|
1
|
|
|
# -*- coding: utf-8 -*- |
|
2
|
|
|
|
|
3
|
|
|
""" |
|
4
|
|
|
General description |
|
5
|
|
|
------------------- |
|
6
|
|
|
|
|
7
|
|
|
You should have grasped the basic_example to understand this one. |
|
8
|
|
|
|
|
9
|
|
|
This is an example to show how the label attribute can be used with tuples to |
|
10
|
|
|
manage the results of large energy system. Even though, the feature is |
|
11
|
|
|
introduced in a small example it is made for large system. |
|
12
|
|
|
|
|
13
|
|
|
In small energy system you normally address the node, you want your results |
|
14
|
|
|
from, directly. In large systems you may want to group your results and collect |
|
15
|
|
|
all power plants of a specific region or pv feed-in of all regions. |
|
16
|
|
|
|
|
17
|
|
|
Therefore you can use named tuples as label. In a named tuple you need to |
|
18
|
|
|
specify the fields: |
|
19
|
|
|
|
|
20
|
|
|
>>> label = namedtuple('solph_label', ['region', 'tag1', 'tag2']) |
|
21
|
|
|
|
|
22
|
|
|
>>> pv_label = label('region_1', 'renewable_source', 'pv') |
|
23
|
|
|
>>> pp_gas_label = label('region_2', 'power_plant', 'natural_gas') |
|
24
|
|
|
>>> demand_label = label('region_3', 'electricity', 'demand') |
|
25
|
|
|
|
|
26
|
|
|
You always have to address all fields but you can use empty strings or None as |
|
27
|
|
|
place holders. |
|
28
|
|
|
|
|
29
|
|
|
>>> elec_bus = label('region_4', 'electricity', '') |
|
30
|
|
|
>>> print(elec_bus) |
|
31
|
|
|
solph_label(region='region_4', tag1='electricity', tag2='') |
|
32
|
|
|
|
|
33
|
|
|
>>> elec_bus = label('region_4', 'electricity', None) |
|
34
|
|
|
>>> print(elec_bus) |
|
35
|
|
|
solph_label(region='region_4', tag1='electricity', tag2=None) |
|
36
|
|
|
|
|
37
|
|
|
Now you can filter the results using the label or the instance: |
|
38
|
|
|
|
|
39
|
|
|
>>> for key, value in results.items(): # Loop results (keys are tuples!) |
|
40
|
|
|
... if isinstance(key[0], comp.Sink) & (key[0].label.tag2 == 'demand'): |
|
41
|
|
|
... print("elec demand {0}: {1}".format(key[0].label.region, |
|
42
|
|
|
... value['sequences'].sum())) |
|
43
|
|
|
|
|
44
|
|
|
elec demand region_1: 3456 |
|
45
|
|
|
elec demand region_2: 2467 |
|
46
|
|
|
... |
|
47
|
|
|
|
|
48
|
|
|
In the example below a subclass is created to define ones own string output. |
|
49
|
|
|
By default the output of a namedtuple is `field1=value1, field2=value2,...`: |
|
50
|
|
|
|
|
51
|
|
|
>>> print(str(pv_label)) |
|
52
|
|
|
solph_label(region='region_1', tag1='renewable_source', tag2='pv') |
|
53
|
|
|
|
|
54
|
|
|
With the subclass we created below the output is different, because we defined |
|
55
|
|
|
our own string representation: |
|
56
|
|
|
|
|
57
|
|
|
>>> new_pv_label = Label('region_1', 'renewable_source', 'pv') |
|
58
|
|
|
>>> print(str(new_pv_label)) |
|
59
|
|
|
region_1_renewable_source_pv |
|
60
|
|
|
|
|
61
|
|
|
You still will be able to get the original string using `repr`: |
|
62
|
|
|
|
|
63
|
|
|
>>> print(repr(new_pv_label)) |
|
64
|
|
|
Label(tag1='region_1', tag2='renewable_source', tag3='pv') |
|
65
|
|
|
|
|
66
|
|
|
This a helpful adaption for automatic plots etc.. |
|
67
|
|
|
|
|
68
|
|
|
Afterwards you can use `format` to define your own custom string.: |
|
69
|
|
|
>>> print('{0}+{1}-{2}'.format(pv_label.region, pv_label.tag2, pv_label.tag1)) |
|
70
|
|
|
region_1+pv-renewable_source |
|
71
|
|
|
|
|
72
|
|
|
Data |
|
73
|
|
|
---- |
|
74
|
|
|
basic_example.csv |
|
75
|
|
|
|
|
76
|
|
|
|
|
77
|
|
|
Installation requirements |
|
78
|
|
|
------------------------- |
|
79
|
|
|
This example requires oemof.solph (v0.5.x), install by: |
|
80
|
|
|
|
|
81
|
|
|
pip install oemof.solph[examples] |
|
82
|
|
|
|
|
83
|
|
|
|
|
84
|
|
|
License |
|
85
|
|
|
------- |
|
86
|
|
|
`MIT license <https://github.com/oemof/oemof-solph/blob/dev/LICENSE>`_ |
|
87
|
|
|
|
|
88
|
|
|
""" |
|
89
|
|
|
|
|
90
|
|
|
# **************************************************************************** |
|
91
|
|
|
# ********** PART 1 - Define and optimise the energy system ****************** |
|
92
|
|
|
# **************************************************************************** |
|
93
|
|
|
|
|
94
|
|
|
import logging |
|
95
|
|
|
import os |
|
96
|
|
|
import warnings |
|
97
|
|
|
from collections import namedtuple |
|
98
|
|
|
|
|
99
|
|
|
import pandas as pd |
|
100
|
|
|
from oemof.tools import logger |
|
101
|
|
|
|
|
102
|
|
|
from oemof.solph import EnergySystem |
|
103
|
|
|
from oemof.solph import Model |
|
104
|
|
|
from oemof.solph import buses |
|
105
|
|
|
from oemof.solph import components as comp |
|
106
|
|
|
from oemof.solph import create_time_index |
|
107
|
|
|
from oemof.solph import flows |
|
108
|
|
|
from oemof.solph import helpers |
|
109
|
|
|
from oemof.solph import processing |
|
110
|
|
|
|
|
111
|
|
|
|
|
112
|
|
|
# Subclass of the named tuple with its own __str__ method. |
|
113
|
|
|
# You can add as many tags as you like |
|
114
|
|
|
# For tag1, tag2 you can define your own fields like region, fuel, type... |
|
115
|
|
|
class Label(namedtuple("solph_label", ["tag1", "tag2", "tag3"])): |
|
116
|
|
|
__slots__ = () |
|
117
|
|
|
|
|
118
|
|
|
def __str__(self): |
|
119
|
|
|
"""The string is used within solph as an ID, so it hast to be unique""" |
|
120
|
|
|
return "_".join(map(str, self._asdict().values())) |
|
121
|
|
|
|
|
122
|
|
|
|
|
123
|
|
|
# Read data file |
|
124
|
|
|
filename = os.path.join(os.getcwd(), "tuple_as_label.csv") |
|
125
|
|
|
try: |
|
126
|
|
|
data = pd.read_csv(filename) |
|
127
|
|
|
except FileNotFoundError: |
|
128
|
|
|
msg = "Data file not found: {0}. Only one value used!" |
|
129
|
|
|
warnings.warn(msg.format(filename), UserWarning) |
|
130
|
|
|
data = pd.DataFrame({"pv": [0.3], "wind": [0.6], "demand_el": [500]}) |
|
131
|
|
|
|
|
132
|
|
|
solver = "cbc" # 'glpk', 'gurobi',.... |
|
133
|
|
|
debug = False # Set number_of_timesteps to 3 to get a readable lp-file. |
|
134
|
|
|
number_of_time_steps = len(data) |
|
135
|
|
|
solver_verbose = False # show/hide solver output |
|
136
|
|
|
|
|
137
|
|
|
# initiate the logger (see the API docs for more information) |
|
138
|
|
|
logger.define_logging( |
|
139
|
|
|
logfile="oemof_example.log", |
|
140
|
|
|
screen_level=logging.INFO, |
|
141
|
|
|
file_level=logging.WARNING, |
|
142
|
|
|
) |
|
143
|
|
|
|
|
144
|
|
|
logging.info("Initialize the energy system") |
|
145
|
|
|
energysystem = EnergySystem( |
|
146
|
|
|
timeindex=create_time_index(2012, number=number_of_time_steps), |
|
147
|
|
|
infer_last_interval=False, |
|
148
|
|
|
) |
|
149
|
|
|
|
|
150
|
|
|
|
|
151
|
|
|
########################################################################## |
|
152
|
|
|
# Create oemof object |
|
153
|
|
|
########################################################################## |
|
154
|
|
|
|
|
155
|
|
|
logging.info("Create oemof objects") |
|
156
|
|
|
|
|
157
|
|
|
# The bus objects were assigned to variables which makes it easier to connect |
|
158
|
|
|
# components to these buses (see below). |
|
159
|
|
|
|
|
160
|
|
|
# create natural gas bus |
|
161
|
|
|
bgas = buses.Bus(label=Label("bus", "gas", None)) |
|
162
|
|
|
|
|
163
|
|
|
# create electricity bus |
|
164
|
|
|
bel = buses.Bus(label=Label("bus", "electricity", None)) |
|
165
|
|
|
|
|
166
|
|
|
# adding the buses to the energy system |
|
167
|
|
|
energysystem.add(bgas, bel) |
|
168
|
|
|
|
|
169
|
|
|
# create excess component for the electricity bus to allow overproduction |
|
170
|
|
|
energysystem.add( |
|
171
|
|
|
comp.Sink( |
|
172
|
|
|
label=Label("sink", "electricity", "excess"), |
|
173
|
|
|
inputs={bel: flows.Flow()}, |
|
174
|
|
|
) |
|
175
|
|
|
) |
|
176
|
|
|
|
|
177
|
|
|
# create source object representing the natural gas commodity (annual limit) |
|
178
|
|
|
energysystem.add( |
|
179
|
|
|
comp.Source( |
|
180
|
|
|
label=Label("commodity_source", "gas", "commodity"), |
|
181
|
|
|
outputs={bgas: flows.Flow()}, |
|
182
|
|
|
) |
|
183
|
|
|
) |
|
184
|
|
|
|
|
185
|
|
|
# create fixed source object representing wind pow er plants |
|
186
|
|
|
energysystem.add( |
|
187
|
|
|
comp.Source( |
|
188
|
|
|
label=Label("ee_source", "electricity", "wind"), |
|
189
|
|
|
outputs={bel: flows.Flow(fix=data["wind"], nominal_value=2000)}, |
|
190
|
|
|
) |
|
191
|
|
|
) |
|
192
|
|
|
|
|
193
|
|
|
# create fixed source object representing pv power plants |
|
194
|
|
|
energysystem.add( |
|
195
|
|
|
comp.Source( |
|
196
|
|
|
label=Label("ee_source", "electricity", "pv"), |
|
197
|
|
|
outputs={bel: flows.Flow(fix=data["pv"], nominal_value=3000)}, |
|
198
|
|
|
) |
|
199
|
|
|
) |
|
200
|
|
|
|
|
201
|
|
|
# create simple sink object representing the electrical demand |
|
202
|
|
|
energysystem.add( |
|
203
|
|
|
comp.Sink( |
|
204
|
|
|
label=Label("sink", "electricity", "demand"), |
|
205
|
|
|
inputs={ |
|
206
|
|
|
bel: flows.Flow(fix=data["demand_el"] / 1000, nominal_value=1) |
|
207
|
|
|
}, |
|
208
|
|
|
) |
|
209
|
|
|
) |
|
210
|
|
|
|
|
211
|
|
|
# create simple transformer object representing a gas power plant |
|
212
|
|
|
energysystem.add( |
|
213
|
|
|
comp.Transformer( |
|
214
|
|
|
label=Label("power plant", "electricity", "gas"), |
|
215
|
|
|
inputs={bgas: flows.Flow()}, |
|
216
|
|
|
outputs={bel: flows.Flow(nominal_value=10000, variable_costs=50)}, |
|
217
|
|
|
conversion_factors={bel: 0.58}, |
|
218
|
|
|
) |
|
219
|
|
|
) |
|
220
|
|
|
|
|
221
|
|
|
# create storage object representing a battery |
|
222
|
|
|
nominal_storage_capacity = 5000 |
|
223
|
|
|
storage = comp.GenericStorage( |
|
224
|
|
|
nominal_storage_capacity=nominal_storage_capacity, |
|
225
|
|
|
label=Label("storage", "electricity", "battery"), |
|
226
|
|
|
inputs={bel: flows.Flow(nominal_value=nominal_storage_capacity / 6)}, |
|
227
|
|
|
outputs={bel: flows.Flow(nominal_value=nominal_storage_capacity / 6)}, |
|
228
|
|
|
loss_rate=0.00, |
|
229
|
|
|
initial_storage_level=None, |
|
230
|
|
|
inflow_conversion_factor=1, |
|
231
|
|
|
outflow_conversion_factor=0.8, |
|
232
|
|
|
) |
|
233
|
|
|
|
|
234
|
|
|
energysystem.add(storage) |
|
235
|
|
|
|
|
236
|
|
|
########################################################################## |
|
237
|
|
|
# Optimise the energy system and plot the results |
|
238
|
|
|
########################################################################## |
|
239
|
|
|
|
|
240
|
|
|
logging.info("Optimise the energy system") |
|
241
|
|
|
|
|
242
|
|
|
# initialise the operational model |
|
243
|
|
|
model = Model(energysystem) |
|
244
|
|
|
|
|
245
|
|
|
# This is for debugging only. It is not(!) necessary to solve the problem and |
|
246
|
|
|
# should be set to False to save time and disc space in normal use. For |
|
247
|
|
|
# debugging the timesteps should be set to 3, to increase the readability of |
|
248
|
|
|
# the lp-file. |
|
249
|
|
|
if debug: |
|
250
|
|
|
filename = os.path.join( |
|
251
|
|
|
helpers.extend_basic_path("lp_files"), "basic_example.lp" |
|
252
|
|
|
) |
|
253
|
|
|
logging.info("Store lp-file in {0}.".format(filename)) |
|
254
|
|
|
model.write(filename, io_options={"symbolic_solver_labels": True}) |
|
255
|
|
|
|
|
256
|
|
|
# if tee_switch is true solver messages will be displayed |
|
257
|
|
|
logging.info("Solve the optimization problem") |
|
258
|
|
|
model.receive_duals() |
|
259
|
|
|
model.solve(solver=solver, solve_kwargs={"tee": solver_verbose}) |
|
260
|
|
|
|
|
261
|
|
|
logging.info("Store the energy system with the results.") |
|
262
|
|
|
|
|
263
|
|
|
# The processing module of the outputlib can be used to extract the results |
|
264
|
|
|
# from the model transfer them into a homogeneous structured dictionary. |
|
265
|
|
|
|
|
266
|
|
|
results = processing.results(model) |
|
267
|
|
|
|
|
268
|
|
|
|
|
269
|
|
|
# ****** Create a table with all sequences and store it into a file (csv/xlsx) |
|
270
|
|
|
flows_to_bus = pd.DataFrame( |
|
271
|
|
|
{ |
|
272
|
|
|
str(k[0].label): v["sequences"]["flow"] |
|
273
|
|
|
for k, v in results.items() |
|
274
|
|
|
if k[1] is not None and k[1] == bel |
|
275
|
|
|
} |
|
276
|
|
|
) |
|
277
|
|
|
flows_from_bus = pd.DataFrame( |
|
278
|
|
|
{ |
|
279
|
|
|
str(k[1].label): v["sequences"]["flow"] |
|
280
|
|
|
for k, v in results.items() |
|
281
|
|
|
if k[1] is not None and k[0] == bel |
|
282
|
|
|
} |
|
283
|
|
|
) |
|
284
|
|
|
|
|
285
|
|
|
storage = pd.DataFrame( |
|
286
|
|
|
{ |
|
287
|
|
|
str(k[0].label): v["sequences"]["storage_content"] |
|
288
|
|
|
for k, v in results.items() |
|
289
|
|
|
if k[1] is None and k[0] == storage |
|
290
|
|
|
} |
|
291
|
|
|
) |
|
292
|
|
|
|
|
293
|
|
|
duals = pd.DataFrame( |
|
294
|
|
|
{ |
|
295
|
|
|
str(k[0].label): v["sequences"]["duals"] |
|
296
|
|
|
for k, v in results.items() |
|
297
|
|
|
if k[1] is None and isinstance(k[0], buses.Bus) |
|
298
|
|
|
} |
|
299
|
|
|
) |
|
300
|
|
|
|
|
301
|
|
|
my_flows = pd.concat( |
|
302
|
|
|
[flows_to_bus, flows_from_bus, storage], |
|
303
|
|
|
keys=["to_bus", "from_bus", "content", "duals"], |
|
304
|
|
|
axis=1, |
|
305
|
|
|
) |
|
306
|
|
|
|
|
307
|
|
|
# Store the table to csv or excel file: |
|
308
|
|
|
home_path = os.path.expanduser("~") |
|
309
|
|
|
my_flows.to_csv(os.path.join(home_path, "my_flows.csv")) |
|
310
|
|
|
# my_flows.to_excel(os.path.join(home_path, "my_flows.xlsx")) |
|
311
|
|
|
print(my_flows.sum()) |
|
312
|
|
|
|
|
313
|
|
|
# ********* Use your tuple labels to filter the components |
|
314
|
|
|
ee_sources = [ |
|
315
|
|
|
str(f[0].label) for f in results.keys() if f[0].label.tag1 == "ee_source" |
|
316
|
|
|
] |
|
317
|
|
|
print(ee_sources) |
|
318
|
|
|
|
|
319
|
|
|
# It is possible to filter components by the label tags and the class, so the |
|
320
|
|
|
# label concepts is a result of the postprocessing. If it is necessary to get |
|
321
|
|
|
# all components of a region, "region" should be a field of the label. |
|
322
|
|
|
# To filter only by tags you can add a tag named "class" with the name of the |
|
323
|
|
|
# class as value. |
|
324
|
|
|
electricity_buses = list( |
|
325
|
|
|
set( |
|
326
|
|
|
[ |
|
327
|
|
|
str(f[0].label) |
|
328
|
|
|
for f in results.keys() |
|
329
|
|
|
if f[0].label.tag2 == "electricity" and isinstance(f[0], buses.Bus) |
|
330
|
|
|
] |
|
331
|
|
|
) |
|
332
|
|
|
) |
|
333
|
|
|
print(electricity_buses) |
|
334
|
|
|
|