| Conditions | 2 |
| Total Lines | 161 |
| Code Lines | 74 |
| Lines | 0 |
| Ratio | 0 % |
| Changes | 0 | ||
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
| 1 | # -*- coding: utf-8 -*- |
||
| 102 | def main(): |
||
| 103 | # For models that need a long time to optimise, saving and loading the |
||
| 104 | # EnergySystem might be advised. By default, we do not do this here. Feel |
||
| 105 | # free to experiment with this once you understood the rest of the code. |
||
| 106 | |||
| 107 | # ************************************************************************* |
||
| 108 | # ********** PART 1 - Define and optimise the energy system *************** |
||
| 109 | # ************************************************************************* |
||
| 110 | |||
| 111 | # Read data file |
||
| 112 | file_name = "facade_example_data.csv" |
||
| 113 | data = get_data_from_file_path(file_name) |
||
| 114 | |||
| 115 | solver = "cbc" # 'glpk', 'gurobi',.... |
||
| 116 | debug = False # Set number_of_timesteps to 3 to get a readable lp-file. |
||
| 117 | number_of_time_steps = len(data) |
||
| 118 | solver_verbose = False # show/hide solver output |
||
| 119 | |||
| 120 | # initiate the logger (see the API docs for more information) |
||
| 121 | logger.define_logging( |
||
| 122 | logfile="oemof_example.log", |
||
| 123 | screen_level=logging.INFO, |
||
| 124 | file_level=logging.INFO, |
||
| 125 | ) |
||
| 126 | |||
| 127 | logging.info("Initialize the energy system") |
||
| 128 | date_time_index = create_time_index(2012, number=number_of_time_steps) |
||
| 129 | |||
| 130 | # create the energysystem and assign the time index |
||
| 131 | energysystem = EnergySystem( |
||
| 132 | timeindex=date_time_index, infer_last_interval=False |
||
| 133 | ) |
||
| 134 | ########################################################################## |
||
| 135 | # Create oemof objects |
||
| 136 | ########################################################################## |
||
| 137 | |||
| 138 | logging.info("Create oemof objects") |
||
| 139 | |||
| 140 | # The bus objects were assigned to variables which makes it easier to |
||
| 141 | # connect components to these buses (see below). |
||
| 142 | |||
| 143 | # create natural gas bus |
||
| 144 | bus_gas = buses.Bus(label="natural_gas") |
||
| 145 | |||
| 146 | # create electricity bus |
||
| 147 | bus_electricity = buses.Bus(label="electricity") |
||
| 148 | |||
| 149 | # adding the buses to the energy system |
||
| 150 | energysystem.add(bus_gas, bus_electricity) |
||
| 151 | |||
| 152 | # create excess component for the electricity bus to allow overproduction |
||
| 153 | energysystem.add( |
||
| 154 | components.Sink( |
||
| 155 | label="excess_bus_electricity", |
||
| 156 | inputs={bus_electricity: flows.Flow()}, |
||
| 157 | ) |
||
| 158 | ) |
||
| 159 | |||
| 160 | energysystem.add( |
||
| 161 | DSO( |
||
| 162 | label="My_DSO", |
||
| 163 | el_bus=bus_electricity, |
||
| 164 | energy_price=0.1, |
||
| 165 | feedin_tariff=0.04, |
||
| 166 | ) |
||
| 167 | ) |
||
| 168 | # energysystem.add( |
||
| 169 | # components.Source( |
||
| 170 | # label="DSO_simple", |
||
| 171 | # outputs={ |
||
| 172 | # bus_electricity: flows.Flow(variable_costs=0.1) |
||
| 173 | # }, |
||
| 174 | # ) |
||
| 175 | # ) |
||
| 176 | |||
| 177 | # create fixed source object representing wind power plants |
||
| 178 | energysystem.add( |
||
| 179 | components.Source( |
||
| 180 | label="wind", |
||
| 181 | outputs={ |
||
| 182 | bus_electricity: flows.Flow( |
||
| 183 | fix=data["wind"], nominal_capacity=1000000 |
||
| 184 | ) |
||
| 185 | }, |
||
| 186 | ) |
||
| 187 | ) |
||
| 188 | |||
| 189 | # create fixed source object representing pv power plants |
||
| 190 | energysystem.add( |
||
| 191 | components.Source( |
||
| 192 | label="pv", |
||
| 193 | outputs={ |
||
| 194 | bus_electricity: flows.Flow( |
||
| 195 | fix=data["pv"], nominal_capacity=582000 |
||
| 196 | ) |
||
| 197 | }, |
||
| 198 | ) |
||
| 199 | ) |
||
| 200 | |||
| 201 | # create simple sink object representing the electrical demand |
||
| 202 | # nominal_value is set to 1 because demand_el is not a normalised series |
||
| 203 | energysystem.add( |
||
| 204 | components.Sink( |
||
| 205 | label="demand", |
||
| 206 | inputs={ |
||
| 207 | bus_electricity: flows.Flow( |
||
| 208 | fix=data["demand_el"], nominal_capacity=1 |
||
| 209 | ) |
||
| 210 | }, |
||
| 211 | ) |
||
| 212 | ) |
||
| 213 | |||
| 214 | # create storage object representing a battery |
||
| 215 | nominal_capacity = 10077997 |
||
| 216 | nominal_value = nominal_capacity / 6 |
||
| 217 | |||
| 218 | battery_storage = components.GenericStorage( |
||
| 219 | nominal_capacity=nominal_capacity, |
||
| 220 | label=STORAGE_LABEL, |
||
| 221 | inputs={bus_electricity: flows.Flow(nominal_capacity=nominal_value)}, |
||
| 222 | outputs={ |
||
| 223 | bus_electricity: flows.Flow( |
||
| 224 | nominal_capacity=nominal_value, variable_costs=0.001 |
||
| 225 | ) |
||
| 226 | }, |
||
| 227 | loss_rate=0.00, |
||
| 228 | initial_storage_level=None, |
||
| 229 | inflow_conversion_factor=1, |
||
| 230 | outflow_conversion_factor=0.8, |
||
| 231 | ) |
||
| 232 | |||
| 233 | energysystem.add(battery_storage) |
||
| 234 | |||
| 235 | ########################################################################## |
||
| 236 | # Optimise the energy system and plot the results |
||
| 237 | ########################################################################## |
||
| 238 | |||
| 239 | logging.info("Optimise the energy system") |
||
| 240 | |||
| 241 | # initialise the operational model |
||
| 242 | energysystem_model = Model(energysystem) |
||
| 243 | |||
| 244 | # This is for debugging only. It is not(!) necessary to solve the problem |
||
| 245 | # and should be set to False to save time and disc space in normal use. For |
||
| 246 | # debugging the timesteps should be set to 3, to increase the readability |
||
| 247 | # of the lp-file. |
||
| 248 | if debug: |
||
| 249 | file_path = os.path.join( |
||
| 250 | helpers.extend_basic_path("lp_files"), "basic_example.lp" |
||
| 251 | ) |
||
| 252 | logging.info(f"Store lp-file in {file_path}.") |
||
| 253 | io_option = {"symbolic_solver_labels": True} |
||
| 254 | energysystem_model.write(file_path, io_options=io_option) |
||
| 255 | |||
| 256 | # if tee_switch is true solver messages will be displayed |
||
| 257 | logging.info("Solve the optimization problem") |
||
| 258 | energysystem_model.solve( |
||
| 259 | solver=solver, solve_kwargs={"tee": solver_verbose} |
||
| 260 | ) |
||
| 261 | results = Results(energysystem_model) |
||
| 262 | print(results.flow) |
||
| 263 | |||
| 267 |