|
1
|
|
|
# -*- coding: utf-8 -*- |
|
2
|
|
|
|
|
3
|
|
|
""" |
|
4
|
|
|
solph version of oemof.network.energy_system |
|
5
|
|
|
|
|
6
|
|
|
SPDX-FileCopyrightText: Uwe Krien <[email protected]> |
|
7
|
|
|
SPDX-FileCopyrightText: Simon Hilpert |
|
8
|
|
|
SPDX-FileCopyrightText: Cord Kaldemeyer |
|
9
|
|
|
SPDX-FileCopyrightText: Stephan Günther |
|
10
|
|
|
SPDX-FileCopyrightText: Birgit Schachler |
|
11
|
|
|
SPDX-FileCopyrightText: Johannes Kochems |
|
12
|
|
|
|
|
13
|
|
|
SPDX-License-Identifier: MIT |
|
14
|
|
|
|
|
15
|
|
|
""" |
|
16
|
|
|
|
|
17
|
|
|
import collections |
|
18
|
|
|
import itertools |
|
19
|
|
|
import warnings |
|
20
|
|
|
|
|
21
|
|
|
import numpy as np |
|
22
|
|
|
import pandas as pd |
|
23
|
|
|
from oemof.network import energy_system as es |
|
24
|
|
|
from oemof.tools import debugging |
|
25
|
|
|
|
|
26
|
|
|
|
|
27
|
|
|
class EnergySystem(es.EnergySystem): |
|
28
|
|
|
"""A variant of the class EnergySystem from |
|
29
|
|
|
<oemof.network.network.energy_system.EnergySystem> specially tailored to |
|
30
|
|
|
solph. |
|
31
|
|
|
|
|
32
|
|
|
In order to work in tandem with solph, instances of this class always use |
|
33
|
|
|
solph.GROUPINGS <oemof.solph.GROUPINGS>. If custom groupings are |
|
34
|
|
|
supplied via the `groupings` keyword argument, solph.GROUPINGS |
|
35
|
|
|
<oemof.solph.GROUPINGS> is prepended to those. |
|
36
|
|
|
|
|
37
|
|
|
If you know what you are doing and want to use solph without |
|
38
|
|
|
solph.GROUPINGS <oemof.solph.GROUPINGS>, you can just use |
|
39
|
|
|
EnergySystem <oemof.network.network.energy_system.EnergySystem>` of |
|
40
|
|
|
oemof.network directly. |
|
41
|
|
|
|
|
42
|
|
|
Parameters |
|
43
|
|
|
---------- |
|
44
|
|
|
timeindex : sequence of ascending numeric values |
|
45
|
|
|
Typically a pandas.DatetimeIndex is used, |
|
46
|
|
|
but for example also a list of floats works. |
|
47
|
|
|
|
|
48
|
|
|
infer_last_interval : bool |
|
49
|
|
|
Add an interval to the last time point. The end time of this interval |
|
50
|
|
|
is unknown so it does only work for an equidistant DatetimeIndex with |
|
51
|
|
|
a 'freq' attribute that is not None. The parameter has no effect on the |
|
52
|
|
|
timeincrement parameter. |
|
53
|
|
|
|
|
54
|
|
|
investment_times : list or None |
|
55
|
|
|
The points in time investments can be made. Defaults to timeindex[0]. |
|
56
|
|
|
If multiple times are specified, it leads to creating a multi-period |
|
57
|
|
|
model. |
|
58
|
|
|
|
|
59
|
|
|
tsa_parameters : list of dicts, dict or None |
|
60
|
|
|
Parameter can be set in order to use aggregated timeseries from TSAM. |
|
61
|
|
|
If multi-period model is used, one dict per period has to be set. |
|
62
|
|
|
If no multi-period (aka single period) approach is selected, a single |
|
63
|
|
|
dict can be provided. |
|
64
|
|
|
If parameter is None, model is set up as usual. |
|
65
|
|
|
|
|
66
|
|
|
Dict must contain keys `timesteps_per_period` |
|
67
|
|
|
(from TSAMs `hoursPerPeriod`), `order` (from TSAMs `clusterOrder`) and |
|
68
|
|
|
`occurrences` (from TSAMs `clusterPeriodNoOccur`). |
|
69
|
|
|
When activated, storage equations and flow rules for full_load_time |
|
70
|
|
|
will be adapted. Note that timeseries for components have to |
|
71
|
|
|
be set up as already aggregated timeseries. |
|
72
|
|
|
|
|
73
|
|
|
kwargs |
|
74
|
|
|
""" |
|
75
|
|
|
|
|
76
|
|
|
def __init__( |
|
77
|
|
|
self, |
|
78
|
|
|
timeindex=None, |
|
79
|
|
|
timeincrement=None, |
|
80
|
|
|
infer_last_interval=False, |
|
81
|
|
|
investment_times=None, |
|
82
|
|
|
tsa_parameters=None, |
|
83
|
|
|
groupings=None, |
|
84
|
|
|
): |
|
85
|
|
|
# Doing imports at runtime is generally frowned upon, but should work |
|
86
|
|
|
# for now. See the TODO in :func:`constraint_grouping |
|
87
|
|
|
# <oemof.solph.groupings.constraint_grouping>` for more information. |
|
88
|
|
|
from oemof.solph import GROUPINGS |
|
89
|
|
|
|
|
90
|
|
|
if groupings is None: |
|
91
|
|
|
groupings = [] |
|
92
|
|
|
groupings = GROUPINGS + groupings |
|
93
|
|
|
|
|
94
|
|
|
if infer_last_interval is True and timeindex is not None: |
|
95
|
|
|
# Add one time interval to the timeindex by adding one time point. |
|
96
|
|
|
if timeindex.freq is None: |
|
97
|
|
|
msg = ( |
|
98
|
|
|
"You cannot infer the last interval if the 'freq' " |
|
99
|
|
|
"attribute of your DatetimeIndex is None. Set " |
|
100
|
|
|
" 'infer_last_interval=False' or specify a DatetimeIndex " |
|
101
|
|
|
"with a valid frequency." |
|
102
|
|
|
) |
|
103
|
|
|
raise AttributeError(msg) |
|
104
|
|
|
|
|
105
|
|
|
timeindex = timeindex.union( |
|
106
|
|
|
pd.date_range( |
|
107
|
|
|
timeindex[-1] + timeindex.freq, |
|
108
|
|
|
periods=1, |
|
109
|
|
|
freq=timeindex.freq, |
|
110
|
|
|
) |
|
111
|
|
|
) |
|
112
|
|
|
|
|
113
|
|
|
# catch wrong combinations and infer timeincrement from timeindex. |
|
114
|
|
|
if timeincrement is not None: |
|
115
|
|
|
if timeindex is None: |
|
116
|
|
|
msg = ( |
|
117
|
|
|
"Initialising an EnergySystem using a timeincrement" |
|
118
|
|
|
" is deprecated. Please give a timeindex instead." |
|
119
|
|
|
) |
|
120
|
|
|
warnings.warn(msg, FutureWarning) |
|
121
|
|
|
else: |
|
122
|
|
|
msg = ( |
|
123
|
|
|
"The timeincrement is infered from the given timeindex." |
|
124
|
|
|
" As both parameters might be conflicting to each other," |
|
125
|
|
|
" you cannot define both at the same time." |
|
126
|
|
|
" Please give only a timeindex." |
|
127
|
|
|
) |
|
128
|
|
|
raise AttributeError(msg) |
|
129
|
|
|
|
|
130
|
|
|
elif timeindex is None and timeincrement is not None: |
|
131
|
|
|
timeindex = pd.Index( |
|
132
|
|
|
np.append(np.array([0]), np.cumsum(timeincrement)) |
|
133
|
|
|
) |
|
134
|
|
|
elif timeindex is not None and timeincrement is None: |
|
135
|
|
|
if tsa_parameters is not None: |
|
136
|
|
|
pass |
|
137
|
|
|
else: |
|
138
|
|
|
try: |
|
139
|
|
|
df = pd.DataFrame(timeindex) |
|
140
|
|
|
except ValueError: |
|
141
|
|
|
raise ValueError("Invalid timeindex.") |
|
142
|
|
|
timedelta = df.diff() |
|
143
|
|
|
if isinstance(timeindex, pd.DatetimeIndex): |
|
144
|
|
|
timeincrement = timedelta / np.timedelta64(1, "h") |
|
145
|
|
|
else: |
|
146
|
|
|
timeincrement = timedelta |
|
147
|
|
|
# we want a series (squeeze) |
|
148
|
|
|
# without the first item (no delta defined for first entry) |
|
149
|
|
|
# but starting with index 0 (reset) |
|
150
|
|
|
timeincrement = timeincrement.squeeze()[1:].reset_index( |
|
151
|
|
|
drop=True |
|
152
|
|
|
) |
|
153
|
|
|
|
|
154
|
|
|
if timeincrement is not None and (pd.Series(timeincrement) <= 0).any(): |
|
155
|
|
|
msg = ( |
|
156
|
|
|
"The time increment is inconsistent. Negative values and zero " |
|
157
|
|
|
"are not allowed.\nThis is caused by a inconsistent " |
|
158
|
|
|
"timeincrement parameter or an incorrect timeindex." |
|
159
|
|
|
) |
|
160
|
|
|
raise TypeError(msg) |
|
161
|
|
|
if tsa_parameters is not None: |
|
162
|
|
|
msg = ( |
|
163
|
|
|
"CAUTION! You specified the 'tsa_parameters' attribute for " |
|
164
|
|
|
"your energy system.\n This will lead to setting up " |
|
165
|
|
|
"energysystem with aggregated timeseries. " |
|
166
|
|
|
"Storages and flows will be adapted accordingly.\n" |
|
167
|
|
|
"Please be aware that the feature is experimental as of " |
|
168
|
|
|
"now. If you find anything suspicious or any bugs, " |
|
169
|
|
|
"please report them." |
|
170
|
|
|
) |
|
171
|
|
|
warnings.warn(msg, debugging.SuspiciousUsageWarning) |
|
172
|
|
|
|
|
173
|
|
|
if isinstance(tsa_parameters, dict): |
|
174
|
|
|
# Set up tsa_parameters for single period: |
|
175
|
|
|
tsa_parameters = [tsa_parameters] |
|
176
|
|
|
|
|
177
|
|
|
# Construct occurrences of typical periods |
|
178
|
|
|
if investment_times is not None: |
|
179
|
|
|
for p in range(len(investment_times)): |
|
180
|
|
|
tsa_parameters[p]["occurrences"] = collections.Counter( |
|
181
|
|
|
tsa_parameters[p]["order"] |
|
182
|
|
|
) |
|
183
|
|
|
else: |
|
184
|
|
|
tsa_parameters[0]["occurrences"] = collections.Counter( |
|
185
|
|
|
tsa_parameters[0]["order"] |
|
186
|
|
|
) |
|
187
|
|
|
|
|
188
|
|
|
# If segmentation is used, timesteps is set to number of |
|
189
|
|
|
# segmentations per period. |
|
190
|
|
|
# Otherwise, default timesteps_per_period is used. |
|
191
|
|
|
for params in tsa_parameters: |
|
192
|
|
|
if "segments" in params: |
|
193
|
|
|
params["timesteps"] = int( |
|
194
|
|
|
len(params["segments"]) / len(params["occurrences"]) |
|
195
|
|
|
) |
|
196
|
|
|
else: |
|
197
|
|
|
params["timesteps"] = params["timesteps_per_period"] |
|
198
|
|
|
self.tsa_parameters = tsa_parameters |
|
199
|
|
|
|
|
200
|
|
|
timeincrement = self._init_timeincrement( |
|
201
|
|
|
timeincrement, timeindex, investment_times, tsa_parameters |
|
202
|
|
|
) |
|
203
|
|
|
super().__init__( |
|
204
|
|
|
groupings=groupings, |
|
205
|
|
|
timeindex=timeindex, |
|
206
|
|
|
timeincrement=timeincrement, |
|
207
|
|
|
) |
|
208
|
|
|
|
|
209
|
|
|
# bare system to load pickled data |
|
210
|
|
|
if self.timeindex is not None: |
|
211
|
|
|
if investment_times is None: |
|
212
|
|
|
self.investment_times = [self.timeindex[0]] |
|
213
|
|
|
else: |
|
214
|
|
|
self.investment_times = sorted( |
|
215
|
|
|
set([self.timeindex[0]] + investment_times) |
|
216
|
|
|
) |
|
217
|
|
|
|
|
218
|
|
|
@staticmethod |
|
219
|
|
|
def _init_timeincrement(timeincrement, timeindex, periods, tsa_parameters): |
|
220
|
|
|
"""Check and initialize timeincrement""" |
|
221
|
|
|
|
|
222
|
|
|
# Timeincrement in TSAM mode |
|
223
|
|
|
if ( |
|
224
|
|
|
timeincrement is not None |
|
225
|
|
|
and tsa_parameters is not None |
|
226
|
|
|
and any("segments" in params for params in tsa_parameters) |
|
227
|
|
|
): |
|
228
|
|
|
msg = ( |
|
229
|
|
|
"You must not specify timeincrement in TSAM mode. " |
|
230
|
|
|
"TSAM will define timeincrement itself." |
|
231
|
|
|
) |
|
232
|
|
|
raise AttributeError(msg) |
|
233
|
|
|
if ( |
|
234
|
|
|
tsa_parameters is not None |
|
235
|
|
|
and any("segments" in params for params in tsa_parameters) |
|
236
|
|
|
and not all("segments" in params for params in tsa_parameters) |
|
237
|
|
|
): |
|
238
|
|
|
msg = ( |
|
239
|
|
|
"You have to set up segmentation in all periods, " |
|
240
|
|
|
"if you want to use segmentation in TSAM mode" |
|
241
|
|
|
) |
|
242
|
|
|
raise AttributeError(msg) |
|
243
|
|
|
if tsa_parameters is not None and all( |
|
244
|
|
|
"segments" in params for params in tsa_parameters |
|
245
|
|
|
): |
|
246
|
|
|
# Concatenate segments from TSAM parameters to get timeincrement |
|
247
|
|
|
return list( |
|
248
|
|
|
itertools.chain( |
|
249
|
|
|
*[params["segments"].values() for params in tsa_parameters] |
|
250
|
|
|
) |
|
251
|
|
|
) |
|
252
|
|
|
|
|
253
|
|
|
elif timeindex is not None and timeincrement is None: |
|
254
|
|
|
df = pd.DataFrame(timeindex) |
|
255
|
|
|
timedelta = df.diff() |
|
256
|
|
|
timeincrement = timedelta / np.timedelta64(1, "h") |
|
257
|
|
|
|
|
258
|
|
|
# we want a series (squeeze) |
|
259
|
|
|
# without the first item (no delta defined for first entry) |
|
260
|
|
|
# but starting with index 0 (reset) |
|
261
|
|
|
return timeincrement.squeeze()[1:].reset_index(drop=True) |
|
262
|
|
|
|
|
263
|
|
|
return timeincrement |
|
264
|
|
|
|