| Total Complexity | 41 | 
| Total Lines | 661 | 
| Duplicated Lines | 17.7 % | 
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like solph.flows._shared often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | # -*- coding: utf-8 -*-  | 
            ||
| 2 | |||
| 3 | """Creating sets, variables, constraints and parts of the objective function  | 
            ||
| 4 | for Flow objects with investment but without nonconvex option.  | 
            ||
| 5 | |||
| 6 | SPDX-FileCopyrightText: Uwe Krien <[email protected]>  | 
            ||
| 7 | SPDX-FileCopyrightText: Simon Hilpert  | 
            ||
| 8 | SPDX-FileCopyrightText: Cord Kaldemeyer  | 
            ||
| 9 | SPDX-FileCopyrightText: Patrik Schönfeldt  | 
            ||
| 10 | SPDX-FileCopyrightText: Birgit Schachler  | 
            ||
| 11 | SPDX-FileCopyrightText: jnnr  | 
            ||
| 12 | SPDX-FileCopyrightText: jmloenneberga  | 
            ||
| 13 | SPDX-FileCopyrightText: Johannes Kochems  | 
            ||
| 14 | |||
| 15 | SPDX-License-Identifier: MIT  | 
            ||
| 16 | |||
| 17 | """  | 
            ||
| 18 | from pyomo.core import Binary  | 
            ||
| 19 | from pyomo.core import BuildAction  | 
            ||
| 20 | from pyomo.core import Constraint  | 
            ||
| 21 | from pyomo.core import Expression  | 
            ||
| 22 | from pyomo.core import NonNegativeReals  | 
            ||
| 23 | from pyomo.core import Set  | 
            ||
| 24 | from pyomo.core import Var  | 
            ||
| 25 | |||
| 26 | from oemof.solph._plumbing import valid_sequence  | 
            ||
| 27 | |||
| 28 | |||
| 29 | def sets_for_non_convex_flows(block, group):  | 
            ||
| 30 | r"""Creates all sets for non-convex flows.  | 
            ||
| 31 | |||
| 32 | MIN_FLOWS  | 
            ||
| 33 | A subset of set FIXED_CAPACITY_NONCONVEX_FLOWS with the attribute `min`  | 
            ||
| 34 | being not None in the first timestep.  | 
            ||
| 35 | ACTIVITYCOSTFLOWS  | 
            ||
| 36 | A subset of set FIXED_CAPACITY_NONCONVEX_FLOWS with the attribute  | 
            ||
| 37 | `activity_costs` being not None.  | 
            ||
| 38 | INACTIVITYCOSTFLOWS  | 
            ||
| 39 | A subset of set FIXED_CAPACITY_NONCONVEX_FLOWS with the attribute  | 
            ||
| 40 | `inactivity_costs` being not None.  | 
            ||
| 41 | STARTUPFLOWS  | 
            ||
| 42 | A subset of set FIXED_CAPACITY_NONCONVEX_FLOWS with the attribute  | 
            ||
| 43 | `maximum_startups` or `startup_costs`  | 
            ||
| 44 | being not None.  | 
            ||
| 45 | MAXSTARTUPFLOWS  | 
            ||
| 46 | A subset of set STARTUPFLOWS with the attribute  | 
            ||
| 47 | `maximum_startups` being not None.  | 
            ||
| 48 | SHUTDOWNFLOWS  | 
            ||
| 49 | A subset of set FIXED_CAPACITY_NONCONVEX_FLOWS with the attribute  | 
            ||
| 50 | `maximum_shutdowns` or `shutdown_costs`  | 
            ||
| 51 | being not None.  | 
            ||
| 52 | MAXSHUTDOWNFLOWS  | 
            ||
| 53 | A subset of set SHUTDOWNFLOWS with the attribute  | 
            ||
| 54 | `maximum_shutdowns` being not None.  | 
            ||
| 55 | MINUPTIMEFLOWS  | 
            ||
| 56 | A subset of set FIXED_CAPACITY_NONCONVEX_FLOWS with the attribute  | 
            ||
| 57 | `minimum_uptime` being > 0.  | 
            ||
| 58 | MINDOWNTIMEFLOWS  | 
            ||
| 59 | A subset of set FIXED_CAPACITY_NONCONVEX_FLOWS with the attribute  | 
            ||
| 60 | `minimum_downtime` being > 0.  | 
            ||
| 61 | POSITIVE_GRADIENT_FLOWS  | 
            ||
| 62 | A subset of set FIXED_CAPACITY_NONCONVEX_FLOWS with the attribute  | 
            ||
| 63 | `positive_gradient` being not None.  | 
            ||
| 64 | NEGATIVE_GRADIENT_FLOWS  | 
            ||
| 65 | A subset of set FIXED_CAPACITY_NONCONVEX_FLOWS with the attribute  | 
            ||
| 66 | `negative_gradient` being not None.  | 
            ||
| 67 | """  | 
            ||
| 68 | block.MIN_FLOWS = Set(  | 
            ||
| 69 | initialize=[(g[0], g[1]) for g in group if g[2].min[0] is not None]  | 
            ||
| 70 | )  | 
            ||
| 71 | block.STARTUPFLOWS = Set(  | 
            ||
| 72 | initialize=[  | 
            ||
| 73 | (g[0], g[1])  | 
            ||
| 74 | for g in group  | 
            ||
| 75 | if g[2].nonconvex.startup_costs[0] is not None  | 
            ||
| 76 | or g[2].nonconvex.maximum_startups is not None  | 
            ||
| 77 | ]  | 
            ||
| 78 | )  | 
            ||
| 79 | block.MAXSTARTUPFLOWS = Set(  | 
            ||
| 80 | initialize=[  | 
            ||
| 81 | (g[0], g[1])  | 
            ||
| 82 | for g in group  | 
            ||
| 83 | if g[2].nonconvex.maximum_startups is not None  | 
            ||
| 84 | ]  | 
            ||
| 85 | )  | 
            ||
| 86 | block.SHUTDOWNFLOWS = Set(  | 
            ||
| 87 | initialize=[  | 
            ||
| 88 | (g[0], g[1])  | 
            ||
| 89 | for g in group  | 
            ||
| 90 | if g[2].nonconvex.shutdown_costs[0] is not None  | 
            ||
| 91 | or g[2].nonconvex.maximum_shutdowns is not None  | 
            ||
| 92 | ]  | 
            ||
| 93 | )  | 
            ||
| 94 | block.MAXSHUTDOWNFLOWS = Set(  | 
            ||
| 95 | initialize=[  | 
            ||
| 96 | (g[0], g[1])  | 
            ||
| 97 | for g in group  | 
            ||
| 98 | if g[2].nonconvex.maximum_shutdowns is not None  | 
            ||
| 99 | ]  | 
            ||
| 100 | )  | 
            ||
| 101 | block.MINUPTIMEFLOWS = Set(  | 
            ||
| 102 | initialize=[  | 
            ||
| 103 | (g[0], g[1])  | 
            ||
| 104 | for g in group  | 
            ||
| 105 | if g[2].nonconvex.minimum_uptime.max() > 0  | 
            ||
| 106 | ]  | 
            ||
| 107 | )  | 
            ||
| 108 | block.MINDOWNTIMEFLOWS = Set(  | 
            ||
| 109 | initialize=[  | 
            ||
| 110 | (g[0], g[1])  | 
            ||
| 111 | for g in group  | 
            ||
| 112 | if g[2].nonconvex.minimum_downtime.max() > 0  | 
            ||
| 113 | ]  | 
            ||
| 114 | )  | 
            ||
| 115 | block.NEGATIVE_GRADIENT_FLOWS = Set(  | 
            ||
| 116 | initialize=[  | 
            ||
| 117 | (g[0], g[1])  | 
            ||
| 118 | for g in group  | 
            ||
| 119 | if g[2].nonconvex.negative_gradient_limit[0] is not None  | 
            ||
| 120 | ]  | 
            ||
| 121 | )  | 
            ||
| 122 | block.POSITIVE_GRADIENT_FLOWS = Set(  | 
            ||
| 123 | initialize=[  | 
            ||
| 124 | (g[0], g[1])  | 
            ||
| 125 | for g in group  | 
            ||
| 126 | if g[2].nonconvex.positive_gradient_limit[0] is not None  | 
            ||
| 127 | ]  | 
            ||
| 128 | )  | 
            ||
| 129 | block.ACTIVITYCOSTFLOWS = Set(  | 
            ||
| 130 | initialize=[  | 
            ||
| 131 | (g[0], g[1])  | 
            ||
| 132 | for g in group  | 
            ||
| 133 | if g[2].nonconvex.activity_costs[0] is not None  | 
            ||
| 134 | ]  | 
            ||
| 135 | )  | 
            ||
| 136 | |||
| 137 | block.INACTIVITYCOSTFLOWS = Set(  | 
            ||
| 138 | initialize=[  | 
            ||
| 139 | (g[0], g[1])  | 
            ||
| 140 | for g in group  | 
            ||
| 141 | if g[2].nonconvex.inactivity_costs[0] is not None  | 
            ||
| 142 | ]  | 
            ||
| 143 | )  | 
            ||
| 144 | |||
| 145 | |||
| 146 | def variables_for_non_convex_flows(block):  | 
            ||
| 147 | r"""  | 
            ||
| 148 |     :math:`Y_{startup}` (binary) `NonConvexFlowBlock.startup`: | 
            ||
| 149 | Variable indicating startup of flow (component) indexed by  | 
            ||
| 150 | STARTUPFLOWS  | 
            ||
| 151 | |||
| 152 |     :math:`Y_{shutdown}` (binary) `NonConvexFlowBlock.shutdown`: | 
            ||
| 153 | Variable indicating shutdown of flow (component) indexed by  | 
            ||
| 154 | SHUTDOWNFLOWS  | 
            ||
| 155 | |||
| 156 |     :math:`\dot{P}_{up}` (continuous) | 
            ||
| 157 | `NonConvexFlowBlock.positive_gradient`:  | 
            ||
| 158 | Variable indicating the positive gradient, i.e. the load increase  | 
            ||
| 159 | between two consecutive timesteps, indexed by  | 
            ||
| 160 | POSITIVE_GRADIENT_FLOWS  | 
            ||
| 161 | |||
| 162 |     :math:`\dot{P}_{down}` (continuous) | 
            ||
| 163 | `NonConvexFlowBlock.negative_gradient`:  | 
            ||
| 164 | Variable indicating the negative gradient, i.e. the load decrease  | 
            ||
| 165 | between two consecutive timesteps, indexed by  | 
            ||
| 166 | NEGATIVE_GRADIENT_FLOWS  | 
            ||
| 167 | """  | 
            ||
| 168 | m = block.parent_block()  | 
            ||
| 169 | |||
| 170 | if block.STARTUPFLOWS:  | 
            ||
| 171 | block.startup = Var(block.STARTUPFLOWS, m.TIMESTEPS, within=Binary)  | 
            ||
| 172 | |||
| 173 | if block.SHUTDOWNFLOWS:  | 
            ||
| 174 | block.shutdown = Var(block.SHUTDOWNFLOWS, m.TIMESTEPS, within=Binary)  | 
            ||
| 175 | |||
| 176 | if block.POSITIVE_GRADIENT_FLOWS:  | 
            ||
| 177 | block.positive_gradient = Var(  | 
            ||
| 178 | block.POSITIVE_GRADIENT_FLOWS,  | 
            ||
| 179 | m.TIMESTEPS,  | 
            ||
| 180 | within=NonNegativeReals,  | 
            ||
| 181 | )  | 
            ||
| 182 | |||
| 183 | if block.NEGATIVE_GRADIENT_FLOWS:  | 
            ||
| 184 | block.negative_gradient = Var(  | 
            ||
| 185 | block.NEGATIVE_GRADIENT_FLOWS,  | 
            ||
| 186 | m.TIMESTEPS,  | 
            ||
| 187 | within=NonNegativeReals,  | 
            ||
| 188 | )  | 
            ||
| 189 | |||
| 190 | |||
| 191 | def _min_downtime_constraint(block):  | 
            ||
| 192 | r"""  | 
            ||
| 193 | .. math::  | 
            ||
| 194 |         (Y_{status}(t-1) - Y_{status}(t)) \ | 
            ||
| 195 |         \cdot t_{down,minimum} \\ | 
            ||
| 196 |         \leq t_{down,minimum} \ | 
            ||
| 197 |         - \sum_{n=0}^{t_{down,minimum}-1} Y_{status}(t+n) \\ | 
            ||
| 198 |         \forall t \in \textrm{TIMESTEPS} | \\ | 
            ||
| 199 |         t \neq \{0..t_{down,minimum}\} \cup \ | 
            ||
| 200 |         \{t\_max-t_{down,minimum}..t\_max\} , \\ | 
            ||
| 201 |         \forall (i,o) \in \textrm{MINDOWNTIMEFLOWS}. | 
            ||
| 202 | \\ \\  | 
            ||
| 203 |         Y_{status}(t) = Y_{status,0} \\ | 
            ||
| 204 |         \forall t \in \textrm{TIMESTEPS} | \\ | 
            ||
| 205 |         t = \{0..t_{down,minimum}\} \cup \ | 
            ||
| 206 |         \{t\_max-t_{down,minimum}..t\_max\} , \\ | 
            ||
| 207 |         \forall (i,o) \in \textrm{MINDOWNTIMEFLOWS}. | 
            ||
| 208 | """  | 
            ||
| 209 | m = block.parent_block()  | 
            ||
| 210 | |||
| 211 | def min_downtime_rule(_, i, o, t):  | 
            ||
| 212 | """  | 
            ||
| 213 | Rule definition for min-downtime constraints of non-convex flows.  | 
            ||
| 214 | """  | 
            ||
| 215 | if (  | 
            ||
| 216 | m.flows[i, o].nonconvex.first_flexible_timestep  | 
            ||
| 217 | < t  | 
            ||
| 218 | < m.TIMESTEPS.at(-1)  | 
            ||
| 219 | ):  | 
            ||
| 220 | # We have a 2D matrix of constraints,  | 
            ||
| 221 | # so testing is easier then just calling the rule for valid t.  | 
            ||
| 222 | |||
| 223 | expr = 0  | 
            ||
| 224 | expr += (  | 
            ||
| 225 | block.status[i, o, t - 1] - block.status[i, o, t]  | 
            ||
| 226 | ) * m.flows[i, o].nonconvex.minimum_downtime[t]  | 
            ||
| 227 | expr += -m.flows[i, o].nonconvex.minimum_downtime[t]  | 
            ||
| 228 | expr += sum(  | 
            ||
| 229 | block.status[i, o, d]  | 
            ||
| 230 | for d in range(  | 
            ||
| 231 | t,  | 
            ||
| 232 | min(  | 
            ||
| 233 | t + m.flows[i, o].nonconvex.minimum_downtime[t],  | 
            ||
| 234 | len(m.TIMESTEPS),  | 
            ||
| 235 | ),  | 
            ||
| 236 | )  | 
            ||
| 237 | )  | 
            ||
| 238 | return expr <= 0  | 
            ||
| 239 | else:  | 
            ||
| 240 | return Constraint.Skip  | 
            ||
| 241 | |||
| 242 | return Constraint(  | 
            ||
| 243 | block.MINDOWNTIMEFLOWS, m.TIMESTEPS, rule=min_downtime_rule  | 
            ||
| 244 | )  | 
            ||
| 245 | |||
| 246 | |||
| 247 | def _min_uptime_constraint(block):  | 
            ||
| 248 | r"""  | 
            ||
| 249 | .. math::  | 
            ||
| 250 |         (Y_{status}(t)-Y_{status}(t-1)) \cdot t_{up,minimum} \\ | 
            ||
| 251 |         \leq \sum_{n=0}^{t_{up,minimum}-1} Y_{status}(t+n) \\ | 
            ||
| 252 |         \forall t \in \textrm{TIMESTEPS} | \\ | 
            ||
| 253 |         t \neq \{0..t_{up,minimum}\} \cup \ | 
            ||
| 254 |         \{t\_max-t_{up,minimum}..t\_max\} , \\ | 
            ||
| 255 |         \forall (i,o) \in \textrm{MINUPTIMEFLOWS}. | 
            ||
| 256 | \\ \\  | 
            ||
| 257 |         Y_{status}(t) = Y_{status,0} \\ | 
            ||
| 258 |         \forall t \in \textrm{TIMESTEPS} | \\ | 
            ||
| 259 |         t = \{0..t_{up,minimum}\} \cup \ | 
            ||
| 260 |         \{t\_max-t_{up,minimum}..t\_max\} , \\ | 
            ||
| 261 |         \forall (i,o) \in \textrm{MINUPTIMEFLOWS}. | 
            ||
| 262 | """  | 
            ||
| 263 | m = block.parent_block()  | 
            ||
| 264 | |||
| 265 | def _min_uptime_rule(_, i, o, t):  | 
            ||
| 266 | """  | 
            ||
| 267 | Rule definition for min-uptime constraints of non-convex flows.  | 
            ||
| 268 | """  | 
            ||
| 269 | if (  | 
            ||
| 270 | m.flows[i, o].nonconvex.first_flexible_timestep  | 
            ||
| 271 | < t  | 
            ||
| 272 | < m.TIMESTEPS.at(-1)  | 
            ||
| 273 | ):  | 
            ||
| 274 | # We have a 2D matrix of constraints,  | 
            ||
| 275 | # so testing is easier then just calling the rule for valid t.  | 
            ||
| 276 | expr = 0  | 
            ||
| 277 | expr += (  | 
            ||
| 278 | block.status[i, o, t] - block.status[i, o, t - 1]  | 
            ||
| 279 | ) * m.flows[i, o].nonconvex.minimum_uptime[t]  | 
            ||
| 280 | expr += -sum(  | 
            ||
| 281 | block.status[i, o, u]  | 
            ||
| 282 | for u in range(  | 
            ||
| 283 | t,  | 
            ||
| 284 | min(  | 
            ||
| 285 | t + m.flows[i, o].nonconvex.minimum_uptime[t],  | 
            ||
| 286 | len(m.TIMESTEPS),  | 
            ||
| 287 | ),  | 
            ||
| 288 | )  | 
            ||
| 289 | )  | 
            ||
| 290 | return expr <= 0  | 
            ||
| 291 | else:  | 
            ||
| 292 | return Constraint.Skip  | 
            ||
| 293 | |||
| 294 | return Constraint(block.MINUPTIMEFLOWS, m.TIMESTEPS, rule=_min_uptime_rule)  | 
            ||
| 295 | |||
| 296 | |||
| 297 | View Code Duplication | def _shutdown_constraint(block):  | 
            |
| 
                                                                                                    
                        
                         | 
                |||
| 298 | r"""  | 
            ||
| 299 | .. math::  | 
            ||
| 300 |         Y_{shutdown}(t) \geq Y_{status}(t-1) - Y_{status}(t) \\ | 
            ||
| 301 |         \forall t \in \textrm{TIMESTEPS}, \\ | 
            ||
| 302 |         \forall \textrm{SHUTDOWNFLOWS}. | 
            ||
| 303 | """  | 
            ||
| 304 | m = block.parent_block()  | 
            ||
| 305 | |||
| 306 | def _shutdown_rule(_, i, o, t):  | 
            ||
| 307 | """Rule definition for shutdown constraints of non-convex flows."""  | 
            ||
| 308 | if t > m.TIMESTEPS.at(1):  | 
            ||
| 309 | expr = (  | 
            ||
| 310 | block.shutdown[i, o, t]  | 
            ||
| 311 | >= block.status[i, o, t - 1] - block.status[i, o, t]  | 
            ||
| 312 | )  | 
            ||
| 313 | else:  | 
            ||
| 314 | expr = (  | 
            ||
| 315 | block.shutdown[i, o, t]  | 
            ||
| 316 | >= m.flows[i, o].nonconvex.initial_status  | 
            ||
| 317 | - block.status[i, o, t]  | 
            ||
| 318 | )  | 
            ||
| 319 | return expr  | 
            ||
| 320 | |||
| 321 | return Constraint(block.SHUTDOWNFLOWS, m.TIMESTEPS, rule=_shutdown_rule)  | 
            ||
| 322 | |||
| 323 | |||
| 324 | def _startup_constraint(block):  | 
            ||
| 325 | r"""  | 
            ||
| 326 | .. math::  | 
            ||
| 327 |         Y_{startup}(t) \geq Y_{status}(t) - Y_{status}(t-1) \\ | 
            ||
| 328 |         \forall t \in \textrm{TIMESTEPS}, \\ | 
            ||
| 329 |         \forall \textrm{STARTUPFLOWS}. | 
            ||
| 330 | """  | 
            ||
| 331 | m = block.parent_block()  | 
            ||
| 332 | |||
| 333 | View Code Duplication | def _startup_rule(_, i, o, t):  | 
            |
| 334 | """Rule definition for startup constraint of nonconvex flows."""  | 
            ||
| 335 | if t > m.TIMESTEPS.at(1):  | 
            ||
| 336 | expr = (  | 
            ||
| 337 | block.startup[i, o, t]  | 
            ||
| 338 | >= block.status[i, o, t] - block.status[i, o, t - 1]  | 
            ||
| 339 | )  | 
            ||
| 340 | else:  | 
            ||
| 341 | expr = (  | 
            ||
| 342 | block.startup[i, o, t]  | 
            ||
| 343 | >= block.status[i, o, t]  | 
            ||
| 344 | - m.flows[i, o].nonconvex.initial_status  | 
            ||
| 345 | )  | 
            ||
| 346 | return expr  | 
            ||
| 347 | |||
| 348 | return Constraint(block.STARTUPFLOWS, m.TIMESTEPS, rule=_startup_rule)  | 
            ||
| 349 | |||
| 350 | |||
| 351 | def _max_startup_constraint(block):  | 
            ||
| 352 | r"""  | 
            ||
| 353 | .. math::  | 
            ||
| 354 |         \sum_{t \in \textrm{TIMESTEPS}} Y_{startup}(t) \leq \ | 
            ||
| 355 |             N_{start}(i,o)\\ | 
            ||
| 356 |         \forall (i,o) \in \textrm{MAXSTARTUPFLOWS}. | 
            ||
| 357 | """  | 
            ||
| 358 | m = block.parent_block()  | 
            ||
| 359 | |||
| 360 | def _max_startup_rule(_, i, o):  | 
            ||
| 361 | """Rule definition for maximum number of start-ups."""  | 
            ||
| 362 | lhs = sum(block.startup[i, o, t] for t in m.TIMESTEPS)  | 
            ||
| 363 | return lhs <= m.flows[i, o].nonconvex.maximum_startups  | 
            ||
| 364 | |||
| 365 | return Constraint(block.MAXSTARTUPFLOWS, rule=_max_startup_rule)  | 
            ||
| 366 | |||
| 367 | |||
| 368 | def _max_shutdown_constraint(block):  | 
            ||
| 369 | r"""  | 
            ||
| 370 | .. math::  | 
            ||
| 371 |         \sum_{t \in \textrm{TIMESTEPS}} Y_{startup}(t) \leq \ | 
            ||
| 372 |             N_{shutdown}(i,o)\\ | 
            ||
| 373 |         \forall (i,o) \in \textrm{MAXSHUTDOWNFLOWS}. | 
            ||
| 374 | """  | 
            ||
| 375 | m = block.parent_block()  | 
            ||
| 376 | |||
| 377 | def _max_shutdown_rule(_, i, o):  | 
            ||
| 378 | """Rule definition for maximum number of start-ups."""  | 
            ||
| 379 | lhs = sum(block.shutdown[i, o, t] for t in m.TIMESTEPS)  | 
            ||
| 380 | return lhs <= m.flows[i, o].nonconvex.maximum_shutdowns  | 
            ||
| 381 | |||
| 382 | return Constraint(block.MAXSHUTDOWNFLOWS, rule=_max_shutdown_rule)  | 
            ||
| 383 | |||
| 384 | |||
| 385 | def shared_constraints_for_non_convex_flows(block):  | 
            ||
| 386 | r"""  | 
            ||
| 387 | positive_gradient_constraint  | 
            ||
| 388 | .. math::  | 
            ||
| 389 | |||
| 390 |             P(t) \cdot Y_{status}(t) | 
            ||
| 391 |             - P(t-1) \cdot Y_{status}(t-1)  \leq \ | 
            ||
| 392 |             \dot{P}_{up}(t), \\ | 
            ||
| 393 |             \forall t \in \textrm{TIMESTEPS}. | 
            ||
| 394 | |||
| 395 | negative_gradient_constraint  | 
            ||
| 396 | .. math::  | 
            ||
| 397 |             P(t-1) \cdot Y_{status}(t-1) | 
            ||
| 398 |             - P(t) \cdot Y_{status}(t) \leq \ | 
            ||
| 399 |             \dot{P}_{down}(t), \\ | 
            ||
| 400 |             \forall t \in \textrm{TIMESTEPS}. | 
            ||
| 401 | |||
| 402 | Also creates:  | 
            ||
| 403 | |||
| 404 | * :py:func:`startup_constraint`  | 
            ||
| 405 | * :py:func:`max_startup_constraint`  | 
            ||
| 406 | * :py:func:`shutdown_constraint`  | 
            ||
| 407 | * :py:func:`max_shutdown_constraint`  | 
            ||
| 408 | * :py:func:`min_uptime_constraint`  | 
            ||
| 409 | * :py:func:`min_downtime_constraint`  | 
            ||
| 410 | """  | 
            ||
| 411 | m = block.parent_block()  | 
            ||
| 412 | |||
| 413 | block.startup_constr = _startup_constraint(block)  | 
            ||
| 414 | block.max_startup_constr = _max_startup_constraint(block)  | 
            ||
| 415 | block.shutdown_constr = _shutdown_constraint(block)  | 
            ||
| 416 | block.max_shutdown_constr = _max_shutdown_constraint(block)  | 
            ||
| 417 | block.min_uptime_constr = _min_uptime_constraint(block)  | 
            ||
| 418 | block.min_downtime_constr = _min_downtime_constraint(block)  | 
            ||
| 419 | |||
| 420 | def _positive_gradient_flow_constraint(_):  | 
            ||
| 421 | r"""Rule definition for positive gradient constraint."""  | 
            ||
| 422 | for i, o in block.POSITIVE_GRADIENT_FLOWS:  | 
            ||
| 423 | for index in range(1, len(m.TIMEINDEX) + 1):  | 
            ||
| 424 | if m.TIMEINDEX[index][1] > 0:  | 
            ||
| 425 | lhs = (  | 
            ||
| 426 | m.flow[  | 
            ||
| 427 | i,  | 
            ||
| 428 | o,  | 
            ||
| 429 | m.TIMESTEPS[index],  | 
            ||
| 430 | ]  | 
            ||
| 431 | * block.status[i, o, m.TIMESTEPS[index]]  | 
            ||
| 432 | - m.flow[i, o, m.TIMESTEPS[index - 1]]  | 
            ||
| 433 | * block.status[i, o, m.TIMESTEPS[index - 1]]  | 
            ||
| 434 | )  | 
            ||
| 435 | rhs = block.positive_gradient[i, o, m.TIMEINDEX[index][1]]  | 
            ||
| 436 | block.positive_gradient_constr.add(  | 
            ||
| 437 | (  | 
            ||
| 438 | i,  | 
            ||
| 439 | o,  | 
            ||
| 440 | m.TIMESTEPS[index],  | 
            ||
| 441 | ),  | 
            ||
| 442 | lhs <= rhs,  | 
            ||
| 443 | )  | 
            ||
| 444 | else:  | 
            ||
| 445 | lhs = block.positive_gradient[i, o, 0]  | 
            ||
| 446 | rhs = 0  | 
            ||
| 447 | block.positive_gradient_constr.add(  | 
            ||
| 448 | (  | 
            ||
| 449 | i,  | 
            ||
| 450 | o,  | 
            ||
| 451 | m.TIMESTEPS[index],  | 
            ||
| 452 | ),  | 
            ||
| 453 | lhs == rhs,  | 
            ||
| 454 | )  | 
            ||
| 455 | |||
| 456 | block.positive_gradient_constr = Constraint(  | 
            ||
| 457 | block.POSITIVE_GRADIENT_FLOWS, m.TIMESTEPS, noruleinit=True  | 
            ||
| 458 | )  | 
            ||
| 459 | block.positive_gradient_build = BuildAction(  | 
            ||
| 460 | rule=_positive_gradient_flow_constraint  | 
            ||
| 461 | )  | 
            ||
| 462 | |||
| 463 | def _negative_gradient_flow_constraint(_):  | 
            ||
| 464 | r"""Rule definition for negative gradient constraint."""  | 
            ||
| 465 | for i, o in block.NEGATIVE_GRADIENT_FLOWS:  | 
            ||
| 466 | for index in range(1, len(m.TIMESTEPS) + 1):  | 
            ||
| 467 | if m.TIMESTEPS[index] > 0:  | 
            ||
| 468 | lhs = (  | 
            ||
| 469 | m.flow[  | 
            ||
| 470 | i,  | 
            ||
| 471 | o,  | 
            ||
| 472 | m.TIMESTEPS[index - 1],  | 
            ||
| 473 | ]  | 
            ||
| 474 | * block.status[i, o, m.TIMESTEPS[index - 1]]  | 
            ||
| 475 | - m.flow[  | 
            ||
| 476 | i,  | 
            ||
| 477 | o,  | 
            ||
| 478 | m.TIMESTEPS[index],  | 
            ||
| 479 | ]  | 
            ||
| 480 | * block.status[i, o, m.TIMESTEPS[index]]  | 
            ||
| 481 | )  | 
            ||
| 482 | rhs = block.negative_gradient[i, o, m.TIMESTEPS[index]]  | 
            ||
| 483 | block.negative_gradient_constr.add(  | 
            ||
| 484 | (  | 
            ||
| 485 | i,  | 
            ||
| 486 | o,  | 
            ||
| 487 | m.TIMESTEPS[index],  | 
            ||
| 488 | ),  | 
            ||
| 489 | lhs <= rhs,  | 
            ||
| 490 | )  | 
            ||
| 491 | else:  | 
            ||
| 492 | lhs = block.negative_gradient[i, o, 0]  | 
            ||
| 493 | rhs = 0  | 
            ||
| 494 | block.negative_gradient_constr.add(  | 
            ||
| 495 | (  | 
            ||
| 496 | i,  | 
            ||
| 497 | o,  | 
            ||
| 498 | m.TIMESTEPS[index],  | 
            ||
| 499 | ),  | 
            ||
| 500 | lhs == rhs,  | 
            ||
| 501 | )  | 
            ||
| 502 | |||
| 503 | block.negative_gradient_constr = Constraint(  | 
            ||
| 504 | block.NEGATIVE_GRADIENT_FLOWS, m.TIMESTEPS, noruleinit=True  | 
            ||
| 505 | )  | 
            ||
| 506 | block.negative_gradient_build = BuildAction(  | 
            ||
| 507 | rule=_negative_gradient_flow_constraint  | 
            ||
| 508 | )  | 
            ||
| 509 | |||
| 510 | |||
| 511 | def maximum_flow_constraint(block):  | 
            ||
| 512 | r"""  | 
            ||
| 513 | .. math::  | 
            ||
| 514 |         P(t) \leq max(i, o, t) \cdot P_{nom} \ | 
            ||
| 515 | \cdot status(t), \\  | 
            ||
| 516 |         \forall t \in \textrm{TIMESTEPS}, \\ | 
            ||
| 517 |         \forall (i, o) \in \textrm{FIXED_CAPACITY_NONCONVEX_FLOWS}. | 
            ||
| 518 | """  | 
            ||
| 519 | m = block.parent_block()  | 
            ||
| 520 | |||
| 521 | def _maximum_flow_rule(_, i, o, t):  | 
            ||
| 522 | """Rule definition for MILP maximum flow constraints."""  | 
            ||
| 523 | expr = (  | 
            ||
| 524 | block.status_nominal[i, o, t] * m.flows[i, o].max[t]  | 
            ||
| 525 | >= m.flow[i, o, t]  | 
            ||
| 526 | )  | 
            ||
| 527 | return expr  | 
            ||
| 528 | |||
| 529 | return Constraint(block.MIN_FLOWS, m.TIMESTEPS, rule=_maximum_flow_rule)  | 
            ||
| 530 | |||
| 531 | |||
| 532 | def minimum_flow_constraint(block):  | 
            ||
| 533 | r"""  | 
            ||
| 534 | .. math::  | 
            ||
| 535 |         P(t) \geq min(i, o, t) \cdot P_{nom} \ | 
            ||
| 536 |             \cdot Y_{status}(t), \\ | 
            ||
| 537 |         \forall (i, o) \in \textrm{FIXED_CAPACITY_NONCONVEX_FLOWS}, \\ | 
            ||
| 538 |         \forall t \in \textrm{TIMESTEPS}. | 
            ||
| 539 | """  | 
            ||
| 540 | m = block.parent_block()  | 
            ||
| 541 | |||
| 542 | def _minimum_flow_rule(_, i, o, t):  | 
            ||
| 543 | """Rule definition for MILP minimum flow constraints."""  | 
            ||
| 544 | expr = (  | 
            ||
| 545 | block.status_nominal[i, o, t] * m.flows[i, o].min[t]  | 
            ||
| 546 | <= m.flow[i, o, t]  | 
            ||
| 547 | )  | 
            ||
| 548 | return expr  | 
            ||
| 549 | |||
| 550 | return Constraint(block.MIN_FLOWS, m.TIMESTEPS, rule=_minimum_flow_rule)  | 
            ||
| 551 | |||
| 552 | |||
| 553 | def startup_costs(block):  | 
            ||
| 554 | r"""  | 
            ||
| 555 | .. math::  | 
            ||
| 556 |         \sum_{i, o \in STARTUPFLOWS} \sum_t  Y_{startup}(t) \ | 
            ||
| 557 |         \cdot c_{startup} | 
            ||
| 558 | """  | 
            ||
| 559 | startup_costs = 0  | 
            ||
| 560 | |||
| 561 | if block.STARTUPFLOWS:  | 
            ||
| 562 | m = block.parent_block()  | 
            ||
| 563 | |||
| 564 | for i, o in block.STARTUPFLOWS:  | 
            ||
| 565 | if valid_sequence(  | 
            ||
| 566 | m.flows[i, o].nonconvex.startup_costs, len(m.TIMESTEPS)  | 
            ||
| 567 | ):  | 
            ||
| 568 | startup_costs += sum(  | 
            ||
| 569 | block.startup[i, o, t]  | 
            ||
| 570 | * m.flows[i, o].nonconvex.startup_costs[t]  | 
            ||
| 571 | for t in m.TIMESTEPS  | 
            ||
| 572 | )  | 
            ||
| 573 | |||
| 574 | block.startup_costs = Expression(expr=startup_costs)  | 
            ||
| 575 | |||
| 576 | return startup_costs  | 
            ||
| 577 | |||
| 578 | |||
| 579 | View Code Duplication | def shutdown_costs(block):  | 
            |
| 580 | r"""  | 
            ||
| 581 | .. math::  | 
            ||
| 582 |         \sum_{SHUTDOWNFLOWS} \sum_t Y_{shutdown}(t) \ | 
            ||
| 583 |         \cdot c_{shutdown} | 
            ||
| 584 | """  | 
            ||
| 585 | shutdown_costs = 0  | 
            ||
| 586 | |||
| 587 | if block.SHUTDOWNFLOWS:  | 
            ||
| 588 | m = block.parent_block()  | 
            ||
| 589 | |||
| 590 | for i, o in block.SHUTDOWNFLOWS:  | 
            ||
| 591 | if valid_sequence(  | 
            ||
| 592 | m.flows[i, o].nonconvex.shutdown_costs,  | 
            ||
| 593 | len(m.TIMESTEPS),  | 
            ||
| 594 | ):  | 
            ||
| 595 | shutdown_costs += sum(  | 
            ||
| 596 | block.shutdown[i, o, t]  | 
            ||
| 597 | * m.flows[i, o].nonconvex.shutdown_costs[t]  | 
            ||
| 598 | * m.tsam_weighting[t]  | 
            ||
| 599 | for t in m.TIMESTEPS  | 
            ||
| 600 | )  | 
            ||
| 601 | |||
| 602 | block.shutdown_costs = Expression(expr=shutdown_costs)  | 
            ||
| 603 | |||
| 604 | return shutdown_costs  | 
            ||
| 605 | |||
| 606 | |||
| 607 | View Code Duplication | def activity_costs(block):  | 
            |
| 608 | r"""  | 
            ||
| 609 | .. math::  | 
            ||
| 610 |         \sum_{ACTIVITYCOSTFLOWS} \sum_t Y_{status}(t) \ | 
            ||
| 611 |         \cdot c_{activity} | 
            ||
| 612 | """  | 
            ||
| 613 | activity_costs = 0  | 
            ||
| 614 | |||
| 615 | if block.ACTIVITYCOSTFLOWS:  | 
            ||
| 616 | m = block.parent_block()  | 
            ||
| 617 | |||
| 618 | for i, o in block.ACTIVITYCOSTFLOWS:  | 
            ||
| 619 | if valid_sequence(  | 
            ||
| 620 | m.flows[i, o].nonconvex.activity_costs,  | 
            ||
| 621 | len(m.TIMESTEPS),  | 
            ||
| 622 | ):  | 
            ||
| 623 | activity_costs += sum(  | 
            ||
| 624 | block.status[i, o, t]  | 
            ||
| 625 | * m.flows[i, o].nonconvex.activity_costs[t]  | 
            ||
| 626 | * m.tsam_weighting[t]  | 
            ||
| 627 | for t in m.TIMESTEPS  | 
            ||
| 628 | )  | 
            ||
| 629 | |||
| 630 | block.activity_costs = Expression(expr=activity_costs)  | 
            ||
| 631 | |||
| 632 | return activity_costs  | 
            ||
| 633 | |||
| 634 | |||
| 635 | View Code Duplication | def inactivity_costs(block):  | 
            |
| 636 | r"""  | 
            ||
| 637 | .. math::  | 
            ||
| 638 |         \sum_{INACTIVITYCOSTFLOWS} \sum_t (1 - Y_{status}(t)) \ | 
            ||
| 639 |         \cdot c_{inactivity} | 
            ||
| 640 | """  | 
            ||
| 641 | inactivity_costs = 0  | 
            ||
| 642 | |||
| 643 | if block.INACTIVITYCOSTFLOWS:  | 
            ||
| 644 | m = block.parent_block()  | 
            ||
| 645 | |||
| 646 | for i, o in block.INACTIVITYCOSTFLOWS:  | 
            ||
| 647 | if valid_sequence(  | 
            ||
| 648 | m.flows[i, o].nonconvex.inactivity_costs,  | 
            ||
| 649 | len(m.TIMESTEPS),  | 
            ||
| 650 | ):  | 
            ||
| 651 | inactivity_costs += sum(  | 
            ||
| 652 | (1 - block.status[i, o, t])  | 
            ||
| 653 | * m.flows[i, o].nonconvex.inactivity_costs[t]  | 
            ||
| 654 | * m.tsam_weighting[t]  | 
            ||
| 655 | for t in m.TIMESTEPS  | 
            ||
| 656 | )  | 
            ||
| 657 | |||
| 658 | block.inactivity_costs = Expression(expr=inactivity_costs)  | 
            ||
| 659 | |||
| 660 | return inactivity_costs  | 
            ||
| 661 |