|
1
|
|
|
# -*- coding: utf-8 -*- |
|
2
|
|
|
|
|
3
|
|
|
"""Creating sets, variables, constraints and parts of the objective function |
|
4
|
|
|
for Flow objects. |
|
5
|
|
|
|
|
6
|
|
|
SPDX-FileCopyrightText: Uwe Krien <[email protected]> |
|
7
|
|
|
SPDX-FileCopyrightText: Simon Hilpert |
|
8
|
|
|
SPDX-FileCopyrightText: Cord Kaldemeyer |
|
9
|
|
|
SPDX-FileCopyrightText: Patrik Schönfeldt |
|
10
|
|
|
SPDX-FileCopyrightText: Birgit Schachler |
|
11
|
|
|
SPDX-FileCopyrightText: jnnr |
|
12
|
|
|
SPDX-FileCopyrightText: jmloenneberga |
|
13
|
|
|
|
|
14
|
|
|
SPDX-License-Identifier: MIT |
|
15
|
|
|
|
|
16
|
|
|
""" |
|
17
|
|
|
|
|
18
|
|
|
from pyomo.core import BuildAction |
|
19
|
|
|
from pyomo.core import Constraint |
|
20
|
|
|
from pyomo.core import NonNegativeIntegers |
|
21
|
|
|
from pyomo.core import Set |
|
22
|
|
|
from pyomo.core import Var |
|
23
|
|
|
from pyomo.core.base.block import SimpleBlock |
|
24
|
|
|
|
|
25
|
|
|
|
|
26
|
|
|
class Flow(SimpleBlock): |
|
27
|
|
|
r""" Flow block with definitions for standard flows. |
|
28
|
|
|
|
|
29
|
|
|
**The following variables are created**: |
|
30
|
|
|
|
|
31
|
|
|
negative_gradient : |
|
32
|
|
|
Difference of a flow in consecutive timesteps if flow is reduced |
|
33
|
|
|
indexed by NEGATIVE_GRADIENT_FLOWS, TIMESTEPS. |
|
34
|
|
|
|
|
35
|
|
|
positive_gradient : |
|
36
|
|
|
Difference of a flow in consecutive timesteps if flow is increased |
|
37
|
|
|
indexed by NEGATIVE_GRADIENT_FLOWS, TIMESTEPS. |
|
38
|
|
|
|
|
39
|
|
|
**The following sets are created:** (-> see basic sets at :class:`.Model` ) |
|
40
|
|
|
|
|
41
|
|
|
SUMMED_MAX_FLOWS |
|
42
|
|
|
A set of flows with the attribute :attr:`summed_max` being not None. |
|
43
|
|
|
SUMMED_MIN_FLOWS |
|
44
|
|
|
A set of flows with the attribute :attr:`summed_min` being not None. |
|
45
|
|
|
NEGATIVE_GRADIENT_FLOWS |
|
46
|
|
|
A set of flows with the attribute :attr:`negative_gradient` being not |
|
47
|
|
|
None. |
|
48
|
|
|
POSITIVE_GRADIENT_FLOWS |
|
49
|
|
|
A set of flows with the attribute :attr:`positive_gradient` being not |
|
50
|
|
|
None |
|
51
|
|
|
INTEGER_FLOWS |
|
52
|
|
|
A set of flows where the attribute :attr:`integer` is True (forces flow |
|
53
|
|
|
to only take integer values) |
|
54
|
|
|
|
|
55
|
|
|
**The following constraints are build:** |
|
56
|
|
|
|
|
57
|
|
|
Flow max sum :attr:`om.Flow.summed_max[i, o]` |
|
58
|
|
|
.. math:: |
|
59
|
|
|
\sum_t flow(i, o, t) \cdot \tau |
|
60
|
|
|
\leq summed\_max(i, o) \cdot nominal\_value(i, o), \\ |
|
61
|
|
|
\forall (i, o) \in \textrm{SUMMED\_MAX\_FLOWS}. |
|
62
|
|
|
|
|
63
|
|
|
Flow min sum :attr:`om.Flow.summed_min[i, o]` |
|
64
|
|
|
.. math:: |
|
65
|
|
|
\sum_t flow(i, o, t) \cdot \tau |
|
66
|
|
|
\geq summed\_min(i, o) \cdot nominal\_value(i, o), \\ |
|
67
|
|
|
\forall (i, o) \in \textrm{SUMMED\_MIN\_FLOWS}. |
|
68
|
|
|
|
|
69
|
|
|
Negative gradient constraint |
|
70
|
|
|
:attr:`om.Flow.negative_gradient_constr[i, o]`: |
|
71
|
|
|
.. math:: |
|
72
|
|
|
flow(i, o, t-1) - flow(i, o, t) \geq \ |
|
73
|
|
|
negative\_gradient(i, o, t), \\ |
|
74
|
|
|
\forall (i, o) \in \textrm{NEGATIVE\_GRADIENT\_FLOWS}, \\ |
|
75
|
|
|
\forall t \in \textrm{TIMESTEPS}. |
|
76
|
|
|
|
|
77
|
|
|
Positive gradient constraint |
|
78
|
|
|
:attr:`om.Flow.positive_gradient_constr[i, o]`: |
|
79
|
|
|
.. math:: flow(i, o, t) - flow(i, o, t-1) \geq \ |
|
80
|
|
|
positive\__gradient(i, o, t), \\ |
|
81
|
|
|
\forall (i, o) \in \textrm{POSITIVE\_GRADIENT\_FLOWS}, \\ |
|
82
|
|
|
\forall t \in \textrm{TIMESTEPS}. |
|
83
|
|
|
|
|
84
|
|
|
**The following parts of the objective function are created:** |
|
85
|
|
|
|
|
86
|
|
|
If :attr:`variable_costs` are set by the user: |
|
87
|
|
|
.. math:: |
|
88
|
|
|
\sum_{(i,o)} \sum_t flow(i, o, t) \cdot variable\_costs(i, o, t) |
|
89
|
|
|
|
|
90
|
|
|
The expression can be accessed by :attr:`om.Flow.variable_costs` and |
|
91
|
|
|
their value after optimization by :meth:`om.Flow.variable_costs()` . |
|
92
|
|
|
|
|
93
|
|
|
""" |
|
94
|
|
|
|
|
95
|
|
|
def __init__(self, *args, **kwargs): |
|
96
|
|
|
super().__init__(*args, **kwargs) |
|
97
|
|
|
|
|
98
|
|
|
def _create(self, group=None): |
|
99
|
|
|
r"""Creates sets, variables and constraints for all standard flows. |
|
100
|
|
|
|
|
101
|
|
|
Parameters |
|
102
|
|
|
---------- |
|
103
|
|
|
group : list |
|
104
|
|
|
List containing tuples containing flow (f) objects and the |
|
105
|
|
|
associated source (s) and target (t) |
|
106
|
|
|
of flow e.g. groups=[(s1, t1, f1), (s2, t2, f2),..] |
|
107
|
|
|
""" |
|
108
|
|
|
if group is None: |
|
109
|
|
|
return None |
|
110
|
|
|
|
|
111
|
|
|
m = self.parent_block() |
|
112
|
|
|
|
|
113
|
|
|
# ########################## SETS ################################# |
|
114
|
|
|
# set for all flows with an global limit on the flow over time |
|
115
|
|
|
self.SUMMED_MAX_FLOWS = Set( |
|
116
|
|
|
initialize=[ |
|
117
|
|
|
(g[0], g[1]) |
|
118
|
|
|
for g in group |
|
119
|
|
|
if g[2].summed_max is not None |
|
120
|
|
|
and g[2].nominal_value is not None |
|
121
|
|
|
] |
|
122
|
|
|
) |
|
123
|
|
|
|
|
124
|
|
|
self.SUMMED_MIN_FLOWS = Set( |
|
125
|
|
|
initialize=[ |
|
126
|
|
|
(g[0], g[1]) |
|
127
|
|
|
for g in group |
|
128
|
|
|
if g[2].summed_min is not None |
|
129
|
|
|
and g[2].nominal_value is not None |
|
130
|
|
|
] |
|
131
|
|
|
) |
|
132
|
|
|
|
|
133
|
|
|
self.NEGATIVE_GRADIENT_FLOWS = Set( |
|
134
|
|
|
initialize=[ |
|
135
|
|
|
(g[0], g[1]) |
|
136
|
|
|
for g in group |
|
137
|
|
|
if g[2].negative_gradient["ub"][0] is not None |
|
138
|
|
|
] |
|
139
|
|
|
) |
|
140
|
|
|
|
|
141
|
|
|
self.POSITIVE_GRADIENT_FLOWS = Set( |
|
142
|
|
|
initialize=[ |
|
143
|
|
|
(g[0], g[1]) |
|
144
|
|
|
for g in group |
|
145
|
|
|
if g[2].positive_gradient["ub"][0] is not None |
|
146
|
|
|
] |
|
147
|
|
|
) |
|
148
|
|
|
|
|
149
|
|
|
self.INTEGER_FLOWS = Set( |
|
150
|
|
|
initialize=[(g[0], g[1]) for g in group if g[2].integer] |
|
151
|
|
|
) |
|
152
|
|
|
# ######################### Variables ################################ |
|
153
|
|
|
|
|
154
|
|
|
self.positive_gradient = Var(self.POSITIVE_GRADIENT_FLOWS, m.TIMESTEPS) |
|
155
|
|
|
|
|
156
|
|
|
self.negative_gradient = Var(self.NEGATIVE_GRADIENT_FLOWS, m.TIMESTEPS) |
|
157
|
|
|
|
|
158
|
|
|
self.integer_flow = Var( |
|
159
|
|
|
self.INTEGER_FLOWS, m.TIMESTEPS, within=NonNegativeIntegers |
|
160
|
|
|
) |
|
161
|
|
|
# set upper bound of gradient variable |
|
162
|
|
|
for i, o, f in group: |
|
163
|
|
|
if m.flows[i, o].positive_gradient["ub"][0] is not None: |
|
164
|
|
|
for t in m.TIMESTEPS: |
|
165
|
|
|
self.positive_gradient[i, o, t].setub( |
|
166
|
|
|
f.positive_gradient["ub"][t] * f.nominal_value |
|
167
|
|
|
) |
|
168
|
|
|
if m.flows[i, o].negative_gradient["ub"][0] is not None: |
|
169
|
|
|
for t in m.TIMESTEPS: |
|
170
|
|
|
self.negative_gradient[i, o, t].setub( |
|
171
|
|
|
f.negative_gradient["ub"][t] * f.nominal_value |
|
172
|
|
|
) |
|
173
|
|
|
|
|
174
|
|
|
# ######################### CONSTRAINTS ############################### |
|
175
|
|
|
|
|
176
|
|
|
def _flow_summed_max_rule(model): |
|
177
|
|
|
"""Rule definition for build action of max. sum flow constraint.""" |
|
178
|
|
|
for inp, out in self.SUMMED_MAX_FLOWS: |
|
179
|
|
|
lhs = sum( |
|
180
|
|
|
m.flow[inp, out, ts] * m.timeincrement[ts] |
|
|
|
|
|
|
181
|
|
|
for ts in m.TIMESTEPS |
|
182
|
|
|
) |
|
183
|
|
|
rhs = ( |
|
184
|
|
|
m.flows[inp, out].summed_max |
|
185
|
|
|
* m.flows[inp, out].nominal_value |
|
186
|
|
|
) |
|
187
|
|
|
self.summed_max.add((inp, out), lhs <= rhs) |
|
188
|
|
|
|
|
189
|
|
|
self.summed_max = Constraint(self.SUMMED_MAX_FLOWS, noruleinit=True) |
|
190
|
|
|
self.summed_max_build = BuildAction(rule=_flow_summed_max_rule) |
|
191
|
|
|
|
|
192
|
|
|
def _flow_summed_min_rule(model): |
|
193
|
|
|
"""Rule definition for build action of min. sum flow constraint.""" |
|
194
|
|
|
for inp, out in self.SUMMED_MIN_FLOWS: |
|
195
|
|
|
lhs = sum( |
|
196
|
|
|
m.flow[inp, out, ts] * m.timeincrement[ts] |
|
|
|
|
|
|
197
|
|
|
for ts in m.TIMESTEPS |
|
198
|
|
|
) |
|
199
|
|
|
rhs = ( |
|
200
|
|
|
m.flows[inp, out].summed_min |
|
201
|
|
|
* m.flows[inp, out].nominal_value |
|
202
|
|
|
) |
|
203
|
|
|
self.summed_min.add((inp, out), lhs >= rhs) |
|
204
|
|
|
|
|
205
|
|
|
self.summed_min = Constraint(self.SUMMED_MIN_FLOWS, noruleinit=True) |
|
206
|
|
|
self.summed_min_build = BuildAction(rule=_flow_summed_min_rule) |
|
207
|
|
|
|
|
208
|
|
|
def _positive_gradient_flow_rule(model): |
|
209
|
|
|
"""Rule definition for positive gradient constraint.""" |
|
210
|
|
|
for inp, out in self.POSITIVE_GRADIENT_FLOWS: |
|
211
|
|
|
for ts in m.TIMESTEPS: |
|
|
|
|
|
|
212
|
|
|
if ts > 0: |
|
213
|
|
|
lhs = m.flow[inp, out, ts] - m.flow[inp, out, ts - 1] |
|
214
|
|
|
rhs = self.positive_gradient[inp, out, ts] |
|
215
|
|
|
self.positive_gradient_constr.add( |
|
216
|
|
|
(inp, out, ts), lhs <= rhs |
|
217
|
|
|
) |
|
218
|
|
|
|
|
219
|
|
|
self.positive_gradient_constr = Constraint( |
|
220
|
|
|
self.POSITIVE_GRADIENT_FLOWS, m.TIMESTEPS, noruleinit=True |
|
221
|
|
|
) |
|
222
|
|
|
self.positive_gradient_build = BuildAction( |
|
223
|
|
|
rule=_positive_gradient_flow_rule |
|
224
|
|
|
) |
|
225
|
|
|
|
|
226
|
|
|
def _negative_gradient_flow_rule(model): |
|
227
|
|
|
"""Rule definition for negative gradient constraint.""" |
|
228
|
|
|
for inp, out in self.NEGATIVE_GRADIENT_FLOWS: |
|
229
|
|
|
for ts in m.TIMESTEPS: |
|
|
|
|
|
|
230
|
|
|
if ts > 0: |
|
231
|
|
|
lhs = m.flow[inp, out, ts - 1] - m.flow[inp, out, ts] |
|
232
|
|
|
rhs = self.negative_gradient[inp, out, ts] |
|
233
|
|
|
self.negative_gradient_constr.add( |
|
234
|
|
|
(inp, out, ts), lhs <= rhs |
|
235
|
|
|
) |
|
236
|
|
|
|
|
237
|
|
|
self.negative_gradient_constr = Constraint( |
|
238
|
|
|
self.NEGATIVE_GRADIENT_FLOWS, m.TIMESTEPS, noruleinit=True |
|
239
|
|
|
) |
|
240
|
|
|
self.negative_gradient_build = BuildAction( |
|
241
|
|
|
rule=_negative_gradient_flow_rule |
|
242
|
|
|
) |
|
243
|
|
|
|
|
244
|
|
|
def _integer_flow_rule(block, ii, oi, ti): |
|
245
|
|
|
"""Force flow variable to NonNegativeInteger values.""" |
|
246
|
|
|
return self.integer_flow[ii, oi, ti] == m.flow[ii, oi, ti] |
|
|
|
|
|
|
247
|
|
|
|
|
248
|
|
|
self.integer_flow_constr = Constraint( |
|
249
|
|
|
self.INTEGER_FLOWS, m.TIMESTEPS, rule=_integer_flow_rule |
|
250
|
|
|
) |
|
251
|
|
|
|
|
252
|
|
|
def _objective_expression(self): |
|
253
|
|
|
r"""Objective expression for all standard flows with fixed costs |
|
254
|
|
|
and variable costs. |
|
255
|
|
|
""" |
|
256
|
|
|
m = self.parent_block() |
|
257
|
|
|
|
|
258
|
|
|
variable_costs = 0 |
|
259
|
|
|
|
|
260
|
|
|
for i, o in m.FLOWS: |
|
261
|
|
|
if m.flows[i, o].variable_costs[0] is not None: |
|
262
|
|
|
for t in m.TIMESTEPS: |
|
263
|
|
|
variable_costs += ( |
|
264
|
|
|
m.flow[i, o, t] |
|
265
|
|
|
* m.objective_weighting[t] |
|
266
|
|
|
* m.flows[i, o].variable_costs[t] |
|
267
|
|
|
) |
|
268
|
|
|
|
|
269
|
|
|
return variable_costs |
|
270
|
|
|
|