1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
|
3
|
|
|
""" |
4
|
|
|
General description |
5
|
|
|
------------------- |
6
|
|
|
This example focuses on the modelling of an OffsetConverters representing |
7
|
|
|
a diesel generator in a hybrid mini-grid system considering its real efficiency |
8
|
|
|
curve based on the min/max load and efficiency. |
9
|
|
|
|
10
|
|
|
The system consists of the following components: |
11
|
|
|
- pv: solar potential to generate electricity |
12
|
|
|
- diesel_source: input diesel for the diesel genset |
13
|
|
|
- diesel_genset: generates ac electricity |
14
|
|
|
- rectifier: converts generated ac electricity from the diesel genset |
15
|
|
|
to dc electricity |
16
|
|
|
- inverter: converts generated dc electricity from the pv to ac electricity |
17
|
|
|
- battery: stores the generated dc electricity |
18
|
|
|
- demand_el: ac electricity demand (given as a separate csv file) |
19
|
|
|
- excess_el: allows for some electricity overproduction |
20
|
|
|
|
21
|
|
|
|
22
|
|
|
Code |
23
|
|
|
---- |
24
|
|
|
Download source code: :download:`offset_diesel_genset_nonconvex_investment.py </../examples/offset_converter_example/offset_diesel_genset_nonconvex_investment.py>` |
25
|
|
|
|
26
|
|
|
.. dropdown:: Click to display code |
27
|
|
|
|
28
|
|
|
.. literalinclude:: /../examples/offset_converter_example/offset_diesel_genset_nonconvex_investment.py |
29
|
|
|
:language: python |
30
|
|
|
:lines: 44- |
31
|
|
|
|
32
|
|
|
Data |
33
|
|
|
---- |
34
|
|
|
Download data: :download:`input_data.csv </../examples/offset_converter_example/diesel_genset_data.csv>` |
35
|
|
|
|
36
|
|
|
Installation requirements |
37
|
|
|
------------------------- |
38
|
|
|
This example requires the version v0.5.x of oemof. Install by: |
39
|
|
|
|
40
|
|
|
pip install 'oemof.solph>=0.5,<0.6' |
41
|
|
|
|
42
|
|
|
""" |
43
|
|
|
|
44
|
|
|
__copyright__ = "oemof developer group" |
45
|
|
|
__license__ = "MIT" |
46
|
|
|
|
47
|
|
|
import os |
48
|
|
|
import time |
49
|
|
|
from datetime import datetime |
50
|
|
|
from datetime import timedelta |
51
|
|
|
|
52
|
|
|
import numpy as np |
53
|
|
|
import pandas as pd |
54
|
|
|
|
55
|
|
|
from oemof import solph |
56
|
|
|
|
57
|
|
|
try: |
58
|
|
|
import matplotlib.pyplot as plt |
59
|
|
|
except ImportError: |
60
|
|
|
plt = None |
61
|
|
|
|
62
|
|
|
|
63
|
|
|
def get_data_from_file_path(file_path: str) -> pd.DataFrame: |
64
|
|
|
try: |
65
|
|
|
data = pd.read_csv(file_path) |
66
|
|
|
except FileNotFoundError: |
67
|
|
|
dir = os.path.dirname(os.path.abspath(__file__)) |
68
|
|
|
data = pd.read_csv(dir + "/" + file_path) |
69
|
|
|
return data |
70
|
|
|
|
71
|
|
|
|
72
|
|
|
def main(optimize=True): |
73
|
|
|
########################################################################## |
74
|
|
|
# Initialize the energy system and calculate necessary parameters |
75
|
|
|
########################################################################## |
76
|
|
|
|
77
|
|
|
# Start time for calculating the total elapsed time. |
78
|
|
|
start_simulation_time = time.time() |
79
|
|
|
|
80
|
|
|
start = "2022-01-01" |
81
|
|
|
|
82
|
|
|
# The maximum number of days depends on the given csv file. |
83
|
|
|
n_days = 5 |
84
|
|
|
n_days_in_year = 365 |
85
|
|
|
|
86
|
|
|
# Create date and time objects. |
87
|
|
|
start_date_obj = datetime.strptime(start, "%Y-%m-%d") |
88
|
|
|
start_date = start_date_obj.date() |
89
|
|
|
start_time = start_date_obj.time() |
90
|
|
|
start_datetime = datetime.combine( |
91
|
|
|
start_date_obj.date(), start_date_obj.time() |
92
|
|
|
) |
93
|
|
|
end_datetime = start_datetime + timedelta(days=n_days) |
94
|
|
|
|
95
|
|
|
# Import data. |
96
|
|
|
data = get_data_from_file_path("diesel_genset_data.csv") |
97
|
|
|
|
98
|
|
|
# Change the index of data to be able to select data based on the time range. |
99
|
|
|
data.index = pd.date_range(start="2022-01-01", periods=len(data), freq="h") |
100
|
|
|
|
101
|
|
|
# Choose the range of the solar potential and demand |
102
|
|
|
# based on the selected simulation period. |
103
|
|
|
solar_potential = data.SolarGen.loc[start_datetime:end_datetime] |
104
|
|
|
hourly_demand = data.Demand.loc[start_datetime:end_datetime] |
105
|
|
|
peak_solar_potential = solar_potential.max() |
106
|
|
|
peak_demand = hourly_demand.max() |
107
|
|
|
|
108
|
|
|
# Create the energy system. |
109
|
|
|
date_time_index = pd.date_range( |
110
|
|
|
start=start_date, periods=n_days * 24, freq="h" |
111
|
|
|
) |
112
|
|
|
energy_system = solph.EnergySystem(timeindex=date_time_index) |
113
|
|
|
|
114
|
|
|
# -------------------- BUSES -------------------- |
115
|
|
|
# Create electricity and diesel buses. |
116
|
|
|
b_el_ac = solph.buses.Bus(label="electricity_ac") |
117
|
|
|
b_el_dc = solph.buses.Bus(label="electricity_dc") |
118
|
|
|
b_diesel = solph.buses.Bus(label="diesel") |
119
|
|
|
|
120
|
|
|
# -------------------- SOURCES -------------------- |
121
|
|
|
diesel_cost = 0.65 # currency/l |
122
|
|
|
diesel_density = 0.846 # kg/l |
123
|
|
|
diesel_lhv = 11.83 # kWh/kg |
124
|
|
|
diesel_source = solph.components.Source( |
125
|
|
|
label="diesel_source", |
126
|
|
|
outputs={ |
127
|
|
|
b_diesel: solph.flows.Flow( |
128
|
|
|
variable_costs=diesel_cost / diesel_density / diesel_lhv |
129
|
|
|
) |
130
|
|
|
}, |
131
|
|
|
) |
132
|
|
|
|
133
|
|
|
# EPC stands for the equivalent periodical costs. |
134
|
|
|
epc_pv = 152.62 # currency/kW/year |
135
|
|
|
pv = solph.components.Source( |
136
|
|
|
label="pv", |
137
|
|
|
outputs={ |
138
|
|
|
b_el_dc: solph.flows.Flow( |
139
|
|
|
fix=solar_potential / peak_solar_potential, |
140
|
|
|
nominal_capacity=solph.Investment( |
141
|
|
|
ep_costs=epc_pv * n_days / n_days_in_year |
142
|
|
|
), |
143
|
|
|
variable_costs=0, |
144
|
|
|
) |
145
|
|
|
}, |
146
|
|
|
) |
147
|
|
|
|
148
|
|
|
# -------------------- CONVERTERS -------------------- |
149
|
|
|
# The diesel genset does not have a fixed nominal capacity and will be |
150
|
|
|
# optimized using the minimum and maximum loads and efficiencies. |
151
|
|
|
# In this case, the `Investment` and `NonConvex` attributes must be used. The |
152
|
|
|
# combination of these two attributes is utilized in the |
153
|
|
|
# `InvestNonConvexFlowBlock`. |
154
|
|
|
|
155
|
|
|
# If the nominal capacity of the genset is already known, only the `NonConvex` |
156
|
|
|
# attribute should be defined, and therefore, the `NonConvexFlowBlock` will |
157
|
|
|
# be used. |
158
|
|
|
|
159
|
|
|
# Specify the minimum and maximum loads and the corresponding efficiencies |
160
|
|
|
# for the diesel genset. |
161
|
|
|
min_load = 0.2 |
162
|
|
|
max_load = 1.0 |
163
|
|
|
min_efficiency = 0.20 |
164
|
|
|
max_efficiency = 0.33 |
165
|
|
|
|
166
|
|
|
# Calculate the two polynomial coefficients, i.e. the y-intersection and the |
167
|
|
|
# slope of the linear equation. There is a conveniece function for that |
168
|
|
|
# in solph: |
169
|
|
|
slope, offset = solph.components.slope_offset_from_nonconvex_output( |
170
|
|
|
max_load, min_load, max_efficiency, min_efficiency |
171
|
|
|
) |
172
|
|
|
|
173
|
|
|
epc_diesel_genset = 84.80 # currency/kW/year |
174
|
|
|
variable_cost_diesel_genset = 0.045 # currency/kWh |
175
|
|
|
diesel_genset = solph.components.OffsetConverter( |
176
|
|
|
label="diesel_genset", |
177
|
|
|
inputs={b_diesel: solph.flows.Flow()}, |
178
|
|
|
outputs={ |
179
|
|
|
b_el_ac: solph.flows.Flow( |
180
|
|
|
variable_costs=variable_cost_diesel_genset, |
181
|
|
|
min=min_load, |
182
|
|
|
max=max_load, |
183
|
|
|
nominal_capacity=solph.Investment( |
184
|
|
|
ep_costs=epc_diesel_genset * n_days / n_days_in_year, |
185
|
|
|
maximum=2 * peak_demand, |
186
|
|
|
), |
187
|
|
|
nonconvex=solph.NonConvex(), |
188
|
|
|
), |
189
|
|
|
}, |
190
|
|
|
conversion_factors={b_diesel: slope}, |
191
|
|
|
normed_offsets={b_diesel: offset}, |
192
|
|
|
) |
193
|
|
|
|
194
|
|
|
# The rectifier assumed to have a fixed efficiency of 98%. |
195
|
|
|
epc_rectifier = 62.35 # currency/kW/year |
196
|
|
|
rectifier = solph.components.Converter( |
197
|
|
|
label="rectifier", |
198
|
|
|
inputs={ |
199
|
|
|
b_el_ac: solph.flows.Flow( |
200
|
|
|
nominal_capacity=solph.Investment( |
201
|
|
|
ep_costs=epc_rectifier * n_days / n_days_in_year |
202
|
|
|
), |
203
|
|
|
variable_costs=0, |
204
|
|
|
) |
205
|
|
|
}, |
206
|
|
|
outputs={b_el_dc: solph.flows.Flow()}, |
207
|
|
|
conversion_factors={ |
208
|
|
|
b_el_dc: 0.98, |
209
|
|
|
}, |
210
|
|
|
) |
211
|
|
|
|
212
|
|
|
# The inverter assumed to have a fixed efficiency of 98%. |
213
|
|
|
epc_inverter = 62.35 # currency/kW/year |
214
|
|
|
inverter = solph.components.Converter( |
215
|
|
|
label="inverter", |
216
|
|
|
inputs={ |
217
|
|
|
b_el_dc: solph.flows.Flow( |
218
|
|
|
nominal_capacity=solph.Investment( |
219
|
|
|
ep_costs=epc_inverter * n_days / n_days_in_year |
220
|
|
|
), |
221
|
|
|
variable_costs=0, |
222
|
|
|
) |
223
|
|
|
}, |
224
|
|
|
outputs={b_el_ac: solph.flows.Flow()}, |
225
|
|
|
conversion_factors={ |
226
|
|
|
b_el_ac: 0.98, |
227
|
|
|
}, |
228
|
|
|
) |
229
|
|
|
|
230
|
|
|
# -------------------- STORAGE -------------------- |
231
|
|
|
epc_battery = 101.00 # currency/kWh/year |
232
|
|
|
battery = solph.components.GenericStorage( |
233
|
|
|
label="battery", |
234
|
|
|
nominal_capacity=solph.Investment( |
235
|
|
|
ep_costs=epc_battery * n_days / n_days_in_year |
236
|
|
|
), |
237
|
|
|
inputs={b_el_dc: solph.flows.Flow(variable_costs=0)}, |
238
|
|
|
outputs={ |
239
|
|
|
b_el_dc: solph.flows.Flow( |
240
|
|
|
nominal_capacity=solph.Investment(ep_costs=0) |
241
|
|
|
) |
242
|
|
|
}, |
243
|
|
|
initial_storage_level=0.0, |
244
|
|
|
min_storage_level=0.0, |
245
|
|
|
max_storage_level=1.0, |
246
|
|
|
balanced=True, |
247
|
|
|
inflow_conversion_factor=0.9, |
248
|
|
|
outflow_conversion_factor=0.9, |
249
|
|
|
invest_relation_input_capacity=1, |
250
|
|
|
invest_relation_output_capacity=0.5, |
251
|
|
|
) |
252
|
|
|
|
253
|
|
|
# -------------------- SINKS -------------------- |
254
|
|
|
demand_el = solph.components.Sink( |
255
|
|
|
label="electricity_demand", |
256
|
|
|
inputs={ |
257
|
|
|
b_el_ac: solph.flows.Flow( |
258
|
|
|
fix=hourly_demand / peak_demand, |
259
|
|
|
nominal_capacity=peak_demand, |
260
|
|
|
) |
261
|
|
|
}, |
262
|
|
|
) |
263
|
|
|
|
264
|
|
|
excess_el = solph.components.Sink( |
265
|
|
|
label="excess_el", |
266
|
|
|
inputs={b_el_dc: solph.flows.Flow()}, |
267
|
|
|
) |
268
|
|
|
|
269
|
|
|
# Add all objects to the energy system. |
270
|
|
|
energy_system.add( |
271
|
|
|
pv, |
272
|
|
|
diesel_source, |
273
|
|
|
b_el_dc, |
274
|
|
|
b_el_ac, |
275
|
|
|
b_diesel, |
276
|
|
|
inverter, |
277
|
|
|
rectifier, |
278
|
|
|
diesel_genset, |
279
|
|
|
battery, |
280
|
|
|
demand_el, |
281
|
|
|
excess_el, |
282
|
|
|
) |
283
|
|
|
|
284
|
|
|
########################################################################## |
285
|
|
|
# Optimise the energy system |
286
|
|
|
########################################################################## |
287
|
|
|
|
288
|
|
|
if optimize is False: |
289
|
|
|
return energy_system |
290
|
|
|
|
291
|
|
|
# The higher the MipGap or ratioGap, the faster the solver would converge, |
292
|
|
|
# but the less accurate the results would be. |
293
|
|
|
solver_option = {"gurobi": {"MipGap": "0.02"}, "cbc": {"ratioGap": "0.02"}} |
294
|
|
|
solver = "cbc" |
295
|
|
|
|
296
|
|
|
model = solph.Model(energy_system) |
297
|
|
|
model.solve( |
298
|
|
|
solver=solver, |
299
|
|
|
solve_kwargs={"tee": True}, |
300
|
|
|
cmdline_options=solver_option[solver], |
301
|
|
|
) |
302
|
|
|
|
303
|
|
|
# End of the calculation time. |
304
|
|
|
end_simulation_time = time.time() |
305
|
|
|
|
306
|
|
|
########################################################################## |
307
|
|
|
# Process the results |
308
|
|
|
########################################################################## |
309
|
|
|
|
310
|
|
|
results = solph.processing.results(model) |
311
|
|
|
|
312
|
|
|
results_pv = solph.views.node(results=results, node="pv") |
313
|
|
|
results_diesel_source = solph.views.node( |
314
|
|
|
results=results, node="diesel_source" |
315
|
|
|
) |
316
|
|
|
results_diesel_genset = solph.views.node( |
317
|
|
|
results=results, node="diesel_genset" |
318
|
|
|
) |
319
|
|
|
results_inverter = solph.views.node(results=results, node="inverter") |
320
|
|
|
results_rectifier = solph.views.node(results=results, node="rectifier") |
321
|
|
|
results_battery = solph.views.node(results=results, node="battery") |
322
|
|
|
results_demand_el = solph.views.node( |
323
|
|
|
results=results, node="electricity_demand" |
324
|
|
|
) |
325
|
|
|
results_excess_el = solph.views.node(results=results, node="excess_el") |
326
|
|
|
|
327
|
|
|
# -------------------- SEQUENCES (DYNAMIC) -------------------- |
328
|
|
|
# Hourly demand profile. |
329
|
|
|
sequences_demand = results_demand_el["sequences"][ |
330
|
|
|
(("electricity_ac", "electricity_demand"), "flow") |
331
|
|
|
] |
332
|
|
|
|
333
|
|
|
# Hourly profiles for solar potential and pv production. |
334
|
|
|
sequences_pv = results_pv["sequences"][(("pv", "electricity_dc"), "flow")] |
335
|
|
|
|
336
|
|
|
# Hourly profiles for diesel consumption and electricity production |
337
|
|
|
# in the diesel genset. |
338
|
|
|
# The 'flow' from oemof is in kWh and must be converted to |
339
|
|
|
# kg by dividing it by the lower heating value and then to |
340
|
|
|
# liter by dividing it by the diesel density. |
341
|
|
|
sequences_diesel_consumption = ( |
342
|
|
|
results_diesel_source["sequences"][ |
343
|
|
|
(("diesel_source", "diesel"), "flow") |
344
|
|
|
] |
345
|
|
|
/ diesel_lhv |
346
|
|
|
/ diesel_density |
347
|
|
|
) |
348
|
|
|
|
349
|
|
|
# Hourly profile for the kWh of the diesel provided for the diesel genset |
350
|
|
|
sequences_diesel_consumption_kwh = results_diesel_source["sequences"][ |
351
|
|
|
(("diesel_source", "diesel"), "flow") |
352
|
|
|
] |
353
|
|
|
|
354
|
|
|
sequences_diesel_genset = results_diesel_genset["sequences"][ |
355
|
|
|
(("diesel_genset", "electricity_ac"), "flow") |
356
|
|
|
] |
357
|
|
|
|
358
|
|
|
# Hourly profiles for inverted electricity from dc to ac. |
359
|
|
|
sequences_inverter = results_inverter["sequences"][ |
360
|
|
|
(("inverter", "electricity_ac"), "flow") |
361
|
|
|
] |
362
|
|
|
|
363
|
|
|
# Hourly profiles for inverted electricity from ac to dc. |
364
|
|
|
sequences_rectifier = results_rectifier["sequences"][ |
365
|
|
|
(("rectifier", "electricity_dc"), "flow") |
366
|
|
|
] |
367
|
|
|
|
368
|
|
|
# Hourly profiles for excess ac and dc electricity production. |
369
|
|
|
sequences_excess = results_excess_el["sequences"][ |
370
|
|
|
(("electricity_dc", "excess_el"), "flow") |
371
|
|
|
] |
372
|
|
|
|
373
|
|
|
# -------------------- SCALARS (STATIC) -------------------- |
374
|
|
|
capacity_diesel_genset = results_diesel_genset["scalars"][ |
375
|
|
|
(("diesel_genset", "electricity_ac"), "invest") |
376
|
|
|
] |
377
|
|
|
|
378
|
|
|
# Define a tolerance to force 'too close' numbers to the `min_load` |
379
|
|
|
# and to 0 to be the same as the `min_load` and 0. |
380
|
|
|
# Load is defined here in percentage. |
381
|
|
|
tol = 1e-8 |
382
|
|
|
load_diesel_genset = sequences_diesel_genset / capacity_diesel_genset * 100 |
383
|
|
|
sequences_diesel_genset[np.abs(load_diesel_genset) < tol] = 0 |
384
|
|
|
sequences_diesel_genset[np.abs(load_diesel_genset - min_load) < tol] = ( |
385
|
|
|
min_load * capacity_diesel_genset |
386
|
|
|
) |
387
|
|
|
sequences_diesel_genset[np.abs(load_diesel_genset - max_load) < tol] = ( |
388
|
|
|
max_load * capacity_diesel_genset |
389
|
|
|
) |
390
|
|
|
|
391
|
|
|
# Calculate the efficiency of the diesel genset. |
392
|
|
|
# If the load is equal to 0, the efficiency will also be 0. |
393
|
|
|
# Efficiency is defined here in percentage. |
394
|
|
|
efficiency_diesel_genset = np.zeros(len(sequences_diesel_genset)) |
395
|
|
|
for i in range(len(sequences_diesel_genset)): |
396
|
|
|
if sequences_diesel_consumption_kwh[i] != 0: |
397
|
|
|
efficiency_diesel_genset[i] = ( |
398
|
|
|
sequences_diesel_genset[i] |
399
|
|
|
/ sequences_diesel_consumption_kwh[i] |
400
|
|
|
* 100 |
401
|
|
|
) |
402
|
|
|
|
403
|
|
|
capacity_pv = results_pv["scalars"][(("pv", "electricity_dc"), "invest")] |
404
|
|
|
capacity_inverter = results_inverter["scalars"][ |
405
|
|
|
(("electricity_dc", "inverter"), "invest") |
406
|
|
|
] |
407
|
|
|
capacity_rectifier = results_rectifier["scalars"][ |
408
|
|
|
(("electricity_ac", "rectifier"), "invest") |
409
|
|
|
] |
410
|
|
|
capacity_battery = results_battery["scalars"][ |
411
|
|
|
(("electricity_dc", "battery"), "invest") |
412
|
|
|
] |
413
|
|
|
|
414
|
|
|
total_cost_component = ( |
415
|
|
|
( |
416
|
|
|
epc_diesel_genset * capacity_diesel_genset |
417
|
|
|
+ epc_pv * capacity_pv |
418
|
|
|
+ epc_rectifier * capacity_rectifier |
419
|
|
|
+ epc_inverter * capacity_inverter |
420
|
|
|
+ epc_battery * capacity_battery |
421
|
|
|
) |
422
|
|
|
* n_days |
423
|
|
|
/ n_days_in_year |
424
|
|
|
) |
425
|
|
|
|
426
|
|
|
# The only componnet with the variable cost is the diesl genset |
427
|
|
|
total_cost_variable = ( |
428
|
|
|
variable_cost_diesel_genset * sequences_diesel_genset.sum(axis=0) |
429
|
|
|
) |
430
|
|
|
|
431
|
|
|
total_cost_diesel = diesel_cost * sequences_diesel_consumption.sum(axis=0) |
432
|
|
|
total_revenue = ( |
433
|
|
|
total_cost_component + total_cost_variable + total_cost_diesel |
434
|
|
|
) |
435
|
|
|
total_demand = sequences_demand.sum(axis=0) |
436
|
|
|
|
437
|
|
|
# Levelized cost of electricity in the system in currency's Cent per kWh. |
438
|
|
|
lcoe = 100 * total_revenue / total_demand |
439
|
|
|
|
440
|
|
|
# The share of renewable energy source used to cover the demand. |
441
|
|
|
res = ( |
442
|
|
|
100 |
443
|
|
|
* sequences_pv.sum(axis=0) |
444
|
|
|
/ (sequences_diesel_genset.sum(axis=0) + sequences_pv.sum(axis=0)) |
445
|
|
|
) |
446
|
|
|
|
447
|
|
|
# The amount of excess electricity (which must probably be dumped). |
448
|
|
|
excess_rate = ( |
449
|
|
|
100 |
450
|
|
|
* sequences_excess.sum(axis=0) |
451
|
|
|
/ (sequences_excess.sum(axis=0) + sequences_demand.sum(axis=0)) |
452
|
|
|
) |
453
|
|
|
|
454
|
|
|
########################################################################## |
455
|
|
|
# Print the results in the terminal |
456
|
|
|
########################################################################## |
457
|
|
|
|
458
|
|
|
if __name__ == "__main__": |
459
|
|
|
print("\n" + 50 * "*") |
460
|
|
|
print( |
461
|
|
|
f"Simulation Time: {end_simulation_time-start_simulation_time:.2f} s" |
462
|
|
|
) |
463
|
|
|
print(50 * "*") |
464
|
|
|
print(f"Peak Demand:\t {sequences_demand.max():.0f} kW") |
465
|
|
|
print(f"LCOE:\t\t {lcoe:.2f} cent/kWh") |
466
|
|
|
print(f"RES:\t\t {res:.0f}%") |
467
|
|
|
print(f"Excess:\t\t {excess_rate:.1f}% of the total production") |
468
|
|
|
print(50 * "*") |
469
|
|
|
print("Optimal Capacities:") |
470
|
|
|
print("-------------------") |
471
|
|
|
print(f"Diesel Genset:\t {capacity_diesel_genset:.0f} kW") |
472
|
|
|
print(f"PV:\t\t {capacity_pv:.0f} kW") |
473
|
|
|
print(f"Battery:\t {capacity_battery:.0f} kW") |
474
|
|
|
print(f"Inverter:\t {capacity_inverter:.0f} kW") |
475
|
|
|
print(f"Rectifier:\t {capacity_rectifier:.0f} kW") |
476
|
|
|
print(50 * "*") |
477
|
|
|
|
478
|
|
|
########################################################################## |
479
|
|
|
# Plot the duration curve for the diesel genset |
480
|
|
|
########################################################################## |
481
|
|
|
|
482
|
|
|
if plt is not None: |
483
|
|
|
# Create the duration curve for the diesel genset. |
484
|
|
|
fig1, ax = plt.subplots(figsize=(10, 5)) |
485
|
|
|
|
486
|
|
|
# Sort the power generated by the diesel genset in a descending order. |
487
|
|
|
diesel_genset_duration_curve = np.sort(sequences_diesel_genset)[ |
488
|
|
|
::-1 |
489
|
|
|
] |
490
|
|
|
|
491
|
|
|
percentage = ( |
492
|
|
|
100 |
493
|
|
|
* np.arange(1, len(diesel_genset_duration_curve) + 1) |
494
|
|
|
/ len(diesel_genset_duration_curve) |
495
|
|
|
) |
496
|
|
|
|
497
|
|
|
ax.scatter( |
498
|
|
|
percentage, |
499
|
|
|
diesel_genset_duration_curve, |
500
|
|
|
color="dodgerblue", |
501
|
|
|
marker="+", |
502
|
|
|
) |
503
|
|
|
|
504
|
|
|
# Plot a horizontal line representing the minimum load |
505
|
|
|
ax.axhline( |
506
|
|
|
y=min_load * capacity_diesel_genset, |
507
|
|
|
color="crimson", |
508
|
|
|
linestyle="--", |
509
|
|
|
) |
510
|
|
|
min_load_annotation_text = ( |
511
|
|
|
f"minimum load: {min_load * capacity_diesel_genset:0.2f} kW" |
512
|
|
|
) |
513
|
|
|
ax.annotate( |
514
|
|
|
min_load_annotation_text, |
515
|
|
|
xy=(100, min_load * capacity_diesel_genset), |
516
|
|
|
xytext=(0, 5), |
517
|
|
|
textcoords="offset pixels", |
518
|
|
|
horizontalalignment="right", |
519
|
|
|
verticalalignment="bottom", |
520
|
|
|
) |
521
|
|
|
|
522
|
|
|
# Plot a horizontal line representing the maximum load |
523
|
|
|
ax.axhline( |
524
|
|
|
y=max_load * capacity_diesel_genset, |
525
|
|
|
color="crimson", |
526
|
|
|
linestyle="--", |
527
|
|
|
) |
528
|
|
|
max_load_annotation_text = ( |
529
|
|
|
f"maximum load: {max_load * capacity_diesel_genset:0.2f} kW" |
530
|
|
|
) |
531
|
|
|
ax.annotate( |
532
|
|
|
max_load_annotation_text, |
533
|
|
|
xy=(100, max_load * capacity_diesel_genset), |
534
|
|
|
xytext=(0, -5), |
535
|
|
|
textcoords="offset pixels", |
536
|
|
|
horizontalalignment="right", |
537
|
|
|
verticalalignment="top", |
538
|
|
|
) |
539
|
|
|
|
540
|
|
|
ax.set_title( |
541
|
|
|
"Duration Curve for the Diesel Genset Electricity Production", |
542
|
|
|
fontweight="bold", |
543
|
|
|
) |
544
|
|
|
ax.set_ylabel("diesel genset production [kW]") |
545
|
|
|
ax.set_xlabel("percentage of annual operation [%]") |
546
|
|
|
|
547
|
|
|
# Create the second axis on the right side of the diagram |
548
|
|
|
# representing the operation load of the diesel genset. |
549
|
|
|
second_ax = ax.secondary_yaxis( |
550
|
|
|
"right", |
551
|
|
|
functions=( |
552
|
|
|
lambda x: x / capacity_diesel_genset * 100, |
|
|
|
|
553
|
|
|
lambda x: x * capacity_diesel_genset / 100, |
|
|
|
|
554
|
|
|
), |
555
|
|
|
) |
556
|
|
|
second_ax.set_ylabel("diesel genset operation load [%]") |
557
|
|
|
|
558
|
|
|
####################################################################### |
559
|
|
|
# Plot the efficiency curve for the diesel genset |
560
|
|
|
####################################################################### |
561
|
|
|
|
562
|
|
|
fig2, ax = plt.subplots(figsize=(10, 5)) |
563
|
|
|
ax.scatter( |
564
|
|
|
load_diesel_genset, |
565
|
|
|
efficiency_diesel_genset, |
566
|
|
|
marker="+", |
567
|
|
|
) |
568
|
|
|
|
569
|
|
|
# Plot a horizontal line representing the minimum efficiency |
570
|
|
|
ax.axhline( |
571
|
|
|
y=min_efficiency * 100, |
572
|
|
|
color="crimson", |
573
|
|
|
linestyle="--", |
574
|
|
|
) |
575
|
|
|
min_efficiency_annotation_text = ( |
576
|
|
|
f"minimum efficiency: {min_efficiency*100:0.0f}%" |
577
|
|
|
) |
578
|
|
|
ax.annotate( |
579
|
|
|
min_efficiency_annotation_text, |
580
|
|
|
xy=(100, min_efficiency * 100), |
581
|
|
|
xytext=(0, 10), |
582
|
|
|
textcoords="offset pixels", |
583
|
|
|
horizontalalignment="right", |
584
|
|
|
verticalalignment="bottom", |
585
|
|
|
) |
586
|
|
|
|
587
|
|
|
# Plot a horizontal line representing the maximum efficiency |
588
|
|
|
ax.axhline( |
589
|
|
|
y=max_efficiency * 100, |
590
|
|
|
color="crimson", |
591
|
|
|
linestyle="--", |
592
|
|
|
) |
593
|
|
|
max_efficiency_annotation_text = ( |
594
|
|
|
f"maximum efficiency: {max_efficiency*100:0.0f}%" |
595
|
|
|
) |
596
|
|
|
ax.annotate( |
597
|
|
|
max_efficiency_annotation_text, |
598
|
|
|
xy=(100, max_efficiency * 100), |
599
|
|
|
xytext=(0, 10), |
600
|
|
|
textcoords="offset pixels", |
601
|
|
|
horizontalalignment="right", |
602
|
|
|
verticalalignment="bottom", |
603
|
|
|
) |
604
|
|
|
|
605
|
|
|
ax.set_title( |
606
|
|
|
"Efficiency Curve for Different Loads of the Diesel Genset", |
607
|
|
|
fontweight="bold", |
608
|
|
|
) |
609
|
|
|
ax.set_ylabel("efficiency [%]") |
610
|
|
|
ax.set_xlabel("diesel genset load [%]") |
611
|
|
|
|
612
|
|
|
ax.set_xlim(min_load * 100 - 5, max_load * 100 + 5) |
613
|
|
|
|
614
|
|
|
plt.show() |
615
|
|
|
|
616
|
|
|
|
617
|
|
|
if __name__ == "__main__": |
618
|
|
|
main() |
619
|
|
|
|