1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
|
3
|
|
|
"""Creating sets, variables, constraints and parts of the objective function |
4
|
|
|
for Flow objects with investment but without nonconvex option. |
5
|
|
|
|
6
|
|
|
SPDX-FileCopyrightText: Uwe Krien <[email protected]> |
7
|
|
|
SPDX-FileCopyrightText: Simon Hilpert |
8
|
|
|
SPDX-FileCopyrightText: Cord Kaldemeyer |
9
|
|
|
SPDX-FileCopyrightText: Patrik Schönfeldt |
10
|
|
|
SPDX-FileCopyrightText: Birgit Schachler |
11
|
|
|
SPDX-FileCopyrightText: jnnr |
12
|
|
|
SPDX-FileCopyrightText: jmloenneberga |
13
|
|
|
SPDX-FileCopyrightText: Johannes Kochems |
14
|
|
|
|
15
|
|
|
SPDX-License-Identifier: MIT |
16
|
|
|
|
17
|
|
|
""" |
18
|
|
|
from pyomo.core import Binary |
19
|
|
|
from pyomo.core import BuildAction |
20
|
|
|
from pyomo.core import Constraint |
21
|
|
|
from pyomo.core import Expression |
22
|
|
|
from pyomo.core import NonNegativeReals |
23
|
|
|
from pyomo.core import Set |
24
|
|
|
from pyomo.core import Var |
25
|
|
|
from pyomo.core.base.block import ScalarBlock |
26
|
|
|
|
27
|
|
|
|
28
|
|
|
class InvestmentFlowBlock(ScalarBlock): |
29
|
|
|
r"""Block for all flows with :attr:`Investment` being not None. |
30
|
|
|
|
31
|
|
|
.. automethod:: _create_constraints |
32
|
|
|
.. automethod:: _create_variables |
33
|
|
|
.. automethod:: _create_sets |
34
|
|
|
|
35
|
|
|
.. automethod:: _objective_expression |
36
|
|
|
|
37
|
|
|
See :class:`oemof.solph.options.Investment` for all parameters of the |
38
|
|
|
*Investment* class. |
39
|
|
|
|
40
|
|
|
See :class:`oemof.solph.flows._simple_flow_block.SimpleFlowBlock` |
41
|
|
|
for all parameters of the *SimpleFlowBlock* class. |
42
|
|
|
|
43
|
|
|
The overall summed cost expressions for all *InvestmentFlowBlock* objects |
44
|
|
|
can be accessed by |
45
|
|
|
|
46
|
|
|
* :attr:`om.InvestmentFlowBlock.investment_costs`, |
47
|
|
|
* :attr:`om.InvestmentFlowBlock.costs`. |
48
|
|
|
|
49
|
|
|
Note |
50
|
|
|
---- |
51
|
|
|
In case of a nonconvex investment flow (:attr:`nonconvex=True`), |
52
|
|
|
the existing flow capacity :math:`P_{exist}` needs to be zero. |
53
|
|
|
|
54
|
|
|
Note |
55
|
|
|
---- |
56
|
|
|
See also :class:`~oemof.solph.flows._flow.Flow`, |
57
|
|
|
:class:`~oemof.solph.flows._simple_flow_block.SimpleFlowBlock` and |
58
|
|
|
:class:`~oemof.solph._options.Investment` |
59
|
|
|
|
60
|
|
|
""" # noqa: E501 |
61
|
|
|
|
62
|
|
|
def __init__(self, *args, **kwargs): |
63
|
|
|
super().__init__(*args, **kwargs) |
64
|
|
|
|
65
|
|
|
def _create(self, group=None): |
66
|
|
|
r"""Creates sets, variables and constraints for SimpleFlowBlock |
67
|
|
|
with investment attribute of type class:`.Investment`. |
68
|
|
|
|
69
|
|
|
Parameters |
70
|
|
|
---------- |
71
|
|
|
group : list |
72
|
|
|
List containing tuples containing flow (f) objects that have an |
73
|
|
|
attribute investment and the associated source (s) and target (t) |
74
|
|
|
of flow e.g. groups=[(s1, t1, f1), (s2, t2, f2),..] |
75
|
|
|
""" |
76
|
|
|
if group is None: |
77
|
|
|
return None |
78
|
|
|
|
79
|
|
|
self._create_sets(group) |
80
|
|
|
self._create_variables(group) |
81
|
|
|
self._create_constraints() |
82
|
|
|
|
83
|
|
|
def _create_sets(self, group): |
84
|
|
|
""" |
85
|
|
|
Creates all sets for investment flows. |
86
|
|
|
""" |
87
|
|
|
self.INVESTFLOWS = Set(initialize=[(g[0], g[1]) for g in group]) |
88
|
|
|
|
89
|
|
|
self.CONVEX_INVESTFLOWS = Set( |
90
|
|
|
initialize=[ |
91
|
|
|
(g[0], g[1]) |
92
|
|
|
for g in group |
93
|
|
|
if g[2].investment.nonconvex is False |
94
|
|
|
] |
95
|
|
|
) |
96
|
|
|
|
97
|
|
|
self.NON_CONVEX_INVESTFLOWS = Set( |
98
|
|
|
initialize=[ |
99
|
|
|
(g[0], g[1]) |
100
|
|
|
for g in group |
101
|
|
|
if g[2].investment.nonconvex is True |
102
|
|
|
] |
103
|
|
|
) |
104
|
|
|
|
105
|
|
|
self.FIXED_INVESTFLOWS = Set( |
106
|
|
|
initialize=[(g[0], g[1]) for g in group if g[2].fix[0] is not None] |
107
|
|
|
) |
108
|
|
|
|
109
|
|
|
self.NON_FIXED_INVESTFLOWS = Set( |
110
|
|
|
initialize=[(g[0], g[1]) for g in group if g[2].fix[0] is None] |
111
|
|
|
) |
112
|
|
|
|
113
|
|
|
self.FULL_LOAD_TIME_MAX_INVESTFLOWS = Set( |
114
|
|
|
initialize=[ |
115
|
|
|
(g[0], g[1]) |
116
|
|
|
for g in group |
117
|
|
|
if g[2].full_load_time_max is not None |
118
|
|
|
] |
119
|
|
|
) |
120
|
|
|
|
121
|
|
|
self.FULL_LOAD_TIME_MIN_INVESTFLOWS = Set( |
122
|
|
|
initialize=[ |
123
|
|
|
(g[0], g[1]) |
124
|
|
|
for g in group |
125
|
|
|
if g[2].full_load_time_min is not None |
126
|
|
|
] |
127
|
|
|
) |
128
|
|
|
|
129
|
|
|
self.MIN_INVESTFLOWS = Set( |
130
|
|
|
initialize=[(g[0], g[1]) for g in group if g[2].min.min() != 0] |
131
|
|
|
) |
132
|
|
|
|
133
|
|
|
self.EXISTING_INVESTFLOWS = Set( |
134
|
|
|
initialize=[ |
135
|
|
|
(g[0], g[1]) |
136
|
|
|
for g in group |
137
|
|
|
if g[2].investment.existing is not None |
138
|
|
|
] |
139
|
|
|
) |
140
|
|
|
|
141
|
|
|
self.OVERALL_MAXIMUM_INVESTFLOWS = Set( |
142
|
|
|
initialize=[ |
143
|
|
|
(g[0], g[1]) |
144
|
|
|
for g in group |
145
|
|
|
if g[2].investment.overall_maximum is not None |
146
|
|
|
] |
147
|
|
|
) |
148
|
|
|
|
149
|
|
|
self.OVERALL_MINIMUM_INVESTFLOWS = Set( |
150
|
|
|
initialize=[ |
151
|
|
|
(g[0], g[1]) |
152
|
|
|
for g in group |
153
|
|
|
if g[2].investment.overall_minimum is not None |
154
|
|
|
] |
155
|
|
|
) |
156
|
|
|
|
157
|
|
|
def _create_variables(self, _): |
158
|
|
|
r"""Creates all variables for investment flows. |
159
|
|
|
|
160
|
|
|
All *InvestmentFlowBlock* objects are indexed by a starting and |
161
|
|
|
ending node :math:`(i, o)`, which is omitted in the following |
162
|
|
|
for the sake of convenience. The following variables are created: |
163
|
|
|
|
164
|
|
|
* :math:`P(p, t)` |
165
|
|
|
|
166
|
|
|
Actual flow value |
167
|
|
|
(created in :class:`oemof.solph.models.Model`), |
168
|
|
|
indexed by tuple of periods p and timestep t |
169
|
|
|
|
170
|
|
|
* :math:`P_{invest}(p)` |
171
|
|
|
|
172
|
|
|
Value of the investment variable in period p, |
173
|
|
|
equal to what is being invested and equivalent resp. similar to |
174
|
|
|
the nominal capacity of the flows after optimization. |
175
|
|
|
|
176
|
|
|
* :math:`P_{total}(p)` |
177
|
|
|
|
178
|
|
|
Total installed capacity / energy in period p, |
179
|
|
|
equivalent to the nominal capacity of the flows after optimization. |
180
|
|
|
|
181
|
|
|
* :math:`P_{old}(p)` |
182
|
|
|
|
183
|
|
|
Old capacity / energy to be decommissioned in period p |
184
|
|
|
due to reaching its lifetime; applicable only |
185
|
|
|
for multi-period models. |
186
|
|
|
|
187
|
|
|
* :math:`P_{old,exo}(p)` |
188
|
|
|
|
189
|
|
|
Old exogenous capacity / energy to be decommissioned in period p |
190
|
|
|
due to reaching its lifetime, i.e. the amount that has |
191
|
|
|
been specified by :attr:`existing` when it is decommisioned; |
192
|
|
|
applicable only for multi-period models. |
193
|
|
|
|
194
|
|
|
* :math:`P_{old,end}(p)` |
195
|
|
|
|
196
|
|
|
Old endogenous capacity / energy to be decommissioned in period p |
197
|
|
|
due to reaching its lifetime, i.e. the amount that has been |
198
|
|
|
invested in by the model itself that is decommissioned in |
199
|
|
|
a later period because of reaching its lifetime; |
200
|
|
|
applicable only for multi-period models. |
201
|
|
|
|
202
|
|
|
* :math:`Y_{invest}(p)` |
203
|
|
|
|
204
|
|
|
Binary variable for the status of the investment, if |
205
|
|
|
:attr:`nonconvex` is `True`. |
206
|
|
|
""" |
207
|
|
|
m = self.parent_block() |
208
|
|
|
|
209
|
|
|
def _investvar_bound_rule(block, i, o, p): |
210
|
|
|
"""Rule definition for bounds of invest variable.""" |
211
|
|
|
if (i, o) in self.CONVEX_INVESTFLOWS: |
212
|
|
|
return ( |
213
|
|
|
m.flows[i, o].investment.minimum[p], |
214
|
|
|
m.flows[i, o].investment.maximum[p], |
215
|
|
|
) |
216
|
|
|
elif (i, o) in self.NON_CONVEX_INVESTFLOWS: |
217
|
|
|
return 0, m.flows[i, o].investment.maximum[p] |
218
|
|
|
|
219
|
|
|
# create invest variable for an investment flow |
220
|
|
|
self.invest = Var( |
221
|
|
|
self.INVESTFLOWS, |
222
|
|
|
m.CAPACITY_PERIODS, |
223
|
|
|
within=NonNegativeReals, |
224
|
|
|
bounds=_investvar_bound_rule, |
225
|
|
|
) |
226
|
|
|
|
227
|
|
|
# Total capacity |
228
|
|
|
self.total = Var( |
229
|
|
|
self.INVESTFLOWS, m.CAPACITY_PERIODS, within=NonNegativeReals |
230
|
|
|
) |
231
|
|
|
|
232
|
|
|
if m.es.investment_times is not None: |
233
|
|
|
self.old = Var( |
234
|
|
|
self.INVESTFLOWS, m.CAPACITY_PERIODS, within=NonNegativeReals |
235
|
|
|
) |
236
|
|
|
|
237
|
|
|
# Old endogenous capacity to be decommissioned (due to lifetime) |
238
|
|
|
self.old_end = Var( |
239
|
|
|
self.INVESTFLOWS, m.CAPACITY_PERIODS, within=NonNegativeReals |
240
|
|
|
) |
241
|
|
|
|
242
|
|
|
# Old exogenous capacity to be decommissioned (due to lifetime) |
243
|
|
|
self.old_exo = Var( |
244
|
|
|
self.INVESTFLOWS, m.CAPACITY_PERIODS, within=NonNegativeReals |
245
|
|
|
) |
246
|
|
|
|
247
|
|
|
# create status variable for a non-convex investment flow |
248
|
|
|
self.invest_status = Var( |
249
|
|
|
self.NON_CONVEX_INVESTFLOWS, m.CAPACITY_PERIODS, within=Binary |
250
|
|
|
) |
251
|
|
|
|
252
|
|
|
def _create_constraints(self): |
253
|
|
|
r"""Creates all constraints for standard flows. |
254
|
|
|
|
255
|
|
|
Depending on the attributes of the *InvestmentFlowBlock* |
256
|
|
|
and *SimpleFlowBlock*, different constraints are created. |
257
|
|
|
The following constraints are created |
258
|
|
|
for all *InvestmentFlowBlock* objects:\ |
259
|
|
|
|
260
|
|
|
Total capacity / energy |
261
|
|
|
|
262
|
|
|
.. math:: |
263
|
|
|
& |
264
|
|
|
if \quad p=0:\\ |
265
|
|
|
& |
266
|
|
|
P_{total}(p) = P_{invest}(p) + P_{exist}(p) \\ |
267
|
|
|
&\\ |
268
|
|
|
& |
269
|
|
|
else:\\ |
270
|
|
|
& |
271
|
|
|
P_{total}(p) = P_{total}(p-1) + P_{invest}(p) - P_{old}(p) \\ |
272
|
|
|
&\\ |
273
|
|
|
& |
274
|
|
|
\forall p \in \textrm{CAPACITY_PERIODS} |
275
|
|
|
|
276
|
|
|
Upper bound for the flow value |
277
|
|
|
|
278
|
|
|
.. math:: |
279
|
|
|
& |
280
|
|
|
P(p, t) \le ( P_{total}(p) ) \cdot f_{max}(t) \\ |
281
|
|
|
& |
282
|
|
|
\forall p, t \in \textrm{TIMEINDEX} |
283
|
|
|
|
284
|
|
|
For a multi-period model, the old capacity is defined as follows: |
285
|
|
|
|
286
|
|
|
.. math:: |
287
|
|
|
& |
288
|
|
|
P_{old}(p) = P_{old,exo}(p) + P_{old,end}(p)\\ |
289
|
|
|
&\\ |
290
|
|
|
& |
291
|
|
|
if \quad p=0:\\ |
292
|
|
|
& |
293
|
|
|
P_{old,end}(p) = 0\\ |
294
|
|
|
&\\ |
295
|
|
|
& |
296
|
|
|
else \quad if \quad l \leq year(p):\\ |
297
|
|
|
& |
298
|
|
|
P_{old,end}(p) = P_{invest}(p_{comm})\\ |
299
|
|
|
&\\ |
300
|
|
|
& |
301
|
|
|
else:\\ |
302
|
|
|
& |
303
|
|
|
P_{old,end}(p) = 0\\ |
304
|
|
|
&\\ |
305
|
|
|
& |
306
|
|
|
if \quad p=0:\\ |
307
|
|
|
& |
308
|
|
|
P_{old,exo}(p) = 0\\ |
309
|
|
|
&\\ |
310
|
|
|
& |
311
|
|
|
else \quad if \quad l - a \leq year(p):\\ |
312
|
|
|
& |
313
|
|
|
P_{old,exo}(p) = P_{exist} (*)\\ |
314
|
|
|
&\\ |
315
|
|
|
& |
316
|
|
|
else:\\ |
317
|
|
|
& |
318
|
|
|
P_{old,exo}(p) = 0\\ |
319
|
|
|
&\\ |
320
|
|
|
& |
321
|
|
|
\forall p \in \textrm{CAPACITY_PERIODS} |
322
|
|
|
|
323
|
|
|
where: |
324
|
|
|
|
325
|
|
|
* (*) is only performed for the first period the condition |
326
|
|
|
is True. A decommissioning flag is then set to True |
327
|
|
|
to prevent having falsely added old capacity in future periods. |
328
|
|
|
* :math:`year(p)` is the year corresponding to period p |
329
|
|
|
* :math:`p_{comm}` is the commissioning period of the flow |
330
|
|
|
(which is determined by the model itself) |
331
|
|
|
|
332
|
|
|
Depending on the attribute :attr:`nonconvex`, the constraints for the |
333
|
|
|
bounds of the decision variable :math:`P_{invest}(p)` are different:\ |
334
|
|
|
|
335
|
|
|
* :attr:`nonconvex = False` |
336
|
|
|
|
337
|
|
|
.. math:: |
338
|
|
|
& |
339
|
|
|
P_{invest, min}(p) \le P_{invest}(p) \le P_{invest, max}(p) \\ |
340
|
|
|
& |
341
|
|
|
\forall p \in \textrm{CAPACITY_PERIODS} |
342
|
|
|
|
343
|
|
|
* :attr:`nonconvex = True` |
344
|
|
|
|
345
|
|
|
.. math:: |
346
|
|
|
& |
347
|
|
|
P_{invest, min}(p) \cdot Y_{invest}(p) \le P_{invest}(p)\\ |
348
|
|
|
& |
349
|
|
|
P_{invest}(p) \le P_{invest, max}(p) \cdot Y_{invest}(p)\\ |
350
|
|
|
&\\ |
351
|
|
|
& |
352
|
|
|
\forall p \in \textrm{CAPACITY_PERIODS} |
353
|
|
|
|
354
|
|
|
For all *InvestmentFlowBlock* objects |
355
|
|
|
(independent of the attribute :attr:`nonconvex`), |
356
|
|
|
the following additional constraints are created, if the appropriate |
357
|
|
|
attribute of the *SimpleFlowBlock* |
358
|
|
|
(see :class:`oemof.solph.flows._simple_flow_block.SimpleFlowBlock`) |
359
|
|
|
is set: |
360
|
|
|
|
361
|
|
|
* :attr:`fix` is not None |
362
|
|
|
|
363
|
|
|
Actual value constraint for investments with fixed flow values |
364
|
|
|
|
365
|
|
|
.. math:: |
366
|
|
|
& |
367
|
|
|
P(p, t) = P_{total}(p) \cdot f_{fix}(t) \\ |
368
|
|
|
&\\ |
369
|
|
|
& |
370
|
|
|
\forall p, t \in \textrm{TIMEINDEX} |
371
|
|
|
|
372
|
|
|
* :attr:`min != 0` |
373
|
|
|
|
374
|
|
|
Lower bound for the flow values |
375
|
|
|
|
376
|
|
|
.. math:: |
377
|
|
|
& |
378
|
|
|
P(p, t) \geq P_{total}(p) \cdot f_{min}(t) \\ |
379
|
|
|
&\\ |
380
|
|
|
& |
381
|
|
|
\forall p, t \in \textrm{TIMEINDEX} |
382
|
|
|
|
383
|
|
|
* :attr:`full_load_time_max is not None` |
384
|
|
|
|
385
|
|
|
Upper bound for the sum of all flow values |
386
|
|
|
(e.g. maximum full load hours) |
387
|
|
|
|
388
|
|
|
.. math:: |
389
|
|
|
\sum_{p, t} P(p, t) \cdot \tau(t) \leq P_{total}(p) |
390
|
|
|
\cdot t_{full\_load, min} |
391
|
|
|
|
392
|
|
|
* :attr:`full_load_time_min is not None` |
393
|
|
|
|
394
|
|
|
Lower bound for the sum of all flow values |
395
|
|
|
(e.g. minimum full load hours) |
396
|
|
|
|
397
|
|
|
.. math:: |
398
|
|
|
\sum_{p, t} P(t) \cdot \tau(t) \geq P_{total} |
399
|
|
|
\cdot t_{full\_load, min} |
400
|
|
|
|
401
|
|
|
* :attr:`overall_maximum` is not None |
402
|
|
|
(for multi-period model only) |
403
|
|
|
|
404
|
|
|
Overall maximum of total installed capacity / energy for flow |
405
|
|
|
|
406
|
|
|
.. math:: |
407
|
|
|
& |
408
|
|
|
P_{total}(p) \leq P_{overall,max} \\ |
409
|
|
|
&\\ |
410
|
|
|
& |
411
|
|
|
\forall p \in \textrm{CAPACITY_PERIODS} |
412
|
|
|
|
413
|
|
|
* :attr:`overall_minimum` is not None |
414
|
|
|
(for multi-period model only) |
415
|
|
|
|
416
|
|
|
Overall minimum of total installed capacity / energy for flow; |
417
|
|
|
applicable only in last period |
418
|
|
|
|
419
|
|
|
.. math:: |
420
|
|
|
P_{total}(p_{last}) \geq P_{overall,min} |
421
|
|
|
""" |
422
|
|
|
m = self.parent_block() |
423
|
|
|
|
424
|
|
|
self.minimum_rule = self._minimum_investment_constraint() |
425
|
|
|
self.maximum_rule = self._maximum_investment_constraint() |
426
|
|
|
|
427
|
|
|
# Handle unit lifetimes |
428
|
|
|
def _total_capacity_rule(block): |
429
|
|
|
"""Rule definition for determining total installed |
430
|
|
|
capacity (taking decommissioning into account) |
431
|
|
|
""" |
432
|
|
|
for i, o in self.INVESTFLOWS: |
433
|
|
|
for p in m.CAPACITY_PERIODS: |
434
|
|
|
if p == 0: |
435
|
|
|
expr = ( |
436
|
|
|
self.total[i, o, p] |
437
|
|
|
== self.invest[i, o, p] |
438
|
|
|
+ m.flows[i, o].investment.existing |
439
|
|
|
) |
440
|
|
|
self.total_rule.add((i, o, p), expr) |
441
|
|
|
# applicable for multi-period model only |
442
|
|
|
else: |
443
|
|
|
expr = ( |
444
|
|
|
self.total[i, o, p] |
445
|
|
|
== self.invest[i, o, p] |
446
|
|
|
+ self.total[i, o, p - 1] |
447
|
|
|
- self.old[i, o, p] |
448
|
|
|
) |
449
|
|
|
self.total_rule.add((i, o, p), expr) |
450
|
|
|
|
451
|
|
|
self.total_rule = Constraint( |
452
|
|
|
self.INVESTFLOWS, m.CAPACITY_PERIODS, noruleinit=True |
453
|
|
|
) |
454
|
|
|
self.total_rule_build = BuildAction(rule=_total_capacity_rule) |
455
|
|
|
|
456
|
|
|
def _investflow_fixed_rule(block): |
457
|
|
|
"""Rule definition of constraint to fix flow variable |
458
|
|
|
of investment flow to (normed) actual value |
459
|
|
|
""" |
460
|
|
|
for i, o in self.FIXED_INVESTFLOWS: |
461
|
|
|
for p, t in m.TIMEINDEX: |
462
|
|
|
expr = ( |
463
|
|
|
m.flow[i, o, t] |
464
|
|
|
== self.total[i, o, p] * m.flows[i, o].fix[t] |
465
|
|
|
) |
466
|
|
|
self.fixed.add((i, o, p, t), expr) |
467
|
|
|
|
468
|
|
|
self.fixed = Constraint( |
469
|
|
|
self.FIXED_INVESTFLOWS, m.TIMEINDEX, noruleinit=True |
470
|
|
|
) |
471
|
|
|
self.fixed_build = BuildAction(rule=_investflow_fixed_rule) |
472
|
|
|
|
473
|
|
|
def _max_investflow_rule(block): |
474
|
|
|
"""Rule definition of constraint setting an upper bound of flow |
475
|
|
|
variable in investment case. |
476
|
|
|
""" |
477
|
|
|
for i, o in self.NON_FIXED_INVESTFLOWS: |
478
|
|
|
for p, t in m.TIMEINDEX: |
479
|
|
|
expr = ( |
480
|
|
|
m.flow[i, o, t] |
481
|
|
|
<= self.total[i, o, p] * m.flows[i, o].max[t] |
482
|
|
|
) |
483
|
|
|
self.max.add((i, o, p, t), expr) |
484
|
|
|
|
485
|
|
|
self.max = Constraint( |
486
|
|
|
self.NON_FIXED_INVESTFLOWS, m.TIMEINDEX, noruleinit=True |
487
|
|
|
) |
488
|
|
|
self.max_build = BuildAction(rule=_max_investflow_rule) |
489
|
|
|
|
490
|
|
|
def _min_investflow_rule(block): |
491
|
|
|
"""Rule definition of constraint setting a lower bound on flow |
492
|
|
|
variable in investment case. |
493
|
|
|
""" |
494
|
|
|
for i, o in self.MIN_INVESTFLOWS: |
495
|
|
|
for p, t in m.TIMEINDEX: |
496
|
|
|
expr = ( |
497
|
|
|
m.flow[i, o, t] |
498
|
|
|
>= self.total[i, o, p] * m.flows[i, o].min[t] |
499
|
|
|
) |
500
|
|
|
self.min.add((i, o, p, t), expr) |
501
|
|
|
|
502
|
|
|
self.min = Constraint( |
503
|
|
|
self.MIN_INVESTFLOWS, m.TIMEINDEX, noruleinit=True |
504
|
|
|
) |
505
|
|
|
self.min_build = BuildAction(rule=_min_investflow_rule) |
506
|
|
|
|
507
|
|
|
def _full_load_time_max_investflow_rule(_, i, o): |
508
|
|
|
"""Rule definition for build action of max. sum flow constraint |
509
|
|
|
in investment case. |
510
|
|
|
""" |
511
|
|
|
expr = sum( |
512
|
|
|
m.flow[i, o, t] * m.timeincrement[t] for t in m.TIMESTEPS |
513
|
|
|
) <= ( |
514
|
|
|
m.flows[i, o].full_load_time_max |
515
|
|
|
* sum(self.total[i, o, p] for p in m.CAPACITY_PERIODS) |
516
|
|
|
) |
517
|
|
|
return expr |
518
|
|
|
|
519
|
|
|
self.full_load_time_max = Constraint( |
520
|
|
|
self.FULL_LOAD_TIME_MAX_INVESTFLOWS, |
521
|
|
|
rule=_full_load_time_max_investflow_rule, |
522
|
|
|
) |
523
|
|
|
|
524
|
|
|
def _full_load_time_min_investflow_rule(_, i, o): |
525
|
|
|
"""Rule definition for build action of min. sum flow constraint |
526
|
|
|
in investment case. |
527
|
|
|
""" |
528
|
|
|
expr = sum( |
529
|
|
|
m.flow[i, o, t] * m.timeincrement[t] for t in m.TIMESTEPS |
530
|
|
|
) >= ( |
531
|
|
|
sum(self.total[i, o, p] for p in m.CAPACITY_PERIODS) |
532
|
|
|
* m.flows[i, o].full_load_time_min |
533
|
|
|
) |
534
|
|
|
return expr |
535
|
|
|
|
536
|
|
|
self.full_load_time_min = Constraint( |
537
|
|
|
self.FULL_LOAD_TIME_MIN_INVESTFLOWS, |
538
|
|
|
rule=_full_load_time_min_investflow_rule, |
539
|
|
|
) |
540
|
|
|
|
541
|
|
|
if m.es.investment_times is not None: |
542
|
|
|
|
543
|
|
|
def _overall_maximum_investflow_rule(block): |
544
|
|
|
"""Rule definition for maximum overall investment |
545
|
|
|
in investment case. |
546
|
|
|
""" |
547
|
|
|
for i, o in self.OVERALL_MAXIMUM_INVESTFLOWS: |
548
|
|
|
for p in m.CAPACITY_PERIODS: |
549
|
|
|
expr = ( |
550
|
|
|
self.total[i, o, p] |
551
|
|
|
<= m.flows[i, o].investment.overall_maximum |
552
|
|
|
) |
553
|
|
|
self.overall_maximum.add((i, o, p), expr) |
554
|
|
|
|
555
|
|
|
self.overall_maximum = Constraint( |
556
|
|
|
self.OVERALL_MAXIMUM_INVESTFLOWS, |
557
|
|
|
m.CAPACITY_PERIODS, |
558
|
|
|
noruleinit=True, |
559
|
|
|
) |
560
|
|
|
self.overall_maximum_build = BuildAction( |
561
|
|
|
rule=_overall_maximum_investflow_rule |
562
|
|
|
) |
563
|
|
|
|
564
|
|
|
def _overall_minimum_investflow_rule(block, i, o): |
565
|
|
|
"""Rule definition for minimum overall investment |
566
|
|
|
in investment case. |
567
|
|
|
|
568
|
|
|
Note: This is only applicable for the last period |
569
|
|
|
""" |
570
|
|
|
expr = ( |
571
|
|
|
m.flows[i, o].investment.overall_minimum |
572
|
|
|
<= self.total[i, o, m.CAPACITY_PERIODS[-1]] |
573
|
|
|
) |
574
|
|
|
return expr |
575
|
|
|
|
576
|
|
|
self.overall_minimum = Constraint( |
577
|
|
|
self.OVERALL_MINIMUM_INVESTFLOWS, |
578
|
|
|
rule=_overall_minimum_investflow_rule, |
579
|
|
|
) |
580
|
|
|
|
581
|
|
|
def _objective_expression(self): |
582
|
|
|
r"""Objective expression for flows with investment attribute of type |
583
|
|
|
class:`.Investment`. The returned costs are fixed and |
584
|
|
|
investment costs. Variable costs are added from the standard flow |
585
|
|
|
objective expression. |
586
|
|
|
|
587
|
|
|
Objective terms for a standard model and a multi-period model differ |
588
|
|
|
quite strongly. Besides, the part of the objective function added by |
589
|
|
|
the *InvestmentFlowBlock* also depends on whether a convex |
590
|
|
|
or nonconvex *InvestmentFlowBlock* is selected. |
591
|
|
|
The following parts of the objective function are created: |
592
|
|
|
|
593
|
|
|
|
594
|
|
|
* :attr:`nonconvex = False` |
595
|
|
|
|
596
|
|
|
.. math:: |
597
|
|
|
\sum_p P_{invest}(p) \cdot c_{invest,var}(p) |
598
|
|
|
|
599
|
|
|
* :attr:`nonconvex = True` |
600
|
|
|
|
601
|
|
|
.. math:: |
602
|
|
|
\sum_p \left(P_{invest}(p) \cdot c_{invest,var}(p) |
603
|
|
|
+ c_{invest,fix}(p) \cdot Y_{invest}(p) \right)\\ |
604
|
|
|
|
605
|
|
|
Where p denotes the capacity period. |
606
|
|
|
|
607
|
|
|
""" |
608
|
|
|
if not hasattr(self, "INVESTFLOWS"): |
609
|
|
|
return 0 |
610
|
|
|
|
611
|
|
|
m = self.parent_block() |
612
|
|
|
investment_costs = 0 |
613
|
|
|
|
614
|
|
|
for i, o in self.CONVEX_INVESTFLOWS: |
615
|
|
|
for p in m.CAPACITY_PERIODS: |
616
|
|
|
investment_costs += ( |
617
|
|
|
self.invest[i, o, p] * m.flows[i, o].investment.ep_costs[p] |
618
|
|
|
) |
619
|
|
|
|
620
|
|
|
for i, o in self.NON_CONVEX_INVESTFLOWS: |
621
|
|
|
for p in m.CAPACITY_PERIODS: |
622
|
|
|
investment_costs += ( |
623
|
|
|
self.invest[i, o, p] * m.flows[i, o].investment.ep_costs[p] |
624
|
|
|
+ self.invest_status[i, o, p] |
625
|
|
|
* m.flows[i, o].investment.offset[p] |
626
|
|
|
) |
627
|
|
|
|
628
|
|
|
self.investment_costs = Expression(expr=investment_costs) |
629
|
|
|
self.costs = Expression(expr=investment_costs) |
630
|
|
|
|
631
|
|
|
return self.costs |
632
|
|
|
|
633
|
|
View Code Duplication |
def _minimum_investment_constraint(self): |
|
|
|
|
634
|
|
|
"""Constraint factory for a minimum investment""" |
635
|
|
|
m = self.parent_block() |
636
|
|
|
|
637
|
|
|
def _min_invest_rule(_): |
638
|
|
|
"""Rule definition for applying a minimum investment""" |
639
|
|
|
for i, o in self.NON_CONVEX_INVESTFLOWS: |
640
|
|
|
for p in m.CAPACITY_PERIODS: |
641
|
|
|
expr = ( |
642
|
|
|
m.flows[i, o].investment.minimum[p] |
643
|
|
|
* self.invest_status[i, o, p] |
644
|
|
|
<= self.invest[i, o, p] |
645
|
|
|
) |
646
|
|
|
self.minimum_rule.add((i, o, p), expr) |
647
|
|
|
|
648
|
|
|
self.minimum_rule = Constraint( |
649
|
|
|
self.NON_CONVEX_INVESTFLOWS, m.CAPACITY_PERIODS, noruleinit=True |
650
|
|
|
) |
651
|
|
|
self.minimum_rule_build = BuildAction(rule=_min_invest_rule) |
652
|
|
|
|
653
|
|
|
return self.minimum_rule |
654
|
|
|
|
655
|
|
View Code Duplication |
def _maximum_investment_constraint(self): |
|
|
|
|
656
|
|
|
"""Constraint factory for a maximum investment""" |
657
|
|
|
m = self.parent_block() |
658
|
|
|
|
659
|
|
|
def _max_invest_rule(_): |
660
|
|
|
"""Rule definition for applying a minimum investment""" |
661
|
|
|
for i, o in self.NON_CONVEX_INVESTFLOWS: |
662
|
|
|
for p in m.CAPACITY_PERIODS: |
663
|
|
|
expr = self.invest[i, o, p] <= ( |
664
|
|
|
m.flows[i, o].investment.maximum[p] |
665
|
|
|
* self.invest_status[i, o, p] |
666
|
|
|
) |
667
|
|
|
self.maximum_rule.add((i, o, p), expr) |
668
|
|
|
|
669
|
|
|
self.maximum_rule = Constraint( |
670
|
|
|
self.NON_CONVEX_INVESTFLOWS, m.CAPACITY_PERIODS, noruleinit=True |
671
|
|
|
) |
672
|
|
|
self.maximum_rule_build = BuildAction(rule=_max_invest_rule) |
673
|
|
|
|
674
|
|
|
return self.maximum_rule |
675
|
|
|
|