=None, |
308
|
|
|
).transpose() |
309
|
|
|
|
310
|
|
|
# Filter data |
311
|
|
|
demand_today[1].fillna("carrier", inplace=True) |
312
|
|
|
demand_today = demand_today[ |
313
|
|
|
(demand_today[0] == "DE") | (demand_today[1] == "carrier") |
314
|
|
|
].drop([0, 2], axis="columns") |
315
|
|
|
|
316
|
|
|
demand_today = ( |
317
|
|
|
demand_today.transpose() |
318
|
|
|
.set_index(0) |
319
|
|
|
.transpose() |
320
|
|
|
.set_index("carrier") |
321
|
|
|
.transpose() |
322
|
|
|
.loc["electricity"] |
323
|
|
|
.astype(float) |
324
|
|
|
) |
325
|
|
|
|
326
|
|
|
# Calculate future industrial demand from pypsa-eur-sec |
327
|
|
|
# based on production and energy demands per carrier ('sector ratios') |
328
|
|
|
prod_tomorrow = pd.read_csv(pes_path / sources["pes-production-tomorrow"]) |
329
|
|
|
|
330
|
|
|
prod_tomorrow = prod_tomorrow[prod_tomorrow["kton/a"] == "DE"].set_index( |
331
|
|
|
"kton/a" |
332
|
|
|
) |
333
|
|
|
|
334
|
|
|
sector_ratio = ( |
335
|
|
|
pd.read_csv(pes_path / sources["pes-sector-ratios"]) |
336
|
|
|
.set_index("MWh/tMaterial") |
337
|
|
|
.loc["elec"] |
338
|
|
|
) |
339
|
|
|
|
340
|
|
|
demand_tomorrow = prod_tomorrow.multiply( |
341
|
|
|
sector_ratio.div(1000) |
342
|
|
|
).transpose()["DE"] |
343
|
|
|
|
344
|
|
|
# Calculate changes of electrical demand per sector in pypsa-eur-sec |
345
|
|
|
change = pd.DataFrame( |
346
|
|
|
(demand_tomorrow / demand_today) |
347
|
|
|
/ (demand_tomorrow / demand_today).sum() |
348
|
|
|
) |
349
|
|
|
|
350
|
|
|
# Drop rows without changes |
351
|
|
|
change = change[~change[0].isnull()] |
352
|
|
|
|
353
|
|
|
# Map industrial branches of pypsa-eur-sec to WZ2008 used in demandregio |
354
|
|
|
change["wz"] = change.index.map( |
355
|
|
|
{ |
356
|
|
|
"Alumina production": 24, |
357
|
|
|
"Aluminium - primary production": 24, |
358
|
|
|
"Aluminium - secondary production": 24, |
359
|
|
|
"Ammonia": 20, |
360
|
|
|
"Basic chemicals (without ammonia)": 20, |
361
|
|
|
"Cement": 23, |
362
|
|
|
"Ceramics & other NMM": 23, |
363
|
|
|
"Electric arc": 24, |
364
|
|
|
"Food, beverages and tobacco": 10, |
365
|
|
|
"Glass production": 23, |
366
|
|
|
"Integrated steelworks": 24, |
367
|
|
|
"Machinery Equipment": 28, |
368
|
|
|
"Other Industrial Sectors": 32, |
369
|
|
|
"Other chemicals": 20, |
370
|
|
|
"Other non-ferrous metals": 24, |
371
|
|
|
"Paper production": 17, |
372
|
|
|
"Pharmaceutical products etc.": 21, |
373
|
|
|
"Printing and media reproduction": 18, |
374
|
|
|
"Pulp production": 17, |
375
|
|
|
"Textiles and leather": 13, |
376
|
|
|
"Transport Equipment": 29, |
377
|
|
|
"Wood and wood products": 16, |
378
|
|
|
} |
379
|
|
|
) |
380
|
|
|
|
381
|
|
|
# Group by WZ2008 |
382
|
|
|
shares_per_wz = change.groupby("wz")[0].sum() |
383
|
|
|
|
384
|
|
|
# Calculate addtional demands needed to meet future demand of pypsa-eur-sec |
385
|
|
|
addtional_mwh = shares_per_wz.multiply( |
386
|
|
|
demand_tomorrow.sum() * 1000000 - ec_cts_ind.sum().sum() |
387
|
|
|
) |
388
|
|
|
|
389
|
|
|
# Calulate overall industrial demand for eGon100RE |
390
|
|
|
final_mwh = addtional_mwh + ec_cts_ind[addtional_mwh.index].sum() |
391
|
|
|
|
392
|
|
|
# Linear scale the industrial demands per nuts3 and wz to meet final demand |
393
|
|
|
ec_cts_ind[addtional_mwh.index] *= ( |
394
|
|
|
final_mwh / ec_cts_ind[addtional_mwh.index].sum() |
395
|
|
|
) |
396
|
|
|
|
397
|
|
|
return ec_cts_ind |
398
|
|
|
|
399
|
|
|
|
400
|
|
|
def adjust_cts_ind_nep(ec_cts_ind, sector): |
401
|
|
|
"""Add electrical demand of new largescale CTS und industrial consumers |
402
|
|
|
according to NEP 2021, scneario C 2035. Values per federal state are |
403
|
|
|
linear distributed over all CTS branches and nuts3 regions. |
404
|
|
|
|
405
|
|
|
Parameters |
406
|
|
|
---------- |
407
|
|
|
ec_cts_ind : pandas.DataFrame |
408
|
|
|
CTS or industry demand without new largescale consumers. |
409
|
|
|
|
410
|
|
|
Returns |
411
|
|
|
------- |
412
|
|
|
ec_cts_ind : pandas.DataFrame |
413
|
|
|
CTS or industry demand including new largescale consumers. |
414
|
|
|
|
415
|
|
|
""" |
416
|
|
|
sources = egon.data.config.datasets()["demandregio_cts_ind_demand"][ |
417
|
|
|
"sources" |
418
|
|
|
] |
419
|
|
|
|
420
|
|
|
file_path = ( |
421
|
|
|
Path(".") |
422
|
|
|
/ "data_bundle_egon_data" |
423
|
|
|
/ "nep2035_version2021" |
424
|
|
|
/ sources["new_consumers_2035"] |
425
|
|
|
) |
426
|
|
|
|
427
|
|
|
# get data from NEP per federal state |
428
|
|
|
new_con = pd.read_csv(file_path, delimiter=";", decimal=",", index_col=0) |
429
|
|
|
|
430
|
|
|
# match nuts3 regions to federal states |
431
|
|
|
groups = ec_cts_ind.groupby(match_nuts3_bl().gen) |
432
|
|
|
|
433
|
|
|
# update demands per federal state |
434
|
|
|
for group in groups.indices.keys(): |
435
|
|
|
g = groups.get_group(group) |
436
|
|
|
data_new = g.mul(1 + new_con[sector][group] * 1e6 / g.sum().sum()) |
437
|
|
|
ec_cts_ind[ec_cts_ind.index.isin(g.index)] = data_new |
438
|
|
|
|
439
|
|
|
return ec_cts_ind |
440
|
|
|
|
441
|
|
|
|
442
|
|
|
def disagg_households_power( |
443
|
|
|
scenario, year, weight_by_income=False, original=False, **kwargs |
444
|
|
|
): |
445
|
|
|
""" |
446
|
|
|
Perform spatial disaggregation of electric power in [GWh/a] by key and |
447
|
|
|
possibly weight by income. |
448
|
|
|
Similar to disaggregator.spatial.disagg_households_power |
449
|
|
|
|
450
|
|
|
|
451
|
|
|
Parameters |
452
|
|
|
---------- |
453
|
|
|
by : str |
454
|
|
|
must be one of ['households', 'population'] |
455
|
|
|
weight_by_income : bool, optional |
456
|
|
|
Flag if to weight the results by the regional income (default False) |
457
|
|
|
orignal : bool, optional |
458
|
|
|
Throughput to function households_per_size, |
459
|
|
|
A flag if the results should be left untouched and returned in |
460
|
|
|
original form for the year 2011 (True) or if they should be scaled to |
461
|
|
|
the given `year` by the population in that year (False). |
462
|
|
|
|
463
|
|
|
Returns |
464
|
|
|
------- |
465
|
|
|
pd.DataFrame or pd.Series |
466
|
|
|
""" |
467
|
|
|
# source: survey of energieAgenturNRW |
468
|
|
|
# with/without direct water heating (DHW), and weighted average |
469
|
|
|
# https://1-stromvergleich.com/wp-content/uploads/erhebung_wo_bleibt_der_strom.pdf |
470
|
|
|
demand_per_hh_size = pd.DataFrame( |
471
|
|
|
index=range(1, 7), |
472
|
|
|
data={ |
473
|
|
|
# "weighted DWH": [2290, 3202, 4193, 4955, 5928, 5928], |
474
|
|
|
# "without DHW": [1714, 2812, 3704, 4432, 5317, 5317], |
475
|
|
|
"with_DHW": [2181, 3843, 5151, 6189, 7494, 8465], |
476
|
|
|
"without_DHW": [1798, 2850, 3733, 4480, 5311, 5816], |
477
|
|
|
"weighted": [2256, 3248, 4246, 5009, 5969, 6579], |
478
|
|
|
}, |
479
|
|
|
) |
480
|
|
|
|
481
|
|
|
if scenario == "eGon100RE": |
482
|
|
|
# chose demand per household size from survey without DHW |
483
|
|
|
power_per_HH = ( |
484
|
|
|
demand_per_hh_size["without_DHW"] / 1e3 |
485
|
|
|
) # TODO why without? |
486
|
|
|
|
487
|
|
|
# calculate demand per nuts3 in 2011 |
488
|
|
|
df_2011 = data.households_per_size(year=2011) * power_per_HH |
489
|
|
|
|
490
|
|
|
# scale demand per hh-size to meet demand without heat |
491
|
|
|
# according to JRC in 2011 (136.6-(20.14+9.41) TWh) |
492
|
|
|
# TODO check source and method |
493
|
|
|
power_per_HH *= (136.6 - (20.14 + 9.41)) * 1e6 / df_2011.sum().sum() |
494
|
|
|
|
495
|
|
|
# calculate demand per nuts3 in 2050 |
496
|
|
|
df = data.households_per_size(year=year) * power_per_HH |
497
|
|
|
|
498
|
|
|
# Bottom-Up: Power demand by household sizes in [MWh/a] for each scenario |
499
|
|
|
elif scenario in ["status2019", "status2023", "eGon2021", "eGon2035"]: |
500
|
|
|
# chose demand per household size from survey including weighted DHW |
501
|
|
|
power_per_HH = demand_per_hh_size["weighted"] / 1e3 |
502
|
|
|
|
503
|
|
|
# calculate demand per nuts3 |
504
|
|
|
df = ( |
505
|
|
|
data.households_per_size(original=original, year=year) |
506
|
|
|
* power_per_HH |
507
|
|
|
) |
508
|
|
|
|
509
|
|
|
if scenario == "eGon2035": |
510
|
|
|
# scale to fit demand of NEP 2021 scebario C 2035 (119TWh) |
511
|
|
|
df *= 119 * 1e6 / df.sum().sum() |
512
|
|
|
|
513
|
|
|
if scenario == "status2023": |
514
|
|
|
# scale to fit demand of BDEW 2023 (130.48 TWh) see issue #180 |
515
|
|
|
df *= 130.48 * 1e6 / df.sum().sum() |
516
|
|
|
|
517
|
|
|
# if scenario == "status2021": # TODO status2021 |
518
|
|
|
# # scale to fit demand of AGEB 2021 (138.6 TWh) |
519
|
|
|
# # https://ag-energiebilanzen.de/wp-content/uploads/2023/01/AGEB_22p2_rev-1.pdf#page=10 |
520
|
|
|
# df *= 138.6 * 1e6 / df.sum().sum() |
521
|
|
|
|
522
|
|
|
elif scenario == "eGon100RE": |
523
|
|
|
# chose demand per household size from survey without DHW |
524
|
|
|
power_per_HH = demand_per_hh_size["without DHW"] / 1e3 |
525
|
|
|
|
526
|
|
|
# calculate demand per nuts3 in 2011 |
527
|
|
|
df_2011 = data.households_per_size(year=2011) * power_per_HH |
528
|
|
|
|
529
|
|
|
# scale demand per hh-size to meet demand without heat |
530
|
|
|
# according to JRC in 2011 (136.6-(20.14+9.41) TWh) |
531
|
|
|
power_per_HH *= (136.6 - (20.14 + 9.41)) * 1e6 / df_2011.sum().sum() |
532
|
|
|
|
533
|
|
|
# calculate demand per nuts3 in 2050 |
534
|
|
|
df = data.households_per_size(year=year) * power_per_HH |
535
|
|
|
|
536
|
|
|
# scale to meet annual demand from NEP 2023, scenario B 2045 |
537
|
|
|
df *= 90400000 / df.sum().sum() |
538
|
|
|
|
539
|
|
|
else: |
540
|
|
|
print( |
541
|
|
|
f"Electric demand per household size for scenario {scenario} " |
542
|
|
|
"is not specified." |
543
|
|
|
) |
544
|
|
|
|
545
|
|
|
if weight_by_income: |
546
|
|
|
df = spatial.adjust_by_income(df=df) |
|
|
|
|
547
|
|
|
|
548
|
|
|
return df |
549
|
|
|
|
550
|
|
|
|
551
|
|
|
def write_demandregio_hh_profiles_to_db(hh_profiles): |
552
|
|
|
"""Write HH demand profiles from demand regio into db. One row per |
553
|
|
|
year and nuts3. The annual load profile timeseries is an array. |
554
|
|
|
|
555
|
|
|
schema: demand |
556
|
|
|
tablename: demandregio_household_load_profiles |
557
|
|
|
|
558
|
|
|
|
559
|
|
|
|
560
|
|
|
Parameters |
561
|
|
|
---------- |
562
|
|
|
hh_profiles: pd.DataFrame |
563
|
|
|
|
564
|
|
|
Returns |
565
|
|
|
------- |
566
|
|
|
""" |
567
|
|
|
years = hh_profiles.index.year.unique().values |
568
|
|
|
df_to_db = pd.DataFrame( |
569
|
|
|
columns=["id", "year", "nuts3", "load_in_mwh"] |
570
|
|
|
).set_index("id") |
571
|
|
|
dataset = egon.data.config.settings()["egon-data"]["--dataset-boundary"] |
572
|
|
|
|
573
|
|
|
if dataset == "Schleswig-Holstein": |
574
|
|
|
hh_profiles = hh_profiles.loc[ |
575
|
|
|
:, hh_profiles.columns.str.contains("DEF0") |
576
|
|
|
] |
577
|
|
|
|
578
|
|
|
idx = pd.read_sql_query( |
579
|
|
|
f""" |
580
|
|
|
SELECT MAX(id) |
581
|
|
|
FROM {DemandRegioLoadProfiles.__table__.schema}. |
582
|
|
|
{DemandRegioLoadProfiles.__table__.name} |
583
|
|
|
""", |
584
|
|
|
con=db.engine(), |
585
|
|
|
).iat[0, 0] |
586
|
|
|
|
587
|
|
|
idx = 0 if idx is None else idx + 1 |
588
|
|
|
|
589
|
|
|
for year in years: |
590
|
|
|
df = hh_profiles[hh_profiles.index.year == year] |
591
|
|
|
|
592
|
|
|
for nuts3 in hh_profiles.columns: |
593
|
|
|
idx += 1 |
594
|
|
|
df_to_db.at[idx, "year"] = year |
595
|
|
|
df_to_db.at[idx, "nuts3"] = nuts3 |
596
|
|
|
df_to_db.at[idx, "load_in_mwh"] = df[nuts3].to_list() |
597
|
|
|
|
598
|
|
|
df_to_db["year"] = df_to_db["year"].apply(int) |
599
|
|
|
df_to_db["nuts3"] = df_to_db["nuts3"].astype(str) |
600
|
|
|
df_to_db["load_in_mwh"] = df_to_db["load_in_mwh"].apply(list) |
601
|
|
|
df_to_db = df_to_db.reset_index() |
602
|
|
|
|
603
|
|
|
df_to_db.to_sql( |
604
|
|
|
name=DemandRegioLoadProfiles.__table__.name, |
605
|
|
|
schema=DemandRegioLoadProfiles.__table__.schema, |
606
|
|
|
con=db.engine(), |
607
|
|
|
if_exists="append", |
608
|
|
|
index=-False, |
609
|
|
|
) |
610
|
|
|
|
611
|
|
|
|
612
|
|
|
def insert_hh_demand(scenario, year, engine): |
613
|
|
|
"""Calculates electrical demands of private households using demandregio's |
614
|
|
|
disaggregator and insert results into the database. |
615
|
|
|
|
616
|
|
|
Parameters |
617
|
|
|
---------- |
618
|
|
|
scenario : str |
619
|
|
|
Name of the corresponding scenario. |
620
|
|
|
year : int |
621
|
|
|
The number of households per region is taken from this year. |
622
|
|
|
|
623
|
|
|
Returns |
624
|
|
|
------- |
625
|
|
|
None. |
626
|
|
|
|
627
|
|
|
""" |
628
|
|
|
targets = egon.data.config.datasets()["demandregio_household_demand"][ |
629
|
|
|
"targets" |
630
|
|
|
]["household_demand"] |
631
|
|
|
# get demands of private households per nuts and size from demandregio |
632
|
|
|
ec_hh = disagg_households_power(scenario, year) |
633
|
|
|
|
634
|
|
|
# Select demands for nuts3-regions in boundaries (needed for testmode) |
635
|
|
|
ec_hh = data_in_boundaries(ec_hh) |
636
|
|
|
|
637
|
|
|
# insert into database |
638
|
|
|
for hh_size in ec_hh.columns: |
639
|
|
|
df = pd.DataFrame(ec_hh[hh_size]) |
640
|
|
|
df["year"] = ( |
641
|
|
|
2023 if scenario == "status2023" else year |
642
|
|
|
) # TODO status2023 |
643
|
|
|
# adhoc fix until ffeopendata servers are up and population_year can be set |
644
|
|
|
|
645
|
|
|
df["scenario"] = scenario |
646
|
|
|
df["hh_size"] = hh_size |
647
|
|
|
df = df.rename({hh_size: "demand"}, axis="columns") |
648
|
|
|
df.to_sql( |
649
|
|
|
targets["table"], |
650
|
|
|
engine, |
651
|
|
|
schema=targets["schema"], |
652
|
|
|
if_exists="append", |
653
|
|
|
) |
654
|
|
|
|
655
|
|
|
# insert housholds demand timeseries |
656
|
|
|
try: |
657
|
|
|
hh_load_timeseries = ( |
658
|
|
|
temporal.disagg_temporal_power_housholds_slp( |
659
|
|
|
use_nuts3code=True, |
660
|
|
|
by="households", |
661
|
|
|
weight_by_income=False, |
662
|
|
|
year=year, |
663
|
|
|
) |
664
|
|
|
.resample("h") |
665
|
|
|
.sum() |
666
|
|
|
) |
667
|
|
|
hh_load_timeseries.rename( |
668
|
|
|
columns={"DEB16": "DEB1C", "DEB19": "DEB1D"}, inplace=True |
669
|
|
|
) |
670
|
|
|
except Exception as e: |
671
|
|
|
logger.warning( |
672
|
|
|
f"Couldnt get profiles from FFE, will use pickeld fallback! \n {e}" |
673
|
|
|
) |
674
|
|
|
hh_load_timeseries = pd.read_csv( |
675
|
|
|
"data_bundle_egon_data/demand_regio_backup/df_load_profiles.csv", |
676
|
|
|
index_col="time", |
677
|
|
|
) |
678
|
|
|
hh_load_timeseries.index = pd.to_datetime( |
679
|
|
|
hh_load_timeseries.index, format="%Y-%m-%d %H:%M:%S" |
680
|
|
|
) |
681
|
|
|
|
682
|
|
|
def change_year(dt, year): |
683
|
|
|
return dt.replace(year=year) |
684
|
|
|
|
685
|
|
|
year = 2023 if scenario == "status2023" else year # TODO status2023 |
686
|
|
|
hh_load_timeseries.index = hh_load_timeseries.index.map( |
687
|
|
|
lambda dt: change_year(dt, year) |
|
|
|
|
688
|
|
|
) |
689
|
|
|
|
690
|
|
|
if scenario == "status2023": |
691
|
|
|
hh_load_timeseries = hh_load_timeseries.shift(24 * 2) |
692
|
|
|
|
693
|
|
|
hh_load_timeseries.iloc[: 24 * 7] = hh_load_timeseries.iloc[ |
694
|
|
|
24 * 7 : 24 * 7 * 2 |
695
|
|
|
].values |
696
|
|
|
|
697
|
|
|
write_demandregio_hh_profiles_to_db(hh_load_timeseries) |
698
|
|
|
|
699
|
|
|
|
700
|
|
|
def insert_cts_ind(scenario, year, engine, target_values): |
701
|
|
|
"""Calculates electrical demands of CTS and industry using demandregio's |
702
|
|
|
disaggregator, adjusts them according to resulting values of NEP 2021 or |
703
|
|
|
JRC IDEES and insert results into the database. |
704
|
|
|
|
705
|
|
|
Parameters |
706
|
|
|
---------- |
707
|
|
|
scenario : str |
708
|
|
|
Name of the corresponing scenario. |
709
|
|
|
year : int |
710
|
|
|
The number of households per region is taken from this year. |
711
|
|
|
target_values : dict |
712
|
|
|
List of target values for each scenario and sector. |
713
|
|
|
|
714
|
|
|
Returns |
715
|
|
|
------- |
716
|
|
|
None. |
717
|
|
|
|
718
|
|
|
""" |
719
|
|
|
targets = egon.data.config.datasets()["demandregio_cts_ind_demand"][ |
720
|
|
|
"targets" |
721
|
|
|
] |
722
|
|
|
|
723
|
|
|
wz_table = pd.read_sql( |
724
|
|
|
"SELECT wz, sector FROM demand.egon_demandregio_wz", |
725
|
|
|
con=engine, |
726
|
|
|
index_col="wz", |
727
|
|
|
) |
728
|
|
|
|
729
|
|
|
# Workaround: Since the disaggregator does not work anymore, data from |
730
|
|
|
# previous runs is used for eGon2035 and eGon100RE |
731
|
|
|
if scenario == "eGon2035": |
732
|
|
|
file2035_path = ( |
733
|
|
|
Path(".") |
734
|
|
|
/ "data_bundle_egon_data" |
735
|
|
|
/ "demand_regio_backup" |
736
|
|
|
/ "egon_demandregio_cts_ind_egon2035.csv" |
737
|
|
|
) |
738
|
|
|
ec_cts_ind2 = pd.read_csv(file2035_path) |
739
|
|
|
ec_cts_ind2.to_sql( |
740
|
|
|
targets["cts_ind_demand"]["table"], |
741
|
|
|
engine, |
742
|
|
|
targets["cts_ind_demand"]["schema"], |
743
|
|
|
if_exists="append", |
744
|
|
|
index=False, |
745
|
|
|
) |
746
|
|
|
return |
747
|
|
|
|
748
|
|
|
if scenario == "eGon100RE": |
749
|
|
|
ec_cts_ind2 = pd.read_csv( |
750
|
|
|
"data_bundle_egon_data/demand_regio_backup/egon_demandregio_cts_ind.csv" |
751
|
|
|
) |
752
|
|
|
ec_cts_ind2["sector"] = ec_cts_ind2["wz"].map(wz_table["sector"]) |
753
|
|
|
factor_ind = target_values[scenario]["industry"] / ( |
754
|
|
|
ec_cts_ind2[ec_cts_ind2["sector"] == "industry"]["demand"].sum() |
755
|
|
|
/ 1000 |
756
|
|
|
) |
757
|
|
|
factor_cts = target_values[scenario]["CTS"] / ( |
758
|
|
|
ec_cts_ind2[ec_cts_ind2["sector"] == "CTS"]["demand"].sum() / 1000 |
759
|
|
|
) |
760
|
|
|
|
761
|
|
|
ec_cts_ind2["demand"] = ec_cts_ind2.apply( |
762
|
|
|
lambda x: ( |
763
|
|
|
x["demand"] * factor_ind |
|
|
|
|
764
|
|
|
if x["sector"] == "industry" |
765
|
|
|
else x["demand"] * factor_cts |
|
|
|
|
766
|
|
|
), |
767
|
|
|
axis=1, |
768
|
|
|
) |
769
|
|
|
|
770
|
|
|
ec_cts_ind2.drop(columns=["sector"], inplace=True) |
771
|
|
|
|
772
|
|
|
ec_cts_ind2.to_sql( |
773
|
|
|
targets["cts_ind_demand"]["table"], |
774
|
|
|
engine, |
775
|
|
|
targets["cts_ind_demand"]["schema"], |
776
|
|
|
if_exists="append", |
777
|
|
|
index=False, |
778
|
|
|
) |
779
|
|
|
return |
780
|
|
|
|
781
|
|
|
for sector in ["CTS", "industry"]: |
782
|
|
|
# get demands per nuts3 and wz of demandregio |
783
|
|
|
ec_cts_ind = spatial.disagg_CTS_industry( |
784
|
|
|
use_nuts3code=True, source="power", sector=sector, year=year |
785
|
|
|
).transpose() |
786
|
|
|
|
787
|
|
|
ec_cts_ind.index = ec_cts_ind.index.rename("nuts3") |
788
|
|
|
|
789
|
|
|
# exclude mobility sector from GHD |
790
|
|
|
ec_cts_ind = ec_cts_ind.drop(columns=49, errors="ignore") |
791
|
|
|
|
792
|
|
|
# scale values according to target_values |
793
|
|
|
if sector in target_values[scenario].keys(): |
794
|
|
|
ec_cts_ind *= ( |
795
|
|
|
target_values[scenario][sector] * 1e3 / ec_cts_ind.sum().sum() |
796
|
|
|
) |
797
|
|
|
|
798
|
|
|
# include new largescale consumers according to NEP 2021 |
799
|
|
|
if scenario == "eGon2035": |
800
|
|
|
ec_cts_ind = adjust_cts_ind_nep(ec_cts_ind, sector) |
801
|
|
|
# include new industrial demands due to sector coupling |
802
|
|
|
if (scenario == "eGon100RE") & (sector == "industry"): |
803
|
|
|
ec_cts_ind = adjust_ind_pes(ec_cts_ind) |
804
|
|
|
|
805
|
|
|
# Select demands for nuts3-regions in boundaries (needed for testmode) |
806
|
|
|
ec_cts_ind = data_in_boundaries(ec_cts_ind) |
807
|
|
|
|
808
|
|
|
# insert into database |
809
|
|
|
for wz in ec_cts_ind.columns: |
810
|
|
|
df = pd.DataFrame(ec_cts_ind[wz]) |
811
|
|
|
df["year"] = year |
812
|
|
|
df["wz"] = wz |
813
|
|
|
df["scenario"] = scenario |
814
|
|
|
df = df.rename({wz: "demand"}, axis="columns") |
815
|
|
|
df.index = df.index.rename("nuts3") |
816
|
|
|
df.to_sql( |
817
|
|
|
targets["cts_ind_demand"]["table"], |
818
|
|
|
engine, |
819
|
|
|
targets["cts_ind_demand"]["schema"], |
820
|
|
|
if_exists="append", |
821
|
|
|
) |
822
|
|
|
|
823
|
|
|
|
824
|
|
|
def insert_household_demand(): |
825
|
|
|
"""Insert electrical demands for households according to |
826
|
|
|
demandregio using its disaggregator-tool in MWh |
827
|
|
|
|
828
|
|
|
Returns |
829
|
|
|
------- |
830
|
|
|
None. |
831
|
|
|
|
832
|
|
|
""" |
833
|
|
|
targets = egon.data.config.datasets()["demandregio_household_demand"][ |
834
|
|
|
"targets" |
835
|
|
|
] |
836
|
|
|
engine = db.engine() |
837
|
|
|
|
838
|
|
|
scenarios = egon.data.config.settings()["egon-data"]["--scenarios"] |
839
|
|
|
|
840
|
|
|
scenarios.append("eGon2021") |
841
|
|
|
|
842
|
|
|
for t in targets: |
843
|
|
|
db.execute_sql( |
844
|
|
|
f"DELETE FROM {targets[t]['schema']}.{targets[t]['table']};" |
845
|
|
|
) |
846
|
|
|
|
847
|
|
|
for scn in scenarios: |
848
|
|
|
year = ( |
849
|
|
|
2023 |
850
|
|
|
if scn == "status2023" |
851
|
|
|
else scenario_parameters.global_settings(scn)["population_year"] |
852
|
|
|
) |
853
|
|
|
|
854
|
|
|
# Insert demands of private households |
855
|
|
|
insert_hh_demand(scn, year, engine) |
856
|
|
|
|
857
|
|
|
|
858
|
|
|
def insert_cts_ind_demands(): |
859
|
|
|
"""Insert electricity demands per nuts3-region in Germany according to |
860
|
|
|
demandregio using its disaggregator-tool in MWh |
861
|
|
|
|
862
|
|
|
Returns |
863
|
|
|
------- |
864
|
|
|
None. |
865
|
|
|
|
866
|
|
|
""" |
867
|
|
|
targets = egon.data.config.datasets()["demandregio_cts_ind_demand"][ |
868
|
|
|
"targets" |
869
|
|
|
] |
870
|
|
|
engine = db.engine() |
871
|
|
|
|
872
|
|
|
for t in targets: |
873
|
|
|
db.execute_sql( |
874
|
|
|
f"DELETE FROM {targets[t]['schema']}.{targets[t]['table']};" |
875
|
|
|
) |
876
|
|
|
|
877
|
|
|
insert_cts_ind_wz_definitions() |
878
|
|
|
|
879
|
|
|
scenarios = egon.data.config.settings()["egon-data"]["--scenarios"] |
880
|
|
|
|
881
|
|
|
scenarios.append("eGon2021") |
882
|
|
|
|
883
|
|
|
for scn in scenarios: |
884
|
|
|
year = scenario_parameters.global_settings(scn)["population_year"] |
885
|
|
|
|
886
|
|
|
if year > 2035: |
887
|
|
|
year = 2035 |
888
|
|
|
|
889
|
|
|
# target values per scenario in MWh |
890
|
|
|
target_values = { |
891
|
|
|
# according to NEP 2021 |
892
|
|
|
# new consumers will be added seperatly |
893
|
|
|
"eGon2035": {"CTS": 135300, "industry": 225400}, |
894
|
|
|
# CTS: reduce overall demand from demandregio (without traffic) |
895
|
|
|
# by share of heat according to JRC IDEES, data from 2011 |
896
|
|
|
# industry: no specific heat demand, use data from demandregio |
897
|
|
|
"eGon100RE": {"CTS": 146700, "industry": 382900}, |
898
|
|
|
# no adjustments for status quo |
899
|
|
|
"eGon2021": {}, |
900
|
|
|
"status2019": {}, |
901
|
|
|
"status2023": {"CTS": 121160 * 1e3, "industry": 200380 * 1e3}, |
902
|
|
|
} |
903
|
|
|
|
904
|
|
|
insert_cts_ind(scn, year, engine, target_values) |
905
|
|
|
|
906
|
|
|
# Insert load curves per wz |
907
|
|
|
timeseries_per_wz() |
908
|
|
|
|
909
|
|
|
|
910
|
|
|
def insert_society_data(): |
911
|
|
|
"""Insert population and number of households per nuts3-region in Germany |
912
|
|
|
according to demandregio using its disaggregator-tool |
913
|
|
|
|
914
|
|
|
Returns |
915
|
|
|
------- |
916
|
|
|
None. |
917
|
|
|
|
918
|
|
|
""" |
919
|
|
|
targets = egon.data.config.datasets()["demandregio_society"]["targets"] |
920
|
|
|
engine = db.engine() |
921
|
|
|
|
922
|
|
|
for t in targets: |
923
|
|
|
db.execute_sql( |
924
|
|
|
f"DELETE FROM {targets[t]['schema']}.{targets[t]['table']};" |
925
|
|
|
) |
926
|
|
|
|
927
|
|
|
target_years = np.append( |
928
|
|
|
get_sector_parameters("global").population_year.values, 2018 |
929
|
|
|
) |
930
|
|
|
|
931
|
|
|
for year in target_years: |
932
|
|
|
df_pop = pd.DataFrame(data.population(year=year)) |
933
|
|
|
df_pop["year"] = year |
934
|
|
|
df_pop = df_pop.rename({"value": "population"}, axis="columns") |
935
|
|
|
# Select data for nuts3-regions in boundaries (needed for testmode) |
936
|
|
|
df_pop = data_in_boundaries(df_pop) |
937
|
|
|
df_pop.to_sql( |
938
|
|
|
targets["population"]["table"], |
939
|
|
|
engine, |
940
|
|
|
schema=targets["population"]["schema"], |
941
|
|
|
if_exists="append", |
942
|
|
|
) |
943
|
|
|
|
944
|
|
|
for year in target_years: |
945
|
|
|
df_hh = pd.DataFrame(data.households_per_size(year=year)) |
946
|
|
|
# Select data for nuts3-regions in boundaries (needed for testmode) |
947
|
|
|
df_hh = data_in_boundaries(df_hh) |
948
|
|
|
for hh_size in df_hh.columns: |
949
|
|
|
df = pd.DataFrame(df_hh[hh_size]) |
950
|
|
|
df["year"] = year |
951
|
|
|
df["hh_size"] = hh_size |
952
|
|
|
df = df.rename({hh_size: "households"}, axis="columns") |
953
|
|
|
df.to_sql( |
954
|
|
|
targets["household"]["table"], |
955
|
|
|
engine, |
956
|
|
|
schema=targets["household"]["schema"], |
957
|
|
|
if_exists="append", |
958
|
|
|
) |
959
|
|
|
|
960
|
|
|
|
961
|
|
|
def insert_timeseries_per_wz(sector, year): |
962
|
|
|
"""Insert normalized electrical load time series for the selected sector |
963
|
|
|
|
964
|
|
|
Parameters |
965
|
|
|
---------- |
966
|
|
|
sector : str |
967
|
|
|
Name of the sector. ['CTS', 'industry'] |
968
|
|
|
year : int |
969
|
|
|
Selected weather year |
970
|
|
|
|
971
|
|
|
Returns |
972
|
|
|
------- |
973
|
|
|
None. |
974
|
|
|
|
975
|
|
|
""" |
976
|
|
|
targets = egon.data.config.datasets()["demandregio_cts_ind_demand"][ |
977
|
|
|
"targets" |
978
|
|
|
] |
979
|
|
|
|
980
|
|
|
if sector == "CTS": |
981
|
|
|
profiles = ( |
982
|
|
|
data.CTS_power_slp_generator("SH", year=year) |
983
|
|
|
.drop( |
984
|
|
|
[ |
985
|
|
|
"Day", |
986
|
|
|
"Hour", |
987
|
|
|
"DayOfYear", |
988
|
|
|
"WD", |
989
|
|
|
"SA", |
990
|
|
|
"SU", |
991
|
|
|
"WIZ", |
992
|
|
|
"SOZ", |
993
|
|
|
"UEZ", |
994
|
|
|
], |
995
|
|
|
axis="columns", |
996
|
|
|
) |
997
|
|
|
.resample("H") |
998
|
|
|
.sum() |
999
|
|
|
) |
1000
|
|
|
wz_slp = config.slp_branch_cts_power() |
1001
|
|
|
elif sector == "industry": |
1002
|
|
|
profiles = ( |
1003
|
|
|
data.shift_load_profile_generator(state="SH", year=year) |
1004
|
|
|
.resample("H") |
1005
|
|
|
.sum() |
1006
|
|
|
) |
1007
|
|
|
wz_slp = config.shift_profile_industry() |
1008
|
|
|
|
1009
|
|
|
else: |
1010
|
|
|
print(f"Sector {sector} is not valid.") |
1011
|
|
|
|
1012
|
|
|
df = pd.DataFrame( |
1013
|
|
|
index=wz_slp.keys(), columns=["slp", "load_curve", "year"] |
|
|
|
|
1014
|
|
|
) |
1015
|
|
|
|
1016
|
|
|
df.index.rename("wz", inplace=True) |
1017
|
|
|
|
1018
|
|
|
df.slp = wz_slp.values() |
1019
|
|
|
|
1020
|
|
|
df.year = year |
1021
|
|
|
|
1022
|
|
|
df.load_curve = profiles[df.slp].transpose().values.tolist() |
|
|
|
|
1023
|
|
|
|
1024
|
|
|
db.execute_sql( |
1025
|
|
|
f""" |
1026
|
|
|
DELETE FROM {targets['timeseries_cts_ind']['schema']}. |
1027
|
|
|
{targets['timeseries_cts_ind']['table']} |
1028
|
|
|
WHERE wz IN ( |
1029
|
|
|
SELECT wz FROM {targets['wz_definitions']['schema']}. |
1030
|
|
|
{targets['wz_definitions']['table']} |
1031
|
|
|
WHERE sector = '{sector}') |
1032
|
|
|
""" |
1033
|
|
|
) |
1034
|
|
|
|
1035
|
|
|
df.to_sql( |
1036
|
|
|
targets["timeseries_cts_ind"]["table"], |
1037
|
|
|
schema=targets["timeseries_cts_ind"]["schema"], |
1038
|
|
|
con=db.engine(), |
1039
|
|
|
if_exists="append", |
1040
|
|
|
) |
1041
|
|
|
|
1042
|
|
|
|
1043
|
|
|
def timeseries_per_wz(): |
1044
|
|
|
"""Calcultae and insert normalized timeseries per wz for cts and industry |
1045
|
|
|
|
1046
|
|
|
Returns |
1047
|
|
|
------- |
1048
|
|
|
None. |
1049
|
|
|
|
1050
|
|
|
""" |
1051
|
|
|
|
1052
|
|
|
scenarios = egon.data.config.settings()["egon-data"]["--scenarios"] |
1053
|
|
|
year_already_in_database = [] |
1054
|
|
|
for scn in scenarios: |
1055
|
|
|
year = int(scenario_parameters.global_settings(scn)["weather_year"]) |
1056
|
|
|
|
1057
|
|
|
for sector in ["CTS", "industry"]: |
1058
|
|
|
if not year in year_already_in_database: |
1059
|
|
|
insert_timeseries_per_wz(sector, int(year)) |
1060
|
|
|
year_already_in_database.append(year) |
1061
|
|
|
|
1062
|
|
|
|
1063
|
|
|
def get_cached_tables(): |
1064
|
|
|
"""Get cached demandregio tables and db-dump from former runs""" |
1065
|
|
|
data_config = egon.data.config.datasets() |
1066
|
|
|
for s in ["cache", "dbdump"]: |
1067
|
|
|
source_path = data_config["demandregio_workaround"]["source"][s][ |
1068
|
|
|
"path" |
1069
|
|
|
] |
1070
|
|
|
target_path = Path( |
1071
|
|
|
".", data_config["demandregio_workaround"]["targets"][s]["path"] |
1072
|
|
|
) |
1073
|
|
|
os.makedirs(target_path, exist_ok=True) |
1074
|
|
|
|
1075
|
|
|
with zipfile.ZipFile(source_path, "r") as zip_ref: |
1076
|
|
|
zip_ref.extractall(path=target_path) |
1077
|
|
|
|