| Conditions | 5 |
| Total Lines | 156 |
| Code Lines | 89 |
| Lines | 0 |
| Ratio | 0 % |
| Changes | 0 | ||
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
| 1 | import numpy as np |
||
| 7 | def inverse(lats1: 'list', lons1: 'list', lats2: 'list', lons2: 'list') -> 'dict': |
||
| 8 | """ |
||
| 9 | Inverse geodesic using Vincenty approach. |
||
| 10 | |||
| 11 | Calculate the great circle distance between two points |
||
| 12 | on the earth (specified in decimal degrees) |
||
| 13 | |||
| 14 | All args must be of equal length. |
||
| 15 | |||
| 16 | Ref: |
||
| 17 | https://www.movable-type.co.uk/scripts/latlong-vincenty.html |
||
| 18 | """ |
||
| 19 | |||
| 20 | eps = np.finfo(float).eps |
||
| 21 | |||
| 22 | lon1, lon2 = map(wrap180deg, [np.array(lons1), np.array(lons2)]) |
||
| 23 | lat1, lat2 = map(wrap90deg, [np.array(lats1), np.array(lats2)]) |
||
| 24 | lon1, lat1, lon2, lat2 = map(np.radians, [lon1, lat1, lon2, lat2]) |
||
| 25 | |||
| 26 | # WGS84 |
||
| 27 | a = 6378137.0 |
||
| 28 | b = 6356752.314245 |
||
| 29 | f = 1.0 / 298.257223563 |
||
| 30 | |||
| 31 | # L = difference in longitude |
||
| 32 | L = lon2 - lon1 |
||
| 33 | |||
| 34 | # U = reduced latitude, defined by tan U = (1-f)·tanφ. |
||
| 35 | tan_U1 = (1 - f) * np.tan(lat1) |
||
| 36 | cos_U1 = 1 / np.sqrt((1 + tan_U1 * tan_U1)) |
||
| 37 | sin_U1 = tan_U1 * cos_U1 |
||
| 38 | tan_U2 = (1 - f) * np.tan(lat2) |
||
| 39 | cos_U2 = 1 / np.sqrt((1 + tan_U2 * tan_U2)) |
||
| 40 | sin_U2 = tan_U2 * cos_U2 |
||
| 41 | |||
| 42 | # checks for antipodal points |
||
| 43 | antipodal = (np.abs(L) > np.pi / 2) | (np.abs(lat2 - lat1) > np.pi / 2) |
||
| 44 | |||
| 45 | # delta = difference in longitude on an auxiliary sphere |
||
| 46 | delta = L |
||
| 47 | |||
| 48 | # sigma = angular distance P₁ P₂ on the sphere |
||
| 49 | sigma = np.zeros(lat1.shape) |
||
| 50 | sigma[antipodal] = np.pi |
||
| 51 | |||
| 52 | cos_sigma = np.ones(lat1.shape) |
||
| 53 | cos_sigma[antipodal] = -1 |
||
| 54 | |||
| 55 | # sigmam = angular distance on the sphere from the equator |
||
| 56 | # to the midpoint of the line |
||
| 57 | # azi = azimuth of the geodesic at the equator |
||
| 58 | delta_prime = np.zeros(lat1.shape) |
||
| 59 | iterations = 0 |
||
| 60 | |||
| 61 | # init before loop to allow mask indexing |
||
| 62 | sin_Sq_sigma = np.zeros(lat1.shape) |
||
| 63 | sin_sigma = np.zeros(lat1.shape) |
||
| 64 | cos_sigma = np.zeros(lat1.shape) |
||
| 65 | sin_azi = np.zeros(lat1.shape) |
||
| 66 | cos_Sq_azi = np.ones(lat1.shape) |
||
| 67 | cos_2_sigma_m = np.ones(lat1.shape) |
||
| 68 | C = np.ones(lat1.shape) |
||
| 69 | |||
| 70 | # init mask |
||
| 71 | m = np.ones(lat1.shape, dtype=bool) |
||
| 72 | conv_mask = np.zeros(lat1.shape, dtype=bool) |
||
| 73 | |||
| 74 | while (np.abs(delta[m] - delta_prime[m]) > 1e-12).any(): |
||
| 75 | sin_delta = np.sin(delta) |
||
| 76 | cos_delta = np.cos(delta) |
||
| 77 | sin_Sq_sigma = (cos_U2 * sin_delta) * (cos_U2 * sin_delta) + ( |
||
| 78 | cos_U1 * sin_U2 - sin_U1 * cos_U2 * cos_delta |
||
| 79 | ) * (cos_U1 * sin_U2 - sin_U1 * cos_U2 * cos_delta) |
||
| 80 | |||
| 81 | # co-incident/antipodal points mask - exclude from the rest of the loop |
||
| 82 | # the value has to be about 1.e-4 experimentally |
||
| 83 | # otherwise there are issues with convergence for near antipodal points |
||
| 84 | m = (np.abs(sin_Sq_sigma) > eps) & (sin_Sq_sigma != np.nan) |
||
| 85 | |||
| 86 | sin_sigma[m] = np.sqrt(sin_Sq_sigma[m]) |
||
| 87 | cos_sigma[m] = sin_U1[m] * sin_U2[m] + cos_U1[m] * cos_U2[m] * cos_delta[m] |
||
| 88 | sigma[m] = np.arctan2(sin_sigma[m], cos_sigma[m]) |
||
| 89 | sin_azi[m] = cos_U1[m] * cos_U2[m] * sin_delta[m] / sin_sigma[m] |
||
| 90 | cos_Sq_azi[m] = 1 - sin_azi[m] * sin_azi[m] |
||
| 91 | |||
| 92 | # on equatorial line cos²azi = 0 |
||
| 93 | cos_2_sigma_m[m] = cos_sigma[m] - 2 * sin_U1[m] * sin_U2[m] / cos_Sq_azi[m] |
||
| 94 | cos_2_sigma_m[cos_Sq_azi == 0] = 0 |
||
| 95 | |||
| 96 | C[m] = f / 16 * cos_Sq_azi[m] * (4 + f * (4 - 3 * cos_Sq_azi[m])) |
||
| 97 | |||
| 98 | delta_prime = delta |
||
| 99 | delta = L + (1 - C) * f * sin_azi * ( |
||
| 100 | sigma |
||
| 101 | + (C * sin_sigma) |
||
| 102 | * (cos_2_sigma_m + C * cos_sigma * (-1 + 2 * cos_2_sigma_m * cos_2_sigma_m)) |
||
| 103 | ) |
||
| 104 | |||
| 105 | # Exceptions |
||
| 106 | iteration_check = np.abs(delta) |
||
| 107 | iteration_check[antipodal] = iteration_check[antipodal] - np.pi |
||
| 108 | if (iteration_check > np.pi).any(): |
||
| 109 | raise Exception('delta > np.pi') |
||
| 110 | |||
| 111 | iterations += 1 |
||
| 112 | if iterations >= 50: |
||
| 113 | conv_mask = np.abs(delta - delta_prime) > 1e-12 |
||
| 114 | break |
||
| 115 | |||
| 116 | uSq = cos_Sq_azi * (a * a - b * b) / (b * b) |
||
| 117 | A = 1 + uSq / 16384 * (4096 + uSq * (-768 + uSq * (320 - 175 * uSq))) |
||
| 118 | B = uSq / 1024 * (256 + uSq * (-128 + uSq * (74 - 47 * uSq))) |
||
| 119 | d_sigma = (B * sin_sigma) * ( |
||
| 120 | cos_2_sigma_m |
||
| 121 | + (B / 4) |
||
| 122 | * ( |
||
| 123 | cos_sigma * (-1 + 2 * cos_2_sigma_m * cos_2_sigma_m) |
||
| 124 | - (B / 6 * cos_2_sigma_m) |
||
| 125 | * (-3 + 4 * sin_sigma * sin_sigma) |
||
| 126 | * (-3 + 4 * cos_2_sigma_m * cos_2_sigma_m) |
||
| 127 | ) |
||
| 128 | ) |
||
| 129 | # length of the geodesic |
||
| 130 | s12 = b * A * (sigma - d_sigma) |
||
| 131 | |||
| 132 | # note special handling of exactly antipodal points where sin²sigma = 0 |
||
| 133 | # (due to discontinuity atan2(0, 0) = 0 but atan2(eps, 0) = np.pi/2 / 90°) |
||
| 134 | # in which case bearing is always meridional, due north (or due south!) |
||
| 135 | |||
| 136 | azi1 = np.arctan2(cos_U2 * sin_delta, cos_U1 * sin_U2 - sin_U1 * cos_U2 * cos_delta) |
||
| 137 | azi1[np.abs(sin_Sq_sigma) < eps] = 0 |
||
| 138 | |||
| 139 | azi2 = np.arctan2( |
||
| 140 | cos_U1 * sin_delta, -sin_U1 * cos_U2 + cos_U1 * sin_U2 * cos_delta |
||
| 141 | ) |
||
| 142 | azi2[np.abs(sin_Sq_sigma) < eps] = np.pi |
||
| 143 | |||
| 144 | azi1 = wrap360deg(azi1 * 180 / np.pi) |
||
| 145 | azi2 = wrap360deg(azi2 * 180 / np.pi) |
||
| 146 | |||
| 147 | # if distance is too small |
||
| 148 | mask = s12 < eps |
||
| 149 | azi1[mask] = None |
||
| 150 | azi2[mask] = None |
||
| 151 | |||
| 152 | # use geographiclib for points which didn't converge |
||
| 153 | if conv_mask[conv_mask].shape[0] > 0: |
||
| 154 | vInverse = np.vectorize(Geodesic.WGS84.Inverse) |
||
| 155 | _ps = vInverse( |
||
| 156 | lats1[conv_mask], lons1[conv_mask], lats2[conv_mask], lons2[conv_mask] |
||
| 157 | ) |
||
| 158 | s12[conv_mask] = [_p['s12'] for _p in _ps] |
||
| 159 | azi1[conv_mask] = [_p['azi1'] for _p in _ps] |
||
| 160 | azi2[conv_mask] = [_p['azi2'] for _p in _ps] |
||
| 161 | |||
| 162 | return {'s12': s12, 'azi1': azi1, 'azi2': azi2, 'iterations': iterations} |
||
| 163 | |||
| 260 |