|
1
|
|
|
# -*- coding: utf-8 -*- |
|
2
|
|
|
|
|
3
|
|
|
"""Modules for providing convenient views for solph results. |
|
4
|
|
|
|
|
5
|
|
|
Information about the possible usage is provided within the examples. |
|
6
|
|
|
|
|
7
|
|
|
SPDX-FileCopyrightText: Uwe Krien <[email protected]> |
|
8
|
|
|
SPDX-FileCopyrightText: Simon Hilpert |
|
9
|
|
|
SPDX-FileCopyrightText: Cord Kaldemeyer |
|
10
|
|
|
SPDX-FileCopyrightText: Stephan Günther |
|
11
|
|
|
SPDX-FileCopyrightText: henhuy |
|
12
|
|
|
|
|
13
|
|
|
SPDX-License-Identifier: MIT |
|
14
|
|
|
|
|
15
|
|
|
""" |
|
16
|
|
|
import logging |
|
17
|
|
|
from collections import OrderedDict |
|
18
|
|
|
from enum import Enum |
|
19
|
|
|
|
|
20
|
|
|
import pandas as pd |
|
21
|
|
|
|
|
22
|
|
|
from oemof.solph.processing import convert_keys_to_strings |
|
23
|
|
|
|
|
24
|
|
|
NONE_REPLACEMENT_STR = "_NONE_" |
|
25
|
|
|
|
|
26
|
|
|
|
|
27
|
|
|
def node(results, node, multiindex=False, keep_none_type=False): |
|
28
|
|
|
""" |
|
29
|
|
|
Obtain results for a single node e.g. a Bus or Component. |
|
30
|
|
|
|
|
31
|
|
|
Either a node or its label string can be passed. |
|
32
|
|
|
Results are written into a dictionary which is keyed by 'scalars' and |
|
33
|
|
|
'sequences' holding respective data in a pandas Series and DataFrame. |
|
34
|
|
|
""" |
|
35
|
|
|
|
|
36
|
|
|
def replace_none(col_list, reverse=False): |
|
37
|
|
|
replacement = ( |
|
38
|
|
|
(None, NONE_REPLACEMENT_STR) |
|
39
|
|
|
if reverse |
|
40
|
|
|
else (NONE_REPLACEMENT_STR, None) |
|
41
|
|
|
) |
|
42
|
|
|
changed_col_list = [ |
|
43
|
|
|
( |
|
44
|
|
|
( |
|
45
|
|
|
replacement[0] if n1 is replacement[1] else n1, |
|
46
|
|
|
replacement[0] if n2 is replacement[1] else n2, |
|
47
|
|
|
), |
|
48
|
|
|
f, |
|
49
|
|
|
) |
|
50
|
|
|
for (n1, n2), f in col_list |
|
51
|
|
|
] |
|
52
|
|
|
return changed_col_list |
|
53
|
|
|
|
|
54
|
|
|
# convert to keys if only a string is passed |
|
55
|
|
|
if type(node) is str: |
|
56
|
|
|
results = convert_keys_to_strings(results, keep_none_type) |
|
57
|
|
|
|
|
58
|
|
|
filtered = {} |
|
59
|
|
|
|
|
60
|
|
|
# create a series with tuples as index labels for scalars |
|
61
|
|
|
scalars = { |
|
62
|
|
|
k: v["scalars"] |
|
63
|
|
|
for k, v in results.items() |
|
64
|
|
|
if node in k and not v["scalars"].empty |
|
65
|
|
|
} |
|
66
|
|
|
if scalars: |
|
67
|
|
|
# aggregate data |
|
68
|
|
|
filtered["scalars"] = pd.concat(scalars.values(), axis=0) |
|
69
|
|
|
# assign index values |
|
70
|
|
|
idx = { |
|
71
|
|
|
k: [c for c in v["scalars"].index] |
|
72
|
|
|
for k, v in results.items() |
|
73
|
|
|
if node in k and not v["scalars"].empty |
|
74
|
|
|
} |
|
75
|
|
|
idx = [tuple((k, m) for m in v) for k, v in idx.items()] |
|
76
|
|
|
idx = [i for sublist in idx for i in sublist] |
|
77
|
|
|
filtered["scalars"].index = idx |
|
78
|
|
|
|
|
79
|
|
|
# Sort index |
|
80
|
|
|
# (if Nones are present, they have to be replaced while sorting) |
|
81
|
|
|
if keep_none_type: |
|
82
|
|
|
filtered["scalars"].index = replace_none( |
|
83
|
|
|
filtered["scalars"].index.tolist() |
|
84
|
|
|
) |
|
85
|
|
|
filtered["scalars"].sort_index(axis=0, inplace=True) |
|
86
|
|
|
if keep_none_type: |
|
87
|
|
|
filtered["scalars"].index = replace_none( |
|
88
|
|
|
filtered["scalars"].index.tolist(), True |
|
89
|
|
|
) |
|
90
|
|
|
|
|
91
|
|
|
if multiindex: |
|
92
|
|
|
idx = pd.MultiIndex.from_tuples( |
|
93
|
|
|
[ |
|
94
|
|
|
tuple([row[0][0], row[0][1], row[1]]) |
|
95
|
|
|
for row in filtered["scalars"].index |
|
96
|
|
|
] |
|
97
|
|
|
) |
|
98
|
|
|
idx.set_names(["from", "to", "type"], inplace=True) |
|
99
|
|
|
filtered["scalars"].index = idx |
|
100
|
|
|
|
|
101
|
|
|
# create a dataframe with tuples as column labels for sequences |
|
102
|
|
|
sequences = { |
|
103
|
|
|
k: v["sequences"] |
|
104
|
|
|
for k, v in results.items() |
|
105
|
|
|
if node in k and not v["sequences"].empty |
|
106
|
|
|
} |
|
107
|
|
|
if sequences: |
|
108
|
|
|
# aggregate data |
|
109
|
|
|
filtered["sequences"] = pd.concat(sequences.values(), axis=1) |
|
110
|
|
|
# assign column names |
|
111
|
|
|
cols = { |
|
112
|
|
|
k: [c for c in v["sequences"].columns] |
|
113
|
|
|
for k, v in results.items() |
|
114
|
|
|
if node in k and not v["sequences"].empty |
|
115
|
|
|
} |
|
116
|
|
|
cols = [tuple((k, m) for m in v) for k, v in cols.items()] |
|
117
|
|
|
cols = [c for sublist in cols for c in sublist] |
|
118
|
|
|
filtered["sequences"].columns = replace_none(cols) |
|
119
|
|
|
filtered["sequences"].sort_index(axis=1, inplace=True) |
|
120
|
|
|
filtered["sequences"].columns = replace_none( |
|
121
|
|
|
filtered["sequences"].columns, True |
|
122
|
|
|
) |
|
123
|
|
|
|
|
124
|
|
|
if multiindex: |
|
125
|
|
|
idx = pd.MultiIndex.from_tuples( |
|
126
|
|
|
[ |
|
127
|
|
|
tuple([col[0][0], col[0][1], col[1]]) |
|
128
|
|
|
for col in filtered["sequences"].columns |
|
129
|
|
|
] |
|
130
|
|
|
) |
|
131
|
|
|
idx.set_names(["from", "to", "type"], inplace=True) |
|
132
|
|
|
filtered["sequences"].columns = idx |
|
133
|
|
|
|
|
134
|
|
|
return filtered |
|
135
|
|
|
|
|
136
|
|
|
|
|
137
|
|
|
class NodeOption(str, Enum): |
|
138
|
|
|
All = "all" |
|
139
|
|
|
HasOutputs = "has_outputs" |
|
140
|
|
|
HasInputs = "has_inputs" |
|
141
|
|
|
HasOnlyOutputs = "has_only_outputs" |
|
142
|
|
|
HasOnlyInputs = "has_only_inputs" |
|
143
|
|
|
|
|
144
|
|
|
|
|
145
|
|
|
def filter_nodes(results, option=NodeOption.All, exclude_busses=False): |
|
146
|
|
|
"""Get set of nodes from results-dict for given node option. |
|
147
|
|
|
|
|
148
|
|
|
This function filters nodes from results for special needs. At the moment, |
|
149
|
|
|
the following options are available: |
|
150
|
|
|
|
|
151
|
|
|
* :attr:`NodeOption.All`: `'all'`: Returns all nodes |
|
152
|
|
|
* :attr:`NodeOption.HasOutputs`: `'has_outputs'`: |
|
153
|
|
|
Returns nodes with an output flow (eg. Transformer, Source) |
|
154
|
|
|
* :attr:`NodeOption.HasInputs`: `'has_inputs'`: |
|
155
|
|
|
Returns nodes with an input flow (eg. Transformer, Sink) |
|
156
|
|
|
* :attr:`NodeOption.HasOnlyOutputs`: `'has_only_outputs'`: |
|
157
|
|
|
Returns nodes having only output flows (eg. Source) |
|
158
|
|
|
* :attr:`NodeOption.HasOnlyInputs`: `'has_only_inputs'`: |
|
159
|
|
|
Returns nodes having only input flows (eg. Sink) |
|
160
|
|
|
|
|
161
|
|
|
Additionally, busses can be excluded by setting `exclude_busses` to |
|
162
|
|
|
`True`. |
|
163
|
|
|
|
|
164
|
|
|
Parameters |
|
165
|
|
|
---------- |
|
166
|
|
|
results: dict |
|
167
|
|
|
option: NodeOption |
|
168
|
|
|
exclude_busses: bool |
|
169
|
|
|
If set, all bus nodes are excluded from the resulting node set. |
|
170
|
|
|
|
|
171
|
|
|
Returns |
|
172
|
|
|
------- |
|
173
|
|
|
:obj:`set` |
|
174
|
|
|
A set of Nodes. |
|
175
|
|
|
""" |
|
176
|
|
|
node_from, node_to = map(lambda x: set(x) - {None}, zip(*results)) |
|
177
|
|
|
if option == NodeOption.All: |
|
178
|
|
|
nodes = node_from.union(node_to) |
|
179
|
|
|
elif option == NodeOption.HasOutputs: |
|
180
|
|
|
nodes = node_from |
|
181
|
|
|
elif option == NodeOption.HasInputs: |
|
182
|
|
|
nodes = node_to |
|
183
|
|
|
elif option == NodeOption.HasOnlyOutputs: |
|
184
|
|
|
nodes = node_from - node_to |
|
185
|
|
|
elif option == NodeOption.HasOnlyInputs: |
|
186
|
|
|
nodes = node_to - node_from |
|
187
|
|
|
else: |
|
188
|
|
|
raise ValueError('Invalid node option "' + str(option) + '"') |
|
189
|
|
|
|
|
190
|
|
|
if exclude_busses: |
|
191
|
|
|
return {n for n in nodes if not n.__class__.__name__ == "Bus"} |
|
192
|
|
|
else: |
|
193
|
|
|
return nodes |
|
194
|
|
|
|
|
195
|
|
|
|
|
196
|
|
|
def get_node_by_name(results, *names): |
|
197
|
|
|
""" |
|
198
|
|
|
Searches results for nodes |
|
199
|
|
|
|
|
200
|
|
|
Names are looked up in nodes from results and either returned single node |
|
201
|
|
|
(in case only one name is given) or as list of nodes. If name is not found, |
|
202
|
|
|
None is returned. |
|
203
|
|
|
""" |
|
204
|
|
|
nodes = filter_nodes(results) |
|
205
|
|
|
if len(names) == 1: |
|
206
|
|
|
return next(filter(lambda x: str(x) == names[0], nodes), None) |
|
207
|
|
|
else: |
|
208
|
|
|
node_names = {str(n): n for n in nodes} |
|
209
|
|
|
return [node_names.get(n, None) for n in names] |
|
210
|
|
|
|
|
211
|
|
|
|
|
212
|
|
View Code Duplication |
def node_weight_by_type(results, node_type): |
|
|
|
|
|
|
213
|
|
|
""" |
|
214
|
|
|
Extracts node weights (if exist) of all components of the specified |
|
215
|
|
|
`node_type`. |
|
216
|
|
|
|
|
217
|
|
|
Node weight are endogenous optimzation variables associated with the node |
|
218
|
|
|
and not the edge between two node, foxample the variable representing the |
|
219
|
|
|
storage level. |
|
220
|
|
|
|
|
221
|
|
|
Parameters |
|
222
|
|
|
---------- |
|
223
|
|
|
results: dict |
|
224
|
|
|
A result dictionary from a solved oemof.solph.Model object |
|
225
|
|
|
node_type: oemof.solph class |
|
226
|
|
|
Specifies the type for which node weights should be collected |
|
227
|
|
|
|
|
228
|
|
|
Example |
|
229
|
|
|
-------- |
|
230
|
|
|
from oemof.outputlib import views |
|
231
|
|
|
|
|
232
|
|
|
# solve oemof model 'm' |
|
233
|
|
|
# Then collect node weights |
|
234
|
|
|
views.node_weight_by_type(m.results(), node_type=solph.GenericStorage) |
|
235
|
|
|
""" |
|
236
|
|
|
|
|
237
|
|
|
group = { |
|
238
|
|
|
k: v["sequences"] |
|
239
|
|
|
for k, v in results.items() |
|
240
|
|
|
if isinstance(k[0], node_type) and k[1] is None |
|
241
|
|
|
} |
|
242
|
|
|
if not group: |
|
243
|
|
|
logging.error( |
|
244
|
|
|
"No node weights for nodes of type `{}`".format(node_type) |
|
245
|
|
|
) |
|
246
|
|
|
return None |
|
247
|
|
|
else: |
|
248
|
|
|
df = convert_to_multiindex( |
|
249
|
|
|
group, index_names=["node", "to", "weight_type"], droplevel=[1] |
|
250
|
|
|
) |
|
251
|
|
|
return df |
|
252
|
|
|
|
|
253
|
|
|
|
|
254
|
|
View Code Duplication |
def node_input_by_type(results, node_type, droplevel=None): |
|
|
|
|
|
|
255
|
|
|
"""Gets all inputs for all nodes of the type `node_type` and returns |
|
256
|
|
|
a dataframe. |
|
257
|
|
|
|
|
258
|
|
|
Parameters |
|
259
|
|
|
---------- |
|
260
|
|
|
results: dict |
|
261
|
|
|
A result dictionary from a solved oemof.solph.Model object |
|
262
|
|
|
node_type: oemof.solph class |
|
263
|
|
|
Specifies the type of the node for that inputs are selected |
|
264
|
|
|
droplevel: list |
|
265
|
|
|
|
|
266
|
|
|
Notes |
|
267
|
|
|
----- |
|
268
|
|
|
from oemof import solph |
|
269
|
|
|
from oemof.outputlib import views |
|
270
|
|
|
|
|
271
|
|
|
# solve oemof solph model 'm' |
|
272
|
|
|
# Then collect node weights |
|
273
|
|
|
views.node_input_by_type(m.results(), node_type=solph.Sink) |
|
274
|
|
|
""" |
|
275
|
|
|
if droplevel is None: |
|
276
|
|
|
droplevel = [] |
|
277
|
|
|
|
|
278
|
|
|
group = { |
|
279
|
|
|
k: v["sequences"] |
|
280
|
|
|
for k, v in results.items() |
|
281
|
|
|
if isinstance(k[1], node_type) and k[0] is not None |
|
282
|
|
|
} |
|
283
|
|
|
|
|
284
|
|
|
if not group: |
|
285
|
|
|
logging.info("No nodes of type `{}`".format(node_type)) |
|
286
|
|
|
return None |
|
287
|
|
|
else: |
|
288
|
|
|
df = convert_to_multiindex(group, droplevel=droplevel) |
|
289
|
|
|
return df |
|
290
|
|
|
|
|
291
|
|
|
|
|
292
|
|
View Code Duplication |
def node_output_by_type(results, node_type, droplevel=None): |
|
|
|
|
|
|
293
|
|
|
"""Gets all outputs for all nodes of the type `node_type` and returns |
|
294
|
|
|
a dataframe. |
|
295
|
|
|
|
|
296
|
|
|
Parameters |
|
297
|
|
|
---------- |
|
298
|
|
|
results: dict |
|
299
|
|
|
A result dictionary from a solved oemof.solph.Model object |
|
300
|
|
|
node_type: oemof.solph class |
|
301
|
|
|
Specifies the type of the node for that outputs are selected |
|
302
|
|
|
droplevel: list |
|
303
|
|
|
|
|
304
|
|
|
Notes |
|
305
|
|
|
----- |
|
306
|
|
|
import oemof.solph as solph |
|
307
|
|
|
from oemof.outputlib import views |
|
308
|
|
|
|
|
309
|
|
|
# solve oemof solph model 'm' |
|
310
|
|
|
# Then collect node weights |
|
311
|
|
|
views.node_output_by_type(m.results(), node_type=solph.Transformer) |
|
312
|
|
|
""" |
|
313
|
|
|
if droplevel is None: |
|
314
|
|
|
droplevel = [] |
|
315
|
|
|
group = { |
|
316
|
|
|
k: v["sequences"] |
|
317
|
|
|
for k, v in results.items() |
|
318
|
|
|
if isinstance(k[0], node_type) and k[1] is not None |
|
319
|
|
|
} |
|
320
|
|
|
|
|
321
|
|
|
if not group: |
|
322
|
|
|
logging.info("No nodes of type `{}`".format(node_type)) |
|
323
|
|
|
return None |
|
324
|
|
|
else: |
|
325
|
|
|
df = convert_to_multiindex(group, droplevel=droplevel) |
|
326
|
|
|
return df |
|
327
|
|
|
|
|
328
|
|
|
|
|
329
|
|
|
def net_storage_flow(results, node_type): |
|
330
|
|
|
"""Calculates the net storage flow for storage models that have one |
|
331
|
|
|
input edge and one output edge both with flows within the domain of |
|
332
|
|
|
non-negative reals. |
|
333
|
|
|
|
|
334
|
|
|
Parameters |
|
335
|
|
|
---------- |
|
336
|
|
|
results: dict |
|
337
|
|
|
A result dictionary from a solved oemof.solph.Model object |
|
338
|
|
|
node_type: oemof.solph class |
|
339
|
|
|
Specifies the type for which (storage) type net flows are calculated |
|
340
|
|
|
|
|
341
|
|
|
Returns |
|
342
|
|
|
------- |
|
343
|
|
|
pandas.DataFrame object with multiindex colums. Names of levels of columns |
|
344
|
|
|
are: from, to, net_flow. |
|
345
|
|
|
|
|
346
|
|
|
Examples |
|
347
|
|
|
-------- |
|
348
|
|
|
import oemof.solph as solph |
|
349
|
|
|
from oemof.outputlib import views |
|
350
|
|
|
|
|
351
|
|
|
# solve oemof solph model 'm' |
|
352
|
|
|
# Then collect node weights |
|
353
|
|
|
views.net_storage_flow(m.results(), node_type=solph.GenericStorage) |
|
354
|
|
|
""" |
|
355
|
|
|
|
|
356
|
|
|
group = { |
|
357
|
|
|
k: v["sequences"] |
|
358
|
|
|
for k, v in results.items() |
|
359
|
|
|
if isinstance(k[0], node_type) or isinstance(k[1], node_type) |
|
360
|
|
|
} |
|
361
|
|
|
|
|
362
|
|
|
if not group: |
|
363
|
|
|
logging.info("No nodes of type `{}`".format(node_type)) |
|
364
|
|
|
return None |
|
365
|
|
|
|
|
366
|
|
|
df = convert_to_multiindex(group) |
|
367
|
|
|
|
|
368
|
|
|
if "storage_content" not in df.columns.get_level_values(2).unique(): |
|
369
|
|
|
return None |
|
370
|
|
|
|
|
371
|
|
|
x = df.xs("storage_content", axis=1, level=2).columns.values |
|
372
|
|
|
labels = [s for s, t in x] |
|
373
|
|
|
|
|
374
|
|
|
dataframes = [] |
|
375
|
|
|
|
|
376
|
|
|
for lb in labels: |
|
377
|
|
|
subset = df.groupby( |
|
378
|
|
|
lambda x1: ( |
|
379
|
|
|
lambda fr, to, ty: "output" |
|
380
|
|
|
if (fr == lb and ty == "flow") |
|
381
|
|
|
else "input" |
|
382
|
|
|
if (to == lb and ty == "flow") |
|
383
|
|
|
else "level" |
|
384
|
|
|
if (fr == lb and ty != "flow") |
|
385
|
|
|
else None |
|
386
|
|
|
)(*x1), |
|
387
|
|
|
axis=1, |
|
388
|
|
|
).sum() |
|
389
|
|
|
|
|
390
|
|
|
subset["net_flow"] = subset["output"] - subset["input"] |
|
391
|
|
|
|
|
392
|
|
|
subset.columns = pd.MultiIndex.from_product( |
|
393
|
|
|
[[lb], [o for o in lb.outputs], subset.columns] |
|
394
|
|
|
) |
|
395
|
|
|
|
|
396
|
|
|
dataframes.append( |
|
397
|
|
|
subset.loc[:, (slice(None), slice(None), "net_flow")] |
|
398
|
|
|
) |
|
399
|
|
|
|
|
400
|
|
|
return pd.concat(dataframes, axis=1) |
|
401
|
|
|
|
|
402
|
|
|
|
|
403
|
|
|
def convert_to_multiindex(group, index_names=None, droplevel=None): |
|
404
|
|
|
"""Convert dict to pandas DataFrame with multiindex |
|
405
|
|
|
|
|
406
|
|
|
Parameters |
|
407
|
|
|
---------- |
|
408
|
|
|
group: dict |
|
409
|
|
|
Sequences of the oemof.solph.Model.results dictionary |
|
410
|
|
|
index_names: arraylike |
|
411
|
|
|
Array with names of the MultiIndex |
|
412
|
|
|
droplevel: arraylike |
|
413
|
|
|
List containing levels to be dropped from the dataframe |
|
414
|
|
|
""" |
|
415
|
|
|
if index_names is None: |
|
416
|
|
|
index_names = ["from", "to", "type"] |
|
417
|
|
|
if droplevel is None: |
|
418
|
|
|
droplevel = [] |
|
419
|
|
|
|
|
420
|
|
|
sorted_group = OrderedDict((k, group[k]) for k in sorted(group)) |
|
421
|
|
|
df = pd.concat(sorted_group.values(), axis=1) |
|
422
|
|
|
|
|
423
|
|
|
cols = OrderedDict((k, v.columns) for k, v in sorted_group.items()) |
|
424
|
|
|
cols = [tuple((k, m) for m in v) for k, v in cols.items()] |
|
425
|
|
|
cols = [c for sublist in cols for c in sublist] |
|
426
|
|
|
idx = pd.MultiIndex.from_tuples( |
|
427
|
|
|
[tuple([col[0][0], col[0][1], col[1]]) for col in cols] |
|
428
|
|
|
) |
|
429
|
|
|
idx.set_names(index_names, inplace=True) |
|
430
|
|
|
df.columns = idx |
|
431
|
|
|
df.columns = df.columns.droplevel(droplevel) |
|
432
|
|
|
|
|
433
|
|
|
return df |
|
434
|
|
|
|