|
1
|
|
|
# -*- coding: utf-8 -*- |
|
2
|
|
|
|
|
3
|
|
|
""" |
|
4
|
|
|
SPDX-FileCopyrightText: Patrik Schönfeldt |
|
5
|
|
|
SPDX-FileCopyrightText: DLR e.V. |
|
6
|
|
|
|
|
7
|
|
|
SPDX-License-Identifier: MIT |
|
8
|
|
|
""" |
|
9
|
|
|
|
|
10
|
|
|
import logging |
|
11
|
|
|
import warnings |
|
12
|
|
|
from pathlib import Path |
|
13
|
|
|
|
|
14
|
|
|
import numpy as np |
|
15
|
|
|
import pandas as pd |
|
16
|
|
|
import tsam.timeseriesaggregation as tsam |
|
17
|
|
|
from cost_data import investment_costs |
|
18
|
|
|
from matplotlib import pyplot as plt |
|
19
|
|
|
from oemof.tools import debugging |
|
20
|
|
|
from oemof.tools import logger |
|
21
|
|
|
from shared import prepare_input_data |
|
22
|
|
|
|
|
23
|
|
|
from oemof import solph |
|
24
|
|
|
from oemof.solph import Bus |
|
25
|
|
|
from oemof.solph import EnergySystem |
|
26
|
|
|
from oemof.solph import Flow |
|
27
|
|
|
from oemof.solph import Investment |
|
28
|
|
|
from oemof.solph import Model |
|
29
|
|
|
from oemof.solph import Results |
|
30
|
|
|
from oemof.solph import components as cmp |
|
31
|
|
|
|
|
32
|
|
|
|
|
33
|
|
|
def determine_periods(datetimeindex): |
|
34
|
|
|
"""Explicitly define and return periods of the energy system |
|
35
|
|
|
|
|
36
|
|
|
Leap years have 8784 hourly time steps, regular years 8760. |
|
37
|
|
|
|
|
38
|
|
|
Parameters |
|
39
|
|
|
---------- |
|
40
|
|
|
datetimeindex : pd.date_range |
|
41
|
|
|
DatetimeIndex of the model comprising all time steps |
|
42
|
|
|
|
|
43
|
|
|
Returns |
|
44
|
|
|
------- |
|
45
|
|
|
periods : list |
|
46
|
|
|
periods for the optimization run |
|
47
|
|
|
""" |
|
48
|
|
|
years = sorted(list(set(getattr(datetimeindex, "year")))) |
|
49
|
|
|
periods = [] |
|
50
|
|
|
filter_series = datetimeindex.to_series() |
|
51
|
|
|
for number, year in enumerate(years): |
|
52
|
|
|
start = filter_series.loc[filter_series.index.year == year].min() |
|
53
|
|
|
end = filter_series.loc[filter_series.index.year == year].max() |
|
54
|
|
|
periods.append(pd.date_range(start, end, freq=datetimeindex.freq)) |
|
55
|
|
|
|
|
56
|
|
|
return periods |
|
57
|
|
|
|
|
58
|
|
|
|
|
59
|
|
|
warnings.filterwarnings( |
|
60
|
|
|
"ignore", category=debugging.ExperimentalFeatureWarning |
|
61
|
|
|
) |
|
62
|
|
|
logger.define_logging() |
|
63
|
|
|
|
|
64
|
|
|
# ---------- read cost data ------------------------------------------------------------ |
|
65
|
|
|
|
|
66
|
|
|
investment_costs = investment_costs() |
|
67
|
|
|
|
|
68
|
|
|
# ---------- read time series data and resample----------------------------------------- |
|
69
|
|
|
df_temperature, df_energy = prepare_input_data(plot_resampling=False) |
|
70
|
|
|
|
|
71
|
|
|
df_temperature = df_temperature.resample("1 h").mean() |
|
72
|
|
|
df_energy = df_energy.resample("1 h").mean() |
|
73
|
|
|
|
|
74
|
|
|
time_series_data_full = pd.concat([df_temperature, df_energy], axis=1) |
|
75
|
|
|
|
|
76
|
|
|
time_series_data_full = time_series_data_full.drop( |
|
77
|
|
|
columns=["Air Temperature (°C)", "heat demand (kWh)"] |
|
78
|
|
|
).drop(time_series_data_full.index[0]) |
|
79
|
|
|
|
|
80
|
|
|
time_index = time_series_data_full.index |
|
81
|
|
|
|
|
82
|
|
|
# -------------- Clustering of Input time-series with TSAM ----------------------------- |
|
83
|
|
|
typical_periods = 40 |
|
84
|
|
|
hours_per_period = 24 |
|
85
|
|
|
|
|
86
|
|
|
aggregation = tsam.TimeSeriesAggregation( |
|
87
|
|
|
timeSeries=time_series_data_full.iloc[:8760], |
|
88
|
|
|
noTypicalPeriods=typical_periods, |
|
89
|
|
|
hoursPerPeriod=hours_per_period, |
|
90
|
|
|
clusterMethod="k_means", |
|
91
|
|
|
sortValues=False, |
|
92
|
|
|
rescaleClusterPeriods=False, |
|
93
|
|
|
) |
|
94
|
|
|
aggregation.createTypicalPeriods() |
|
95
|
|
|
|
|
96
|
|
|
# pandas DatTime for the aggregated time series |
|
97
|
|
|
tindex_agg = pd.date_range( |
|
98
|
|
|
"2025-01-01", periods=typical_periods * hours_per_period, freq="h" |
|
99
|
|
|
) |
|
100
|
|
|
|
|
101
|
|
|
# ------------ create timeindex etc. for multiperiod ----------------------------------- |
|
102
|
|
|
# list with years in which investment is possible |
|
103
|
|
|
years = [2025, 2030, 2035, 2040, 2045] |
|
104
|
|
|
# base_year = tindex_agg[0].year |
|
105
|
|
|
|
|
106
|
|
|
# # Create a list of shifted copies of the original index, one per investment year |
|
107
|
|
|
# shifted = [tindex_agg + pd.DateOffset(years=(y - base_year)) for y in years] |
|
108
|
|
|
|
|
109
|
|
|
# # Concatenate them into one DatetimeIndex |
|
110
|
|
|
# tindex_agg_full = shifted[0] |
|
111
|
|
|
# for s in shifted[1:]: |
|
112
|
|
|
# tindex_agg_full = tindex_agg_full.append(s) |
|
113
|
|
|
|
|
114
|
|
|
tindex_agg_full = pd.date_range( |
|
115
|
|
|
"2025-01-01", |
|
116
|
|
|
periods=typical_periods * hours_per_period * len(years), |
|
117
|
|
|
freq="h", |
|
118
|
|
|
) |
|
119
|
|
|
|
|
120
|
|
|
# list of with time index for each year |
|
121
|
|
|
# periods = determine_periods(tindex_agg_full) |
|
122
|
|
|
periods = [tindex_agg] * len(years) |
|
123
|
|
|
|
|
124
|
|
|
# parameters for time series aggregation in oemof-solph with one dict per year |
|
125
|
|
|
tsa_parameters = [ |
|
126
|
|
|
{ |
|
127
|
|
|
"timesteps_per_period": aggregation.hoursPerPeriod, |
|
128
|
|
|
"order": aggregation.clusterOrder, |
|
129
|
|
|
"timeindex": aggregation.timeIndex, |
|
130
|
|
|
} |
|
131
|
|
|
] * len(years) |
|
132
|
|
|
|
|
133
|
|
|
# # ---------- read time series data ----------------------------------------------------- |
|
134
|
|
|
|
|
135
|
|
|
# file_path = Path(__file__).parent |
|
136
|
|
|
|
|
137
|
|
|
# df = pd.read_csv( |
|
138
|
|
|
# Path(file_path, "energy.csv"), |
|
139
|
|
|
# ) |
|
140
|
|
|
# df["time"] = pd.to_datetime(df["Unix Epoch"], unit="s") |
|
141
|
|
|
# # time als Index setzen |
|
142
|
|
|
# df = df.set_index("time") |
|
143
|
|
|
# df = df.drop(columns=["Unix Epoch"]) |
|
144
|
|
|
# # print(df) |
|
145
|
|
|
|
|
146
|
|
|
# time_index = df.index |
|
147
|
|
|
|
|
148
|
|
|
# # Dummy pv profile |
|
149
|
|
|
# h = np.arange(len(time_index)) |
|
150
|
|
|
# pv_profile = df["PV (W)"] |
|
151
|
|
|
|
|
152
|
|
|
# # Dummy electricity profile |
|
153
|
|
|
# df["house_elec_kW"] = 0.3 + 0.7 * np.random.rand(len(time_index)) |
|
154
|
|
|
|
|
155
|
|
|
# # Dummy heat profile |
|
156
|
|
|
# df["house_heat_kW"] = 0.3 + 0.7 * np.random.rand(len(time_index)) |
|
157
|
|
|
|
|
158
|
|
|
# # EV-Ladeprofil |
|
159
|
|
|
# df["ev_charge_kW"] = ( |
|
160
|
|
|
# 0.0 # wird automatisch auf alle Zeitschritte gebroadcastet |
|
161
|
|
|
# ) |
|
162
|
|
|
|
|
163
|
|
|
# # COP-Profil (konstant, später evtl. temperaturabhängig) |
|
164
|
|
|
# df["cop_hp"] = 3.5 |
|
165
|
|
|
|
|
166
|
|
|
# df = df.resample("1h").mean() |
|
167
|
|
|
|
|
168
|
|
|
# # -------------- Clustering of Input time-series with TSAM ----------------------------- |
|
169
|
|
|
# typical_periods = 40 |
|
170
|
|
|
# hours_per_period = 24 |
|
171
|
|
|
|
|
172
|
|
|
# aggregation = tsam.TimeSeriesAggregation( |
|
173
|
|
|
# timeSeries=df.iloc[:8760], |
|
174
|
|
|
# noTypicalPeriods=typical_periods, |
|
175
|
|
|
# hoursPerPeriod=hours_per_period, |
|
176
|
|
|
# clusterMethod="k_means", |
|
177
|
|
|
# sortValues=False, |
|
178
|
|
|
# rescaleClusterPeriods=False, |
|
179
|
|
|
# ) |
|
180
|
|
|
# aggregation.createTypicalPeriods() |
|
181
|
|
|
|
|
182
|
|
|
# # pandas DatTime for the aggregated time series |
|
183
|
|
|
# tindex_agg_one_year = pd.date_range( |
|
184
|
|
|
# "2022-01-01", periods=typical_periods * hours_per_period, freq="h" |
|
185
|
|
|
# ) |
|
186
|
|
|
|
|
187
|
|
|
# # ------------ create timeindex etc. for multiperiod ----------------------------------- |
|
188
|
|
|
# # list with years in which investment is possible |
|
189
|
|
|
# years = [2025, 2030, 2035, 2040, 2045] |
|
190
|
|
|
|
|
191
|
|
|
# # stretch time index to include all years (continously) |
|
192
|
|
|
# tindex_agg_full = pd.date_range( |
|
193
|
|
|
# "2022-01-01", |
|
194
|
|
|
# periods=typical_periods * hours_per_period * len(years), |
|
195
|
|
|
# freq="h", |
|
196
|
|
|
# ) |
|
197
|
|
|
|
|
198
|
|
|
# # list of with time index for each year |
|
199
|
|
|
# periods = [tindex_agg_one_year] * len(years) |
|
200
|
|
|
|
|
201
|
|
|
# # parameters for time series aggregation in oemof-solph with one dict per year |
|
202
|
|
|
# tsa_parameters = [ |
|
203
|
|
|
# { |
|
204
|
|
|
# "timesteps_per_period": aggregation.hoursPerPeriod, |
|
205
|
|
|
# "order": aggregation.clusterOrder, |
|
206
|
|
|
# "timeindex": aggregation.timeIndex, |
|
207
|
|
|
# } |
|
208
|
|
|
# ] * len(years) |
|
209
|
|
|
|
|
210
|
|
|
# ------------------ calculate discount rate and lifetime ------------------------------ |
|
211
|
|
|
|
|
212
|
|
|
# the annuity has to be calculated for a period of 5 years |
|
213
|
|
|
investment_period_length_in_years = 5 |
|
214
|
|
|
|
|
215
|
|
|
|
|
216
|
|
|
def lifetime_adjusted(lifetime, investment_period_length_in_years): |
|
217
|
|
|
return lifetime / investment_period_length_in_years |
|
218
|
|
|
|
|
219
|
|
|
|
|
220
|
|
|
def discount_rate_adjusted(discount_rate, investment_period_length_in_years): |
|
221
|
|
|
return (1 + discount_rate) ** investment_period_length_in_years - 1 |
|
222
|
|
|
|
|
223
|
|
|
|
|
224
|
|
|
# ------------------ create energy system ---------------------------------------------- |
|
225
|
|
|
es = EnergySystem( |
|
226
|
|
|
timeindex=tindex_agg_full, |
|
227
|
|
|
timeincrement=[1] * len(tindex_agg_full), |
|
228
|
|
|
periods=periods, |
|
229
|
|
|
tsa_parameters=tsa_parameters, |
|
230
|
|
|
infer_last_interval=False, |
|
231
|
|
|
) |
|
232
|
|
|
|
|
233
|
|
|
|
|
234
|
|
|
bus_el = Bus(label="electricity") |
|
235
|
|
|
bus_heat = Bus(label="heat") |
|
236
|
|
|
es.add(bus_el, bus_heat) |
|
237
|
|
|
|
|
238
|
|
|
# new_s = pd.concat( |
|
239
|
|
|
# [aggregation.typicalPeriods["PV (W)"]] * len(years), ignore_index=True |
|
240
|
|
|
# ) |
|
241
|
|
|
# print(new_s) |
|
242
|
|
|
pv = cmp.Source( |
|
243
|
|
|
label="PV", |
|
244
|
|
|
outputs={ |
|
245
|
|
|
bus_el: Flow( |
|
246
|
|
|
fix=pd.concat( |
|
247
|
|
|
[aggregation.typicalPeriods["PV (W)"]] * len(years), |
|
248
|
|
|
ignore_index=True, |
|
249
|
|
|
), |
|
250
|
|
|
nominal_capacity=Investment( |
|
251
|
|
|
ep_costs=investment_costs[("pv", "specific_costs [Eur/W]")], |
|
252
|
|
|
lifetime=lifetime_adjusted( |
|
253
|
|
|
50, investment_period_length_in_years |
|
254
|
|
|
), |
|
255
|
|
|
fixed_costs=investment_costs[("pv", "fixed_costs [Eur]")], |
|
256
|
|
|
maximum=500, |
|
257
|
|
|
), |
|
258
|
|
|
) |
|
259
|
|
|
}, |
|
260
|
|
|
) |
|
261
|
|
|
es.add(pv) |
|
262
|
|
|
|
|
263
|
|
|
# Battery |
|
264
|
|
|
battery = cmp.GenericStorage( |
|
265
|
|
|
label="Battery", |
|
266
|
|
|
inputs={bus_el: Flow()}, |
|
267
|
|
|
outputs={bus_el: Flow()}, |
|
268
|
|
|
nominal_capacity=Investment( |
|
269
|
|
|
ep_costs=investment_costs[("battery", "specific_costs [Eur/Wh]")], |
|
270
|
|
|
lifetime=lifetime_adjusted(50, investment_period_length_in_years), |
|
271
|
|
|
), |
|
272
|
|
|
# kWh |
|
273
|
|
|
# initial_storage_level=0.5, # 50% |
|
274
|
|
|
min_storage_level=0.0, |
|
275
|
|
|
max_storage_level=1.0, |
|
276
|
|
|
loss_rate=0.001, # 0.1%/h |
|
277
|
|
|
inflow_conversion_factor=0.95, # Lade-Wirkungsgrad |
|
278
|
|
|
outflow_conversion_factor=0.95, # Entlade-Wirkungsgrad |
|
279
|
|
|
) |
|
280
|
|
|
es.add(battery) |
|
281
|
|
|
|
|
282
|
|
|
# Electricity demand |
|
283
|
|
|
house_sink = cmp.Sink( |
|
284
|
|
|
label="Electricity demand", |
|
285
|
|
|
inputs={ |
|
286
|
|
|
bus_el: Flow( |
|
287
|
|
|
fix=pd.concat( |
|
288
|
|
|
[aggregation.typicalPeriods["electricity demand (W)"]] |
|
289
|
|
|
* len(years), |
|
290
|
|
|
ignore_index=True, |
|
291
|
|
|
), |
|
292
|
|
|
nominal_capacity=1.0, |
|
293
|
|
|
) |
|
294
|
|
|
}, |
|
295
|
|
|
) |
|
296
|
|
|
es.add(house_sink) |
|
297
|
|
|
|
|
298
|
|
|
# Electric vehicle demand |
|
299
|
|
|
# wallbox_sink = cmp.Sink( |
|
300
|
|
|
# label="Electric Vehicle", |
|
301
|
|
|
# inputs={ |
|
302
|
|
|
# bus_el: Flow( |
|
303
|
|
|
# fix=pd.concat( |
|
304
|
|
|
# [aggregation.typicalPeriods["ev_charge_kW"]] * len(years), |
|
305
|
|
|
# ignore_index=True, |
|
306
|
|
|
# ), |
|
307
|
|
|
# nominal_capacity=1.0, |
|
308
|
|
|
# ) |
|
309
|
|
|
# }, |
|
310
|
|
|
# ) |
|
311
|
|
|
# es.add(wallbox_sink) |
|
312
|
|
|
|
|
313
|
|
|
# Heat Pump |
|
314
|
|
|
hp = cmp.Converter( |
|
315
|
|
|
label="Heat pump", |
|
316
|
|
|
inputs={bus_el: Flow()}, |
|
317
|
|
|
outputs={ |
|
318
|
|
|
bus_heat: Flow( |
|
319
|
|
|
nominal_capacity=Investment( |
|
320
|
|
|
ep_costs=investment_costs[ |
|
321
|
|
|
("heat pump", "specific_costs [Eur/W]") |
|
322
|
|
|
], |
|
323
|
|
|
lifetime=lifetime_adjusted( |
|
324
|
|
|
50, investment_period_length_in_years |
|
325
|
|
|
), |
|
326
|
|
|
fixed_costs=investment_costs[ |
|
327
|
|
|
("heat pump", "fixed_costs [Eur]") |
|
328
|
|
|
], |
|
329
|
|
|
) |
|
330
|
|
|
) |
|
331
|
|
|
}, |
|
332
|
|
|
conversion_factors={bus_heat: 3.5}, |
|
333
|
|
|
) |
|
334
|
|
|
es.add(hp) |
|
335
|
|
|
|
|
336
|
|
|
# Heat demand |
|
337
|
|
|
heat_sink = cmp.Sink( |
|
338
|
|
|
label="Heat demand", |
|
339
|
|
|
inputs={ |
|
340
|
|
|
bus_heat: Flow( |
|
341
|
|
|
fix=pd.concat( |
|
342
|
|
|
[aggregation.typicalPeriods["heat demand (W)"]] * len(years), |
|
343
|
|
|
ignore_index=True, |
|
344
|
|
|
), |
|
345
|
|
|
nominal_capacity=1.0, |
|
346
|
|
|
) |
|
347
|
|
|
}, |
|
348
|
|
|
) |
|
349
|
|
|
es.add(heat_sink) |
|
350
|
|
|
|
|
351
|
|
|
grid_import = cmp.Source( |
|
352
|
|
|
label="Grid import", outputs={bus_el: Flow(variable_costs=0.30)} |
|
353
|
|
|
) |
|
354
|
|
|
es.add(grid_import) |
|
355
|
|
|
|
|
356
|
|
|
# Grid feed-in |
|
357
|
|
|
feed_in = cmp.Sink( |
|
358
|
|
|
label="Grid Feed-in", inputs={bus_el: Flow(variable_costs=-0.08)} |
|
359
|
|
|
) |
|
360
|
|
|
es.add(feed_in) |
|
361
|
|
|
|
|
362
|
|
|
# Create Model and solve it |
|
363
|
|
|
logging.info("Creating Model...") |
|
364
|
|
|
m = Model(es) |
|
365
|
|
|
logging.info("Solving Model...") |
|
366
|
|
|
m.solve(solver="gurobi", solve_kwargs={"tee": True}) |
|
367
|
|
|
|
|
368
|
|
|
|
|
369
|
|
|
# Create Results |
|
370
|
|
|
results = Results(m) |
|
371
|
|
|
print(results.keys()) |
|
372
|
|
|
total = results.total |
|
373
|
|
|
print(total) |
|
374
|
|
|
|