|
1
|
|
|
import logging |
|
2
|
|
|
import warnings |
|
3
|
|
|
from pathlib import Path |
|
4
|
|
|
import tsam.timeseriesaggregation as tsam |
|
5
|
|
|
|
|
6
|
|
|
import numpy as np |
|
7
|
|
|
import pandas as pd |
|
8
|
|
|
from matplotlib import pyplot as plt |
|
9
|
|
|
from oemof.tools import debugging |
|
10
|
|
|
from oemof.tools import logger |
|
11
|
|
|
|
|
12
|
|
|
from oemof.solph import Bus |
|
13
|
|
|
from oemof.solph import EnergySystem |
|
14
|
|
|
from oemof.solph import Flow |
|
15
|
|
|
from oemof.solph import Investment |
|
16
|
|
|
from oemof.solph import Model |
|
17
|
|
|
from oemof.solph import Results |
|
18
|
|
|
from oemof.solph import components as cmp |
|
19
|
|
|
from oemof import solph |
|
20
|
|
|
|
|
21
|
|
|
warnings.filterwarnings( |
|
22
|
|
|
"ignore", category=debugging.ExperimentalFeatureWarning |
|
23
|
|
|
) |
|
24
|
|
|
logger.define_logging() |
|
25
|
|
|
|
|
26
|
|
|
file_path = Path(__file__).parent |
|
27
|
|
|
|
|
28
|
|
|
df = pd.read_csv( |
|
29
|
|
|
Path(file_path, "energy.csv"), |
|
30
|
|
|
) |
|
31
|
|
|
df["time"] = pd.to_datetime(df["Unix Epoch"], unit="s") |
|
32
|
|
|
# time als Index setzen |
|
33
|
|
|
df = df.set_index("time") |
|
34
|
|
|
df = df.drop(columns=["Unix Epoch"]) |
|
35
|
|
|
print(df) |
|
36
|
|
|
|
|
37
|
|
|
time_index = df.index |
|
38
|
|
|
|
|
39
|
|
|
# Dummy pv profile |
|
40
|
|
|
h = np.arange(len(time_index)) |
|
41
|
|
|
pv_profile = df["PV (W)"] |
|
42
|
|
|
|
|
43
|
|
|
# Dummy electricity profile |
|
44
|
|
|
df["house_elec_kW"] = 0.3 + 0.7 * np.random.rand(len(time_index)) |
|
45
|
|
|
|
|
46
|
|
|
# Dummy heat profile |
|
47
|
|
|
df["house_heat_kW"] = 0.3 + 0.7 * np.random.rand(len(time_index)) |
|
48
|
|
|
|
|
49
|
|
|
# EV-Ladeprofil |
|
50
|
|
|
df["ev_charge_kW"] = 0.0 # wird automatisch auf alle Zeitschritte gebroadcastet |
|
51
|
|
|
|
|
52
|
|
|
# COP-Profil (konstant, später evtl. temperaturabhängig) |
|
53
|
|
|
df["cop_hp"] = 3.5 |
|
54
|
|
|
|
|
55
|
|
|
#Clustering of Input time-series with TSAM |
|
56
|
|
|
# not a high number of typical periods works with high number of hours per period |
|
57
|
|
|
typical_periods = 7 |
|
58
|
|
|
hours_per_period = 24 * 60 |
|
59
|
|
|
|
|
60
|
|
|
aggregation_no_segmentation = tsam.TimeSeriesAggregation( |
|
61
|
|
|
timeSeries=df, |
|
62
|
|
|
noTypicalPeriods=typical_periods, |
|
63
|
|
|
hoursPerPeriod=hours_per_period, |
|
64
|
|
|
clusterMethod="k_means", |
|
65
|
|
|
sortValues=False, |
|
66
|
|
|
rescaleClusterPeriods=False, |
|
67
|
|
|
) |
|
68
|
|
|
aggregation_no_segmentation.createTypicalPeriods() |
|
69
|
|
|
tindex_agg = pd.date_range( |
|
70
|
|
|
"2022-01-01", periods=typical_periods * hours_per_period , freq="H" |
|
71
|
|
|
) |
|
72
|
|
|
|
|
73
|
|
|
aggregation_no_segmentation.typicalPeriods["house_elec_kW"] |
|
74
|
|
|
|
|
75
|
|
|
#aggregation with segmentation |
|
76
|
|
|
# has to be hourly values, other values don't work because it is to big |
|
77
|
|
|
df = df.resample("1h").mean() |
|
78
|
|
|
typical_periods = 40 |
|
79
|
|
|
hours_per_period = 24 |
|
80
|
|
|
|
|
81
|
|
|
aggregation_with_segmentation = tsam.TimeSeriesAggregation( |
|
82
|
|
|
timeSeries=df, |
|
83
|
|
|
noTypicalPeriods=typical_periods, |
|
84
|
|
|
hoursPerPeriod=hours_per_period, |
|
85
|
|
|
clusterMethod="k_means", |
|
86
|
|
|
sortValues=False, |
|
87
|
|
|
rescaleClusterPeriods=False, |
|
88
|
|
|
segmentation=True, |
|
89
|
|
|
noSegments=6, |
|
90
|
|
|
) |
|
91
|
|
|
aggregation_with_segmentation.createTypicalPeriods() |
|
92
|
|
|
|
|
93
|
|
|
aggregation_with_segmentation.typicalPeriods["house_elec_kW"] |
|
94
|
|
|
|