|
1
|
|
|
# -*- coding: utf-8 -*- |
|
2
|
|
|
r""" |
|
3
|
|
|
General description |
|
4
|
|
|
------------------- |
|
5
|
|
|
Example that shows how to use "Generic Investment Limit". |
|
6
|
|
|
|
|
7
|
|
|
There are two supply chains. The energy systems looks like that: |
|
8
|
|
|
|
|
9
|
|
|
.. code-block:: text |
|
10
|
|
|
|
|
11
|
|
|
bus_a_0 bus_a_1 |
|
12
|
|
|
| | |
|
13
|
|
|
source_a_0 --->|---> trafo_a --->|--->demand_a |
|
14
|
|
|
| |
|
15
|
|
|
source_a_1--->| |
|
16
|
|
|
| |
|
17
|
|
|
|
|
18
|
|
|
bus_b_0 bus_b_1 |
|
19
|
|
|
| | |
|
20
|
|
|
source_b_0 --->|---> trafo_b --->|--->demand_b |
|
21
|
|
|
| |
|
22
|
|
|
source_b_1--->| |
|
23
|
|
|
| |
|
24
|
|
|
|
|
25
|
|
|
Everything is identical - the costs for the sources, the demand, the efficiency |
|
26
|
|
|
of the Converter. And both Converter have an investment at the output. |
|
27
|
|
|
The source '\*_1' is in both cases very expensive, so that |
|
28
|
|
|
a investment is probably done in the converter. |
|
29
|
|
|
Now, both investments share a third resource, which is called "emission" in this |
|
30
|
|
|
example. (This could be anything, and you could use as many additional |
|
31
|
|
|
resources as you want.) And this resource is limited. In this case, every |
|
32
|
|
|
converter capacity unit, which might be installed, needs 2 emission for |
|
33
|
|
|
'trafo a', and 1 emission per installed capacity for 'trafo b'. |
|
34
|
|
|
And the total emission is limited to 24. |
|
35
|
|
|
See what happens, have fun ;) |
|
36
|
|
|
|
|
37
|
|
|
Code |
|
38
|
|
|
---- |
|
39
|
|
|
Download source code: :download:`emission_constraint_invest.py </../examples/generic_invest_limit/example_generic_flow.py>` |
|
40
|
|
|
|
|
41
|
|
|
.. dropdown:: Click to display code |
|
42
|
|
|
|
|
43
|
|
|
.. literalinclude:: /../examples/generic_invest_limit/example_generic_flow.py |
|
44
|
|
|
:language: python |
|
45
|
|
|
:lines: 62- |
|
46
|
|
|
|
|
47
|
|
|
Installation requirements |
|
48
|
|
|
------------------------- |
|
49
|
|
|
This example requires oemof.solph (v0.5.x), install by: |
|
50
|
|
|
|
|
51
|
|
|
.. code:: bash |
|
52
|
|
|
|
|
53
|
|
|
pip install oemof.solph[examples] |
|
54
|
|
|
|
|
55
|
|
|
License |
|
56
|
|
|
------- |
|
57
|
|
|
Johannes Röder <[email protected]> |
|
58
|
|
|
|
|
59
|
|
|
`MIT license <https://github.com/oemof/oemof-solph/blob/dev/LICENSE>`_ |
|
60
|
|
|
""" |
|
61
|
|
|
|
|
62
|
|
|
import logging |
|
63
|
|
|
import os |
|
64
|
|
|
|
|
65
|
|
|
try: |
|
66
|
|
|
import matplotlib.pyplot as plt |
|
67
|
|
|
except ModuleNotFoundError: |
|
68
|
|
|
plt = None |
|
69
|
|
|
|
|
70
|
|
|
from oemof import solph |
|
71
|
|
|
|
|
72
|
|
|
|
|
73
|
|
|
def main(optimize=True): |
|
74
|
|
|
data = [0, 15, 30, 35, 20, 25, 27, 10, 5, 2, 15, 40, 20, 0, 0] |
|
75
|
|
|
|
|
76
|
|
|
# create an energy system |
|
77
|
|
|
idx = solph.create_time_index(2020, number=len(data)) |
|
78
|
|
|
es = solph.EnergySystem(timeindex=idx, infer_last_interval=False) |
|
79
|
|
|
|
|
80
|
|
|
# Parameter: costs for the sources |
|
81
|
|
|
c_0 = 10 |
|
82
|
|
|
c_1 = 100 |
|
83
|
|
|
|
|
84
|
|
|
epc_invest = 500 |
|
85
|
|
|
|
|
86
|
|
|
# commodity a |
|
87
|
|
|
bus_a_0 = solph.Bus(label="bus_a_0") |
|
88
|
|
|
bus_a_1 = solph.Bus(label="bus_a_1") |
|
89
|
|
|
es.add(bus_a_0, bus_a_1) |
|
90
|
|
|
|
|
91
|
|
|
es.add( |
|
92
|
|
|
solph.components.Source( |
|
93
|
|
|
label="source_a_0", |
|
94
|
|
|
outputs={bus_a_0: solph.Flow(variable_costs=c_0)}, |
|
95
|
|
|
) |
|
96
|
|
|
) |
|
97
|
|
|
|
|
98
|
|
|
es.add( |
|
99
|
|
|
solph.components.Source( |
|
100
|
|
|
label="source_a_1", |
|
101
|
|
|
outputs={bus_a_1: solph.Flow(variable_costs=c_1)}, |
|
102
|
|
|
) |
|
103
|
|
|
) |
|
104
|
|
|
|
|
105
|
|
|
es.add( |
|
106
|
|
|
solph.components.Sink( |
|
107
|
|
|
label="demand_a", |
|
108
|
|
|
inputs={bus_a_1: solph.Flow(fix=data, nominal_capacity=1)}, |
|
109
|
|
|
) |
|
110
|
|
|
) |
|
111
|
|
|
|
|
112
|
|
|
# commodity b |
|
113
|
|
|
bus_b_0 = solph.Bus(label="bus_b_0") |
|
114
|
|
|
bus_b_1 = solph.Bus(label="bus_b_1") |
|
115
|
|
|
es.add(bus_b_0, bus_b_1) |
|
116
|
|
|
es.add( |
|
117
|
|
|
solph.components.Source( |
|
118
|
|
|
label="source_b_0", |
|
119
|
|
|
outputs={bus_b_0: solph.Flow(variable_costs=c_0)}, |
|
120
|
|
|
) |
|
121
|
|
|
) |
|
122
|
|
|
|
|
123
|
|
|
es.add( |
|
124
|
|
|
solph.components.Source( |
|
125
|
|
|
label="source_b_1", |
|
126
|
|
|
outputs={bus_b_1: solph.Flow(variable_costs=c_1)}, |
|
127
|
|
|
) |
|
128
|
|
|
) |
|
129
|
|
|
|
|
130
|
|
|
es.add( |
|
131
|
|
|
solph.components.Sink( |
|
132
|
|
|
label="demand_b", |
|
133
|
|
|
inputs={bus_b_1: solph.Flow(fix=data, nominal_capacity=1)}, |
|
134
|
|
|
) |
|
135
|
|
|
) |
|
136
|
|
|
|
|
137
|
|
|
# Converter a |
|
138
|
|
|
es.add( |
|
139
|
|
|
solph.components.Converter( |
|
140
|
|
|
label="trafo_a", |
|
141
|
|
|
inputs={bus_a_0: solph.Flow()}, |
|
142
|
|
|
outputs={ |
|
143
|
|
|
bus_a_1: solph.Flow( |
|
144
|
|
|
nominal_capacity=solph.Investment( |
|
145
|
|
|
ep_costs=epc_invest, |
|
146
|
|
|
custom_attributes={"emission": 2}, |
|
147
|
|
|
), |
|
148
|
|
|
) |
|
149
|
|
|
}, |
|
150
|
|
|
conversion_factors={bus_a_1: 0.8}, |
|
151
|
|
|
) |
|
152
|
|
|
) |
|
153
|
|
|
|
|
154
|
|
|
# Converter b |
|
155
|
|
|
es.add( |
|
156
|
|
|
solph.components.Converter( |
|
157
|
|
|
label="trafo_b", |
|
158
|
|
|
inputs={bus_b_0: solph.Flow()}, |
|
159
|
|
|
outputs={ |
|
160
|
|
|
bus_b_1: solph.Flow( |
|
161
|
|
|
nominal_capacity=solph.Investment( |
|
162
|
|
|
ep_costs=epc_invest, |
|
163
|
|
|
custom_attributes={"emission": 1}, |
|
164
|
|
|
), |
|
165
|
|
|
) |
|
166
|
|
|
}, |
|
167
|
|
|
conversion_factors={bus_a_1: 0.8}, |
|
168
|
|
|
) |
|
169
|
|
|
) |
|
170
|
|
|
|
|
171
|
|
|
if optimize is False: |
|
172
|
|
|
return es |
|
173
|
|
|
|
|
174
|
|
|
# create an optimization problem and solve it |
|
175
|
|
|
om = solph.Model(es) |
|
176
|
|
|
|
|
177
|
|
|
# add constraint for generic investment limit |
|
178
|
|
|
om = solph.constraints.additional_investment_flow_limit( |
|
179
|
|
|
om, "emission", limit=24 |
|
180
|
|
|
) |
|
181
|
|
|
|
|
182
|
|
|
# export lp file |
|
183
|
|
|
filename = os.path.join( |
|
184
|
|
|
solph.helpers.extend_basic_path("lp_files"), "GenericInvest.lp" |
|
185
|
|
|
) |
|
186
|
|
|
logging.info("Store lp-file in {0}.".format(filename)) |
|
187
|
|
|
om.write(filename, io_options={"symbolic_solver_labels": True}) |
|
188
|
|
|
|
|
189
|
|
|
# solve model |
|
190
|
|
|
om.solve(solver="cbc", solve_kwargs={"tee": True}) |
|
191
|
|
|
|
|
192
|
|
|
# create result object |
|
193
|
|
|
results = solph.processing.results(om) |
|
194
|
|
|
|
|
195
|
|
|
bus1 = solph.views.node(results, "bus_a_1")["sequences"] |
|
196
|
|
|
bus2 = solph.views.node(results, "bus_b_1")["sequences"] |
|
197
|
|
|
|
|
198
|
|
|
# plot the time series (sequences) of a specific component/bus |
|
199
|
|
|
if plt is not None: |
|
200
|
|
|
bus1.plot(kind="line", drawstyle="steps-mid") |
|
201
|
|
|
plt.legend() |
|
202
|
|
|
plt.show() |
|
203
|
|
|
bus2.plot(kind="line", drawstyle="steps-mid") |
|
204
|
|
|
plt.legend() |
|
205
|
|
|
plt.show() |
|
206
|
|
|
|
|
207
|
|
|
emission_used = om.invest_limit_emission() |
|
208
|
|
|
print("Emission value: ", emission_used) |
|
209
|
|
|
print( |
|
210
|
|
|
"Investment trafo_a: ", |
|
211
|
|
|
solph.views.node(results, "trafo_a")["scalars"][0], |
|
212
|
|
|
) |
|
213
|
|
|
print( |
|
214
|
|
|
"Investment trafo_b: ", |
|
215
|
|
|
solph.views.node(results, "trafo_b")["scalars"][0], |
|
216
|
|
|
) |
|
217
|
|
|
|
|
218
|
|
|
|
|
219
|
|
|
if __name__ == "__main__": |
|
220
|
|
|
main() |
|
221
|
|
|
|