|
1
|
|
|
# -*- coding: utf-8 -*- |
|
2
|
|
|
|
|
3
|
|
|
""" |
|
4
|
|
|
SPDX-FileCopyrightText: Patrik Schönfeldt |
|
5
|
|
|
SPDX-FileCopyrightText: DLR e.V. |
|
6
|
|
|
|
|
7
|
|
|
SPDX-License-Identifier: MIT |
|
8
|
|
|
""" |
|
9
|
|
|
|
|
10
|
|
|
import logging |
|
11
|
|
|
import warnings |
|
12
|
|
|
from collections import namedtuple |
|
13
|
|
|
from datetime import datetime |
|
14
|
|
|
from pathlib import Path |
|
15
|
|
|
|
|
16
|
|
|
import pandas as pd |
|
17
|
|
|
import pytz |
|
18
|
|
|
from cost_data import discounted_average_price |
|
19
|
|
|
from cost_data import energy_prices |
|
20
|
|
|
from cost_data import investment_costs |
|
21
|
|
|
from create_timeseries import reshape_unevenly |
|
22
|
|
|
from matplotlib import pyplot as plt |
|
23
|
|
|
from oemof.network import graph |
|
24
|
|
|
from oemof.tools import debugging |
|
25
|
|
|
from oemof.tools import logger |
|
26
|
|
|
from oemof.tools.economics import annuity |
|
27
|
|
|
from shared import prepare_input_data |
|
28
|
|
|
|
|
29
|
|
|
from oemof.solph import Bus |
|
30
|
|
|
from oemof.solph import EnergySystem |
|
31
|
|
|
from oemof.solph import Flow |
|
32
|
|
|
from oemof.solph import Investment |
|
33
|
|
|
from oemof.solph import Model |
|
34
|
|
|
from oemof.solph import Results |
|
35
|
|
|
from oemof.solph import components as cmp |
|
36
|
|
|
|
|
37
|
|
|
warnings.filterwarnings( |
|
38
|
|
|
"ignore", category=debugging.ExperimentalFeatureWarning |
|
39
|
|
|
) |
|
40
|
|
|
logger.define_logging() |
|
41
|
|
|
|
|
42
|
|
|
|
|
43
|
|
|
def calculate_annuity(value): |
|
44
|
|
|
return value / 20 |
|
45
|
|
|
|
|
46
|
|
|
|
|
47
|
|
|
def calculate_fix_cost(value): |
|
48
|
|
|
return value / 20 |
|
49
|
|
|
|
|
50
|
|
|
|
|
51
|
|
|
def prepare_technical_data(minutes): |
|
52
|
|
|
data = namedtuple("data", "even uneven") |
|
53
|
|
|
df = prepare_input_data().resample(f"{minutes} min").mean() |
|
54
|
|
|
df["ev charge (kW)"] = 0 |
|
55
|
|
|
df_un = reshape_unevenly(df) |
|
56
|
|
|
return data(even=df, uneven=df_un) |
|
57
|
|
|
|
|
58
|
|
|
|
|
59
|
|
|
def prepare_cost_data(): |
|
60
|
|
|
pass |
|
61
|
|
|
|
|
62
|
|
|
|
|
63
|
|
|
def solve_model(data, year=2025, es=None, n=20, r=0.05): |
|
64
|
|
|
if es is None: |
|
65
|
|
|
es = EnergySystem(timeindex=data.index) |
|
66
|
|
|
|
|
67
|
|
|
var_cost = discounted_average_price(energy_prices(), r, n, year) |
|
68
|
|
|
invest_cost = investment_costs().loc[year] |
|
69
|
|
|
|
|
70
|
|
|
# Create Investment objects from cost data |
|
71
|
|
|
investments = {} |
|
72
|
|
|
for key in ["gas boiler", "heat pump", "battery", "pv"]: |
|
73
|
|
|
try: |
|
74
|
|
|
epc = annuity( |
|
75
|
|
|
invest_cost[(key, "specific_costs [Eur/kW]")], n, r |
|
76
|
|
|
) |
|
77
|
|
|
except KeyError: |
|
78
|
|
|
epc = annuity( |
|
79
|
|
|
invest_cost[(key, "specific_costs [Eur/kWh]")], n, r |
|
80
|
|
|
) |
|
81
|
|
|
fix_cost = calculate_fix_cost(invest_cost[(key, "fixed_costs [Eur]")]) |
|
82
|
|
|
investments[key] = Investment(ep_costs=epc, fixed_costs=fix_cost) |
|
83
|
|
|
|
|
84
|
|
|
# Buses |
|
85
|
|
|
bus_el = Bus(label="electricity") |
|
86
|
|
|
bus_heat = Bus(label="heat") |
|
87
|
|
|
bus_gas = Bus(label="gas") |
|
88
|
|
|
es.add(bus_el, bus_heat, bus_gas) |
|
89
|
|
|
|
|
90
|
|
|
# Sources |
|
91
|
|
|
es.add( |
|
92
|
|
|
cmp.Source( |
|
93
|
|
|
label="PV", |
|
94
|
|
|
outputs={ |
|
95
|
|
|
bus_el: Flow( |
|
96
|
|
|
fix=data["PV (kW/kWp)"], |
|
97
|
|
|
nominal_capacity=investments["pv"], |
|
98
|
|
|
) |
|
99
|
|
|
}, |
|
100
|
|
|
) |
|
101
|
|
|
) |
|
102
|
|
|
es.add( |
|
103
|
|
|
cmp.Source( |
|
104
|
|
|
label="Shortage_heat", outputs={bus_heat: Flow(variable_costs=99)} |
|
105
|
|
|
) |
|
106
|
|
|
) |
|
107
|
|
|
es.add( |
|
108
|
|
|
cmp.Source( |
|
109
|
|
|
label="Grid import", |
|
110
|
|
|
outputs={ |
|
111
|
|
|
bus_el: Flow( |
|
112
|
|
|
variable_costs=var_cost["electricity_prices [Eur/kWh]"] |
|
113
|
|
|
) |
|
114
|
|
|
}, |
|
115
|
|
|
) |
|
116
|
|
|
) |
|
117
|
|
|
es.add( |
|
118
|
|
|
cmp.Source( |
|
119
|
|
|
label="Gas import", |
|
120
|
|
|
outputs={ |
|
121
|
|
|
bus_el: Flow(variable_costs=var_cost["gas_prices [Eur/kWh]"]) |
|
122
|
|
|
}, |
|
123
|
|
|
) |
|
124
|
|
|
) |
|
125
|
|
|
|
|
126
|
|
|
# Battery |
|
127
|
|
|
es.add( |
|
128
|
|
|
cmp.GenericStorage( |
|
129
|
|
|
label="Battery", |
|
130
|
|
|
inputs={bus_el: Flow()}, |
|
131
|
|
|
outputs={bus_el: Flow()}, |
|
132
|
|
|
nominal_capacity=investments["battery"], # kWh |
|
133
|
|
|
min_storage_level=0.0, |
|
134
|
|
|
max_storage_level=1.0, |
|
135
|
|
|
balanced=True, |
|
136
|
|
|
loss_rate=0.001, # 0.1%/h |
|
137
|
|
|
inflow_conversion_factor=0.95, # Lade-Wirkungsgrad |
|
138
|
|
|
outflow_conversion_factor=0.95, # Entlade-Wirkungsgrad |
|
139
|
|
|
) |
|
140
|
|
|
) |
|
141
|
|
|
|
|
142
|
|
|
# Sinks |
|
143
|
|
|
es.add(cmp.Sink(label="Excess_el", inputs={bus_el: Flow()})) |
|
144
|
|
|
es.add(cmp.Sink(label="Excess_heat", inputs={bus_heat: Flow()})) |
|
145
|
|
|
es.add( |
|
146
|
|
|
cmp.Sink( |
|
147
|
|
|
label="Heat demand", |
|
148
|
|
|
inputs={ |
|
149
|
|
|
bus_heat: Flow( |
|
150
|
|
|
fix=data["heat demand (kW)"], nominal_capacity=5.0 |
|
151
|
|
|
) |
|
152
|
|
|
}, |
|
153
|
|
|
) |
|
154
|
|
|
) |
|
155
|
|
|
es.add( |
|
156
|
|
|
cmp.Sink( |
|
157
|
|
|
label="Electricity demand", |
|
158
|
|
|
inputs={ |
|
159
|
|
|
bus_el: Flow( |
|
160
|
|
|
fix=data["electricity demand (kW)"], nominal_capacity=1.0 |
|
161
|
|
|
) |
|
162
|
|
|
}, |
|
163
|
|
|
) |
|
164
|
|
|
) |
|
165
|
|
|
es.add( |
|
166
|
|
|
cmp.Sink( |
|
167
|
|
|
label="Electric Vehicle", |
|
168
|
|
|
inputs={ |
|
169
|
|
|
bus_el: Flow(fix=data["ev charge (kW)"], nominal_capacity=1.0) |
|
170
|
|
|
}, |
|
171
|
|
|
) |
|
172
|
|
|
) |
|
173
|
|
|
es.add( |
|
174
|
|
|
cmp.Sink( |
|
175
|
|
|
label="Grid Feed-in", |
|
176
|
|
|
inputs={ |
|
177
|
|
|
bus_el: Flow( |
|
178
|
|
|
variable_costs=-var_cost["pv_feed_in [Eur/kWh]"] / 1000 |
|
179
|
|
|
) |
|
180
|
|
|
}, |
|
181
|
|
|
) |
|
182
|
|
|
) |
|
183
|
|
|
|
|
184
|
|
|
# Heat Pump |
|
185
|
|
|
es.add( |
|
186
|
|
|
cmp.Converter( |
|
187
|
|
|
label="Heat pump", |
|
188
|
|
|
inputs={bus_el: Flow()}, |
|
189
|
|
|
outputs={ |
|
190
|
|
|
bus_heat: Flow(nominal_capacity=investments["heat pump"]) |
|
191
|
|
|
}, |
|
192
|
|
|
conversion_factors={bus_heat: data["cop"]}, |
|
193
|
|
|
) |
|
194
|
|
|
) |
|
195
|
|
|
# Gas Boiler |
|
196
|
|
|
es.add( |
|
197
|
|
|
cmp.Converter( |
|
198
|
|
|
label="Gas Boiler", |
|
199
|
|
|
inputs={bus_gas: Flow()}, |
|
200
|
|
|
outputs={ |
|
201
|
|
|
bus_heat: Flow(nominal_capacity=investments["gas boiler"]) |
|
202
|
|
|
}, |
|
203
|
|
|
conversion_factors={bus_heat: data["cop"]}, |
|
204
|
|
|
) |
|
205
|
|
|
) |
|
206
|
|
|
|
|
207
|
|
|
graph.create_nx_graph(es, filename=Path(Path.home(), "test_graph.graphml")) |
|
208
|
|
|
|
|
209
|
|
|
# Create Model and solve it |
|
210
|
|
|
logging.info("Creating Model...") |
|
211
|
|
|
m = Model(es) |
|
212
|
|
|
logging.info("Solving Model...") |
|
213
|
|
|
m.solve(solver="cbc", solve_kwargs={"tee": False}) |
|
214
|
|
|
|
|
215
|
|
|
# Create Results |
|
216
|
|
|
return Results(m) |
|
217
|
|
|
|
|
218
|
|
|
|
|
219
|
|
|
def process_results(results): |
|
220
|
|
|
flow = results["flow"] |
|
221
|
|
|
year = flow.index[0].year |
|
222
|
|
|
|
|
223
|
|
|
end_time = pytz.utc.localize( |
|
224
|
|
|
datetime.strptime(f"{year + 1}-01-01 00:00", "%Y-%m-%d %H:%M") |
|
225
|
|
|
) |
|
226
|
|
|
intervals = pd.Series( |
|
227
|
|
|
flow.index.diff().seconds / 3600, index=flow.index |
|
228
|
|
|
).shift(-1) |
|
229
|
|
|
intervals.iloc[-1] = (end_time - flow.index[-2]).seconds / 3600 - 1 |
|
230
|
|
|
|
|
231
|
|
|
# print(flow.mul(intervals, axis=0).sum()) |
|
232
|
|
|
|
|
233
|
|
|
soc = results["storage_content"] |
|
234
|
|
|
soc.name = "Battery SOC [kWh]" |
|
235
|
|
|
investments = results["invest"].rename( |
|
236
|
|
|
columns={ |
|
237
|
|
|
c: c[0].label |
|
238
|
|
|
for c in results["invest"].columns |
|
239
|
|
|
if isinstance(c, tuple) |
|
240
|
|
|
}, |
|
241
|
|
|
) |
|
242
|
|
|
print(investments) |
|
243
|
|
|
|
|
244
|
|
|
|
|
245
|
|
|
def compare_results(even, uneven): |
|
246
|
|
|
flow_e = even["flow"] |
|
247
|
|
|
flow_u = uneven["flow"] |
|
248
|
|
|
# print(flow_e) |
|
249
|
|
|
# print(flow_u) |
|
250
|
|
|
|
|
251
|
|
|
|
|
252
|
|
|
# |
|
253
|
|
|
# # interval_hours = df.groupby(buckets).size().sort_index() |
|
254
|
|
|
# # interval_hours.name = 'interval_hours' |
|
255
|
|
|
# |
|
256
|
|
|
# |
|
257
|
|
|
# print("Energy Balance") |
|
258
|
|
|
# print(flow.sum()) |
|
259
|
|
|
# print("") |
|
260
|
|
|
# print("Investment") |
|
261
|
|
|
# print(investments.squeeze()) |
|
262
|
|
|
|
|
263
|
|
|
# investments.squeeze().plot(kind="bar") |
|
264
|
|
|
# |
|
265
|
|
|
# day = 186 # day of the year |
|
266
|
|
|
# n = 2 # number of days to plot |
|
267
|
|
|
# flow = flow[day * 24 * 6 : day * 24 * 6 + n * 24 * 6] |
|
268
|
|
|
# soc = soc[day * 24 * 6 : day * 24 * 6 + 48 * 6] |
|
269
|
|
|
# |
|
270
|
|
|
# supply = flow[[c for c in flow.columns if c[1].label == "electricity"]] |
|
271
|
|
|
# supply = supply.droplevel(1, axis=1) |
|
272
|
|
|
# supply.rename(columns={c: c.label for c in supply.columns}, inplace=True) |
|
273
|
|
|
# demand = flow[[c for c in flow.columns if c[0].label == "electricity"]] |
|
274
|
|
|
# demand = demand.droplevel(0, axis=1) |
|
275
|
|
|
# demand.rename(columns={c: c.label for c in demand.columns}, inplace=True) |
|
276
|
|
|
|
|
277
|
|
|
|
|
278
|
|
|
if __name__ == "__main__": |
|
279
|
|
|
my_data = prepare_technical_data(10) |
|
280
|
|
|
start = datetime.now() |
|
281
|
|
|
results_even = solve_model(my_data.even) |
|
282
|
|
|
time_even = datetime.now() - start |
|
283
|
|
|
start = datetime.now() |
|
284
|
|
|
results_uneven = solve_model(my_data.uneven) |
|
285
|
|
|
time_uneven = datetime.now() - start |
|
286
|
|
|
process_results(results_even) |
|
287
|
|
|
process_results(results_uneven) |
|
288
|
|
|
compare_results(results_even, results_uneven) |
|
289
|
|
|
print("*** Times ****") |
|
290
|
|
|
print("even", time_even) |
|
291
|
|
|
print("uneven", time_uneven) |
|
292
|
|
|
|