1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
|
3
|
|
|
""" |
4
|
|
|
General description |
5
|
|
|
------------------- |
6
|
|
|
Example that shows the parameter `balanced` of `GenericStorage`. |
7
|
|
|
|
8
|
|
|
Code |
9
|
|
|
---- |
10
|
|
|
Download source code: :download:`storage.py </../examples/storage_balanced_unbalanced/storage.py>` |
11
|
|
|
|
12
|
|
|
.. dropdown:: Click to display code |
13
|
|
|
|
14
|
|
|
.. literalinclude:: /../examples/storage_balanced_unbalanced/storage.py |
15
|
|
|
:language: python |
16
|
|
|
:lines: 32- |
17
|
|
|
|
18
|
|
|
Installation requirements |
19
|
|
|
------------------------- |
20
|
|
|
This example requires oemof.solph (v0.5.x), install by: |
21
|
|
|
|
22
|
|
|
.. code:: bash |
23
|
|
|
|
24
|
|
|
pip install oemof.solph[examples] |
25
|
|
|
|
26
|
|
|
|
27
|
|
|
License |
28
|
|
|
------- |
29
|
|
|
`MIT license <https://github.com/oemof/oemof-solph/blob/dev/LICENSE>`_ |
30
|
|
|
""" |
31
|
|
|
|
32
|
|
|
import pandas as pd |
33
|
|
|
from matplotlib import pyplot as plt |
34
|
|
|
|
35
|
|
|
from oemof import solph |
36
|
|
|
|
37
|
|
|
DATA = [ |
38
|
|
|
{ |
39
|
|
|
"name": "unbalanced (20% filled)", |
40
|
|
|
"initial_storage_level": 0.2, |
41
|
|
|
"balanced": False, |
42
|
|
|
}, |
43
|
|
|
{ |
44
|
|
|
"name": "unbalanced (None)", |
45
|
|
|
"initial_storage_level": None, |
46
|
|
|
"balanced": False, |
47
|
|
|
}, |
48
|
|
|
{ |
49
|
|
|
"name": "balanced (20% filled)", |
50
|
|
|
"initial_storage_level": 0.2, |
51
|
|
|
"balanced": True, |
52
|
|
|
}, |
53
|
|
|
{ |
54
|
|
|
"name": "balanced (None)", |
55
|
|
|
"initial_storage_level": None, |
56
|
|
|
"balanced": True, |
57
|
|
|
}, |
58
|
|
|
] |
59
|
|
|
|
60
|
|
|
PARAMETER = {"el_price": 10, "ex_price": 5, "nominal_storage_capacity": 7} |
61
|
|
|
|
62
|
|
|
|
63
|
|
|
def main(optimize=True): |
64
|
|
|
timeseries = pd.DataFrame( |
65
|
|
|
{"demand_el": [7, 6, 6, 7], "pv_el": [3, 5, 3, 12]} |
66
|
|
|
) |
67
|
|
|
|
68
|
|
|
# create an energy system |
69
|
|
|
idx = pd.date_range("1/1/2017", periods=len(timeseries), freq="h") |
70
|
|
|
es = solph.EnergySystem(timeindex=idx, infer_last_interval=True) |
71
|
|
|
|
72
|
|
|
for data_set in DATA: |
73
|
|
|
name = data_set["name"] |
74
|
|
|
|
75
|
|
|
# power bus |
76
|
|
|
bel = solph.Bus(label="bel_{0}".format(name)) |
77
|
|
|
es.add(bel) |
78
|
|
|
|
79
|
|
|
es.add( |
80
|
|
|
solph.components.Source( |
81
|
|
|
label="source_el_{0}".format(name), |
82
|
|
|
outputs={ |
83
|
|
|
bel: solph.Flow(variable_costs=PARAMETER["el_price"]) |
84
|
|
|
}, |
85
|
|
|
) |
86
|
|
|
) |
87
|
|
|
|
88
|
|
|
es.add( |
89
|
|
|
solph.components.Source( |
90
|
|
|
label="pv_el_{0}".format(name), |
91
|
|
|
outputs={ |
92
|
|
|
bel: solph.Flow( |
93
|
|
|
fix=timeseries["pv_el"], nominal_capacity=1 |
94
|
|
|
) |
95
|
|
|
}, |
96
|
|
|
) |
97
|
|
|
) |
98
|
|
|
|
99
|
|
|
es.add( |
100
|
|
|
solph.components.Sink( |
101
|
|
|
label="demand_el_{0}".format(name), |
102
|
|
|
inputs={ |
103
|
|
|
bel: solph.Flow( |
104
|
|
|
fix=timeseries["demand_el"], nominal_capacity=1 |
105
|
|
|
) |
106
|
|
|
}, |
107
|
|
|
) |
108
|
|
|
) |
109
|
|
|
|
110
|
|
|
es.add( |
111
|
|
|
solph.components.Sink( |
112
|
|
|
label="excess_{0}".format(name), |
113
|
|
|
inputs={bel: solph.Flow()}, |
114
|
|
|
) |
115
|
|
|
) |
116
|
|
|
|
117
|
|
|
# Electric Storage |
118
|
|
|
es.add( |
119
|
|
|
solph.components.GenericStorage( |
120
|
|
|
label="storage_elec_{0}".format(name), |
121
|
|
|
nominal_capacity=PARAMETER["nominal_storage_capacity"], |
122
|
|
|
inputs={bel: solph.Flow()}, |
123
|
|
|
outputs={bel: solph.Flow()}, |
124
|
|
|
initial_storage_level=data_set["initial_storage_level"], |
125
|
|
|
balanced=data_set["balanced"], |
126
|
|
|
) |
127
|
|
|
) |
128
|
|
|
|
129
|
|
|
if optimize is False: |
130
|
|
|
return es |
131
|
|
|
|
132
|
|
|
# create an optimization problem and solve it |
133
|
|
|
om = solph.Model(es) |
134
|
|
|
|
135
|
|
|
# solve model |
136
|
|
|
om.solve(solver="cbc") |
137
|
|
|
|
138
|
|
|
# create result object |
139
|
|
|
results = solph.processing.results(om) |
140
|
|
|
|
141
|
|
|
components = [x for x in results if x[1] is None] |
142
|
|
|
|
143
|
|
|
storage_cap = pd.DataFrame() |
144
|
|
|
balance = pd.Series(dtype=float) |
145
|
|
|
|
146
|
|
|
storages = [x[0] for x in components if "storage" in x[0].label] |
147
|
|
|
|
148
|
|
|
for s in storages: |
149
|
|
|
name = s.label |
150
|
|
|
storage_cap[name] = results[s, None]["sequences"]["storage_content"] |
151
|
|
|
balance[name] = storage_cap.iloc[0][name] - storage_cap.iloc[-1][name] |
152
|
|
|
|
153
|
|
|
storage_cap.plot( |
154
|
|
|
drawstyle="steps-mid", |
155
|
|
|
subplots=False, |
156
|
|
|
sharey=True, |
157
|
|
|
title="Storage content", |
158
|
|
|
) |
159
|
|
|
storage_cap.plot( |
160
|
|
|
drawstyle="steps-mid", |
161
|
|
|
subplots=True, |
162
|
|
|
sharey=True, |
163
|
|
|
title="Storage content", |
164
|
|
|
) |
165
|
|
|
|
166
|
|
|
balance.plot( |
167
|
|
|
kind="bar", |
168
|
|
|
linewidth=1, |
169
|
|
|
edgecolor="#000000", |
170
|
|
|
rot=0, |
171
|
|
|
ax=plt.subplots()[1], |
172
|
|
|
title="Gained energy from storage", |
173
|
|
|
) |
174
|
|
|
plt.show() |
175
|
|
|
|
176
|
|
|
|
177
|
|
|
if __name__ == "__main__": |
178
|
|
|
main() |
179
|
|
|
|