|
1
|
|
|
# -*- coding: utf-8 -*- |
|
2
|
|
|
|
|
3
|
|
|
"""Compatibility wrapper of solph.Results for providing solph results in the |
|
4
|
|
|
structure of the output of old processing.results(model). |
|
5
|
|
|
|
|
6
|
|
|
SPDX-FileCopyrightText: Patrik Schönfeldt <[email protected]> |
|
7
|
|
|
|
|
8
|
|
|
SPDX-License-Identifier: MIT |
|
9
|
|
|
""" |
|
10
|
|
|
|
|
11
|
|
|
import warnings |
|
12
|
|
|
from itertools import groupby |
|
13
|
|
|
|
|
14
|
|
|
import pandas as pd |
|
15
|
|
|
from oemof.tools import debugging |
|
16
|
|
|
|
|
17
|
|
|
from ._models import Model |
|
18
|
|
|
from ._results import Results |
|
19
|
|
|
|
|
20
|
|
|
|
|
21
|
|
|
def results( |
|
22
|
|
|
model: Model, |
|
23
|
|
|
remove_last_time_point: bool = False, |
|
24
|
|
|
scalar_data: list[str] | None = None, |
|
25
|
|
|
): |
|
26
|
|
|
"""Create a nested result dictionary from the result DataFrame |
|
27
|
|
|
|
|
28
|
|
|
The results from Pyomo from the Results object are |
|
29
|
|
|
transferred into a nested dictionary of pandas objects. |
|
30
|
|
|
The first level key of that dictionary is a node |
|
31
|
|
|
(denoting the respective flow or component). |
|
32
|
|
|
|
|
33
|
|
|
The second level keys are "sequences" and "scalars": |
|
34
|
|
|
|
|
35
|
|
|
* A pd.DataFrame holds all results that are time-dependent, i.e. given as |
|
36
|
|
|
a sequence and can be indexed with the energy system's timeindex. |
|
37
|
|
|
* A pd.Series holds all scalar values which are applicable for timestep 0 |
|
38
|
|
|
(i.e. investments). |
|
39
|
|
|
|
|
40
|
|
|
Models with more than one time for investments are not supported. |
|
41
|
|
|
In these models, investments are sequential data, |
|
42
|
|
|
but with a second time imdex. As this is a compatibility layer, |
|
43
|
|
|
we did not add support for this new feature. |
|
44
|
|
|
Instead, use of the Results object is advised. |
|
45
|
|
|
|
|
46
|
|
|
Parameters |
|
47
|
|
|
---------- |
|
48
|
|
|
model : oemof.solph.Model |
|
49
|
|
|
A solved oemof.solph model. |
|
50
|
|
|
remove_last_time_point : bool |
|
51
|
|
|
The last time point of all TIMEPOINT variables is removed to get the |
|
52
|
|
|
same length as the TIMESTEP (interval) variables without getting |
|
53
|
|
|
nan-values. By default, the last time point is removed if it has not |
|
54
|
|
|
been defined by the user in the EnergySystem but inferred. If all |
|
55
|
|
|
time points have been defined explicitly by the user the last time |
|
56
|
|
|
point will not be removed by default. In that case all interval |
|
57
|
|
|
variables will get one row with nan-values to have the same index |
|
58
|
|
|
for all variables. |
|
59
|
|
|
scalar_data : list[str] |
|
60
|
|
|
List of variables to be treated as scalar data (see above). |
|
61
|
|
|
sequence_data: list[str] |
|
62
|
|
|
List of variables to be treated as sequential data (see above). |
|
63
|
|
|
""" |
|
64
|
|
|
|
|
65
|
|
|
meta_result_keys = ["Solution", "Problem", "Solver"] |
|
66
|
|
|
|
|
67
|
|
|
if scalar_data is None: |
|
68
|
|
|
scalar_data = ["invest", "total"] |
|
69
|
|
|
|
|
70
|
|
|
result_dict = {} |
|
71
|
|
|
with warnings.catch_warnings(): |
|
72
|
|
|
warnings.filterwarnings( |
|
73
|
|
|
"ignore", category=debugging.ExperimentalFeatureWarning |
|
74
|
|
|
) |
|
75
|
|
|
result_object = Results(model) |
|
76
|
|
|
|
|
77
|
|
|
timeindex = model.es.timeindex |
|
78
|
|
|
|
|
79
|
|
|
if remove_last_time_point: |
|
80
|
|
|
timeindex = timeindex[:-1] |
|
81
|
|
|
|
|
82
|
|
|
def _handle_scalar(data): |
|
83
|
|
|
return data.iloc[0] |
|
84
|
|
|
|
|
85
|
|
|
def _handle_sequence(data): |
|
86
|
|
|
return data |
|
87
|
|
|
|
|
88
|
|
|
for result_key in result_object.keys(): |
|
89
|
|
|
if result_key not in meta_result_keys: |
|
90
|
|
|
if result_key in scalar_data: |
|
91
|
|
|
result_type = "scalars" |
|
92
|
|
|
data_handler = _handle_scalar |
|
93
|
|
|
else: |
|
94
|
|
|
result_type = "sequences" |
|
95
|
|
|
data_handler = _handle_sequence |
|
96
|
|
|
|
|
97
|
|
|
index = result_object[result_key].columns |
|
98
|
|
|
for item in index: |
|
99
|
|
|
if isinstance(index, pd.MultiIndex): |
|
100
|
|
|
node_tuple = item |
|
101
|
|
|
else: |
|
102
|
|
|
node_tuple = (item, None) |
|
103
|
|
|
if node_tuple not in result_dict: |
|
104
|
|
|
result_dict[node_tuple] = { |
|
105
|
|
|
"scalars": pd.Series(), |
|
106
|
|
|
"sequences": pd.DataFrame(index=timeindex), |
|
107
|
|
|
} |
|
108
|
|
|
|
|
109
|
|
|
data = result_object[result_key][item] |
|
110
|
|
|
result_dict[node_tuple][result_type][result_key] = ( |
|
111
|
|
|
data_handler(data) |
|
112
|
|
|
) |
|
113
|
|
|
|
|
114
|
|
|
if model.dual is not None: |
|
115
|
|
|
grouped = groupby( |
|
116
|
|
|
sorted(model.BusBlock.balance.iterkeys()), lambda t: t[0] |
|
117
|
|
|
) |
|
118
|
|
|
for bus, timestep in grouped: |
|
119
|
|
|
duals = [ |
|
120
|
|
|
model.dual[model.BusBlock.balance[bus, t]] for _, t in timestep |
|
121
|
|
|
] |
|
122
|
|
|
if model.es.periods is None: |
|
123
|
|
|
df = pd.DataFrame({"duals": duals}, index=timeindex[:-1]) |
|
124
|
|
|
# TODO: Align with standard model |
|
125
|
|
|
else: |
|
126
|
|
|
df = pd.DataFrame({"duals": duals}, index=timeindex) |
|
127
|
|
|
if (bus, None) not in result_dict.keys(): |
|
128
|
|
|
result_dict[(bus, None)] = { |
|
129
|
|
|
"sequences": df, |
|
130
|
|
|
"scalars": pd.Series(dtype=float), |
|
131
|
|
|
} |
|
132
|
|
|
else: |
|
133
|
|
|
result_dict[(bus, None)]["sequences"]["duals"] = duals |
|
134
|
|
|
|
|
135
|
|
|
return result_dict |
|
136
|
|
|
|