|
1
|
|
|
import pandas as pd |
|
2
|
|
|
|
|
3
|
|
|
|
|
4
|
|
|
def energy_prices() -> pd.DataFrame: |
|
5
|
|
|
|
|
6
|
|
|
print("Data is taken from at doi: https://doi.org/10.52202/077185-0033") |
|
7
|
|
|
|
|
8
|
|
|
years = [2025, 2030, 2035, 2040, 2045] |
|
9
|
|
|
return pd.DataFrame( |
|
10
|
|
|
{ |
|
11
|
|
|
"gas_prices [Eur/kWh]": [0.116, 0.106, 0.133, 0.116, 0.118], |
|
12
|
|
|
"electricity_prices [Eur/kWh]": [ |
|
13
|
|
|
0.386, |
|
14
|
|
|
0.303, |
|
15
|
|
|
0.290, |
|
16
|
|
|
0.294, |
|
17
|
|
|
0.286, |
|
18
|
|
|
], |
|
19
|
|
|
"pv_feed_in [Eur/kWh]": [0.081] * 5, |
|
20
|
|
|
}, |
|
21
|
|
|
index=pd.Index(years, name="year"), |
|
22
|
|
|
) |
|
23
|
|
|
|
|
24
|
|
|
|
|
25
|
|
|
def investment_costs() -> pd.DataFrame: |
|
26
|
|
|
print("Data is taken from doi: https://doi.org/10.52202/077185-0033") |
|
27
|
|
|
|
|
28
|
|
|
years = [2025, 2030, 2035, 2040, 2045] |
|
29
|
|
|
idx = pd.Index(years, name="year") |
|
30
|
|
|
|
|
31
|
|
|
df = pd.DataFrame( |
|
32
|
|
|
{ |
|
33
|
|
|
("gas boiler", "specific_costs [Eur/kW]"): [61] * 5, |
|
34
|
|
|
("gas boiler", "fixed_costs [Eur]"): [4794] * 5, |
|
35
|
|
|
("heat pump", "specific_costs [Eur/kW]"): [ |
|
36
|
|
|
1680, |
|
37
|
|
|
1318, |
|
38
|
|
|
1182, |
|
39
|
|
|
1101, |
|
40
|
|
|
1048, |
|
41
|
|
|
], |
|
42
|
|
|
("heat pump", "fixed_costs [Eur]"): [3860, 3030, 2716, 2530, 2410], |
|
43
|
|
|
("heat storage", "specific_costs [Eur/m3]"): [1120] * 5, |
|
44
|
|
|
("heat storage", "fixed_costs [Eur]"): [806] * 5, |
|
45
|
|
|
("pv", "specific_costs [Eur/kW]"): [1200, 1017, 927, 864, 828], |
|
46
|
|
|
("pv", "fixed_costs [Eur]"): [3038, 2575, 2347, 2188, 2096], |
|
47
|
|
|
("battery", "specific_costs [Eur/kWh]"): [850, 544, 453, 420, 409], |
|
48
|
|
|
("battery", "fixed_costs [Eur]"): [0] * 5, |
|
49
|
|
|
}, |
|
50
|
|
|
index=idx, |
|
51
|
|
|
) |
|
52
|
|
|
|
|
53
|
|
|
return df |
|
54
|
|
|
|