|
1
|
|
|
# -*- coding: utf-8 -*- |
|
2
|
|
|
|
|
3
|
|
|
r""" |
|
4
|
|
|
General description: |
|
5
|
|
|
--------------------- |
|
6
|
|
|
|
|
7
|
|
|
The example models the following energy system: |
|
8
|
|
|
|
|
9
|
|
|
input/output bel |
|
10
|
|
|
| | |
|
11
|
|
|
wind(FixedSource) |--------->| |
|
12
|
|
|
| | |
|
13
|
|
|
demand(Sink) |<---------| |
|
14
|
|
|
| | |
|
15
|
|
|
storage(Storage) |<---------| |
|
16
|
|
|
|--------->| |
|
17
|
|
|
|
|
18
|
|
|
|
|
19
|
|
|
|
|
20
|
|
|
An initial SOC of zero leads to infeasible solution, as last inter SOC has to |
|
21
|
|
|
match first inter SOC. |
|
22
|
|
|
Following equations have to be fulfilled: |
|
23
|
|
|
:math:`F_{el,st}[0] = F_{el,st}[6]` |
|
24
|
|
|
:math:`SOC_{init} * discharge + F_{el,st}[0] =` |
|
25
|
|
|
:math:`\sum_{i=1}^{n=5}F_{st,el}[i]/eff_{out}/(1 - discharge)^i` |
|
26
|
|
|
:math:`F_{el,st}[6] = (SOC_{init} + F_{el,st}[5]/eff_{out}) / (1 - discharge)` |
|
27
|
|
|
|
|
28
|
|
|
This file is part of project oemof (github.com/oemof/oemof). It's copyrighted |
|
29
|
|
|
by the contributors recorded in the version control history of the file, |
|
30
|
|
|
available from its original location oemof/tests/test_scripts/test_solph/ |
|
31
|
|
|
test_storage_investment/test_storage_investment.py |
|
32
|
|
|
|
|
33
|
|
|
SPDX-License-Identifier: MIT |
|
34
|
|
|
""" |
|
35
|
|
|
|
|
36
|
|
|
import logging |
|
37
|
|
|
|
|
38
|
|
|
import pandas as pd |
|
39
|
|
|
import pytest |
|
40
|
|
|
from oemof.tools import economics |
|
41
|
|
|
from oemof.tools import logger |
|
42
|
|
|
|
|
43
|
|
|
from oemof import solph |
|
44
|
|
|
|
|
45
|
|
|
########################################################################## |
|
46
|
|
|
# Initialize the energy system and read/calculate necessary parameters |
|
47
|
|
|
########################################################################## |
|
48
|
|
|
|
|
49
|
|
|
logger.define_logging() |
|
50
|
|
|
logging.info("Initialize the energy system") |
|
51
|
|
|
|
|
52
|
|
|
tindex_original = pd.date_range("2022-01-01", periods=8, freq="H") |
|
53
|
|
|
tindex = pd.date_range("2022-01-01", periods=4, freq="H") |
|
54
|
|
|
|
|
55
|
|
|
energysystem = solph.EnergySystem( |
|
56
|
|
|
timeindex=tindex, |
|
57
|
|
|
periods=[tindex], |
|
58
|
|
|
tsa_parameters=[ |
|
59
|
|
|
{ |
|
60
|
|
|
"timesteps_per_period": 2, |
|
61
|
|
|
"order": [0, 1, 1, 0], |
|
62
|
|
|
}, |
|
63
|
|
|
], |
|
64
|
|
|
infer_last_interval=True, |
|
65
|
|
|
) |
|
66
|
|
|
|
|
67
|
|
|
########################################################################## |
|
68
|
|
|
# Create oemof objects |
|
69
|
|
|
########################################################################## |
|
70
|
|
|
|
|
71
|
|
|
logging.info("Create oemof objects") |
|
72
|
|
|
|
|
73
|
|
|
# create electricity bus |
|
74
|
|
|
bel = solph.Bus(label="electricity") |
|
75
|
|
|
energysystem.add(bel) |
|
76
|
|
|
|
|
77
|
|
|
# create fixed source object representing wind power plants |
|
78
|
|
|
wind = solph.components.Source( |
|
79
|
|
|
label="wind", |
|
80
|
|
|
outputs={bel: solph.Flow(fix=[1000, 0, 0, 50], nominal_value=1)}, |
|
81
|
|
|
) |
|
82
|
|
|
|
|
83
|
|
|
# create simple sink object representing the electrical demand |
|
84
|
|
|
demand = solph.components.Sink( |
|
85
|
|
|
label="demand", |
|
86
|
|
|
inputs={ |
|
87
|
|
|
bel: solph.Flow( |
|
88
|
|
|
fix=[100] * 4, |
|
89
|
|
|
nominal_value=1, |
|
90
|
|
|
) |
|
91
|
|
|
}, |
|
92
|
|
|
) |
|
93
|
|
|
|
|
94
|
|
|
# create storage object representing a battery |
|
95
|
|
|
epc = economics.annuity(capex=1000, n=20, wacc=0.05) |
|
96
|
|
|
storage = solph.components.GenericStorage( |
|
97
|
|
|
label="storage", |
|
98
|
|
|
inputs={bel: solph.Flow(lifetime=20)}, |
|
99
|
|
|
outputs={bel: solph.Flow(lifetime=20)}, |
|
100
|
|
|
nominal_capacity=solph.Investment(ep_costs=epc, lifetime=20), |
|
101
|
|
|
loss_rate=0.01, |
|
102
|
|
|
inflow_conversion_factor=0.9, |
|
103
|
|
|
outflow_conversion_factor=0.8, |
|
104
|
|
|
) |
|
105
|
|
|
|
|
106
|
|
|
excess = solph.components.Sink( |
|
107
|
|
|
label="excess", |
|
108
|
|
|
inputs={bel: solph.Flow()}, |
|
109
|
|
|
) |
|
110
|
|
|
|
|
111
|
|
|
energysystem.add(wind, demand, storage, excess) |
|
112
|
|
|
|
|
113
|
|
|
########################################################################## |
|
114
|
|
|
# Optimise the energy system |
|
115
|
|
|
########################################################################## |
|
116
|
|
|
|
|
117
|
|
|
logging.info("Optimise the energy system") |
|
118
|
|
|
|
|
119
|
|
|
# initialise the operational model |
|
120
|
|
|
om = solph.Model(energysystem) |
|
121
|
|
|
|
|
122
|
|
|
# if tee_switch is true solver messages will be displayed |
|
123
|
|
|
logging.info("Solve the optimization problem") |
|
124
|
|
|
om.solve(solver="cbc", solve_kwargs={"tee": True}) |
|
125
|
|
|
|
|
126
|
|
|
########################################################################## |
|
127
|
|
|
# Check and plot the results |
|
128
|
|
|
########################################################################## |
|
129
|
|
|
|
|
130
|
|
|
# check if the new result object is working for custom components |
|
131
|
|
|
results = solph.processing.results(om) |
|
132
|
|
|
|
|
133
|
|
|
# Concatenate flows: |
|
134
|
|
|
flows = pd.concat([flow["sequences"] for flow in results.values()], axis=1) |
|
135
|
|
|
flows.columns = [ |
|
136
|
|
|
f"{oemof_tuple[0]}-{oemof_tuple[1]}" for oemof_tuple in results.keys() |
|
137
|
|
|
] |
|
138
|
|
|
|
|
139
|
|
|
first_input = ( |
|
140
|
|
|
(100 * 1 / 0.8) / (1 - 0.01) |
|
141
|
|
|
+ (100 * 1 / 0.8) / (1 - 0.01) ** 2 |
|
142
|
|
|
+ (50 * 1 / 0.8) / (1 - 0.01) ** 3 |
|
143
|
|
|
+ (100 * 1 / 0.8) / (1 - 0.01) ** 4 |
|
144
|
|
|
+ (50 * 1 / 0.8) / (1 - 0.01) ** 5 |
|
145
|
|
|
) |
|
146
|
|
|
# In this example SOC can e zero, as last SOC does not have to be equal |
|
147
|
|
|
# to first SOC in investment mode (maybe this should be changed?) |
|
148
|
|
|
init_soc = 0 |
|
149
|
|
|
|
|
150
|
|
|
|
|
151
|
|
|
def test_storage_investment(): |
|
152
|
|
|
"""Make sure that max SOC investment equals max load""" |
|
153
|
|
|
assert results[storage, None]["period_scalars"]["invest"].iloc[ |
|
154
|
|
|
0 |
|
155
|
|
|
] == pytest.approx(first_input) |
|
156
|
|
|
|
|
157
|
|
|
|
|
158
|
|
View Code Duplication |
def test_storage_input(): |
|
|
|
|
|
|
159
|
|
|
assert flows["electricity-storage"][0] == pytest.approx( |
|
160
|
|
|
(first_input - 0.99 * init_soc) / 0.9 |
|
161
|
|
|
) |
|
162
|
|
|
assert flows["electricity-storage"][1] == 0 |
|
163
|
|
|
assert flows["electricity-storage"][2] == 0 |
|
164
|
|
|
assert flows["electricity-storage"][3] == 0 |
|
165
|
|
|
assert flows["electricity-storage"][4] == 0 |
|
166
|
|
|
assert flows["electricity-storage"][5] == 0 |
|
167
|
|
|
assert flows["electricity-storage"][6] == flows["electricity-storage"][0] |
|
168
|
|
|
assert flows["electricity-storage"][7] == 0 |
|
169
|
|
|
|
|
170
|
|
|
|
|
171
|
|
|
def test_storage_output(): |
|
172
|
|
|
assert flows["storage-electricity"][0] == 0 |
|
173
|
|
|
assert flows["storage-electricity"][1] == 100 |
|
174
|
|
|
assert flows["storage-electricity"][2] == 100 |
|
175
|
|
|
assert flows["storage-electricity"][3] == 50 |
|
176
|
|
|
assert flows["storage-electricity"][4] == 100 |
|
177
|
|
|
assert flows["storage-electricity"][5] == 50 |
|
178
|
|
|
assert flows["storage-electricity"][6] == 0 |
|
179
|
|
|
assert flows["storage-electricity"][7] == 100 |
|
180
|
|
|
|
|
181
|
|
|
|
|
182
|
|
View Code Duplication |
def test_soc(): |
|
|
|
|
|
|
183
|
|
|
assert flows["storage-None"][0] == pytest.approx(init_soc) |
|
184
|
|
|
assert flows["storage-None"][1] == pytest.approx( |
|
185
|
|
|
(100 * 1 / 0.8) / (1 - 0.01) |
|
186
|
|
|
+ (100 * 1 / 0.8) / (1 - 0.01) ** 2 |
|
187
|
|
|
+ (50 * 1 / 0.8) / (1 - 0.01) ** 3 |
|
188
|
|
|
+ (100 * 1 / 0.8) / (1 - 0.01) ** 4 |
|
189
|
|
|
+ (50 * 1 / 0.8) / (1 - 0.01) ** 5, |
|
190
|
|
|
abs=1e-2, |
|
191
|
|
|
) |
|
192
|
|
|
assert flows["storage-None"][2] == pytest.approx( |
|
193
|
|
|
(100 * 1 / 0.8) / (1 - 0.01) |
|
194
|
|
|
+ (50 * 1 / 0.8) / (1 - 0.01) ** 2 |
|
195
|
|
|
+ (100 * 1 / 0.8) / (1 - 0.01) ** 3 |
|
196
|
|
|
+ (50 * 1 / 0.8) / (1 - 0.01) ** 4, |
|
197
|
|
|
abs=1e-2, |
|
198
|
|
|
) |
|
199
|
|
|
assert flows["storage-None"][3] == pytest.approx( |
|
200
|
|
|
(50 * 1 / 0.8) / (1 - 0.01) |
|
201
|
|
|
+ (100 * 1 / 0.8) / (1 - 0.01) ** 2 |
|
202
|
|
|
+ (50 * 1 / 0.8) / (1 - 0.01) ** 3, |
|
203
|
|
|
abs=1e-2, |
|
204
|
|
|
) |
|
205
|
|
|
assert flows["storage-None"][4] == pytest.approx( |
|
206
|
|
|
(100 * 1 / 0.8) / (1 - 0.01) + (50 * 1 / 0.8) / (1 - 0.01) ** 2, |
|
207
|
|
|
abs=1e-2, |
|
208
|
|
|
) |
|
209
|
|
|
assert flows["storage-None"][5] == pytest.approx( |
|
210
|
|
|
(50 * 1 / 0.8) / (1 - 0.01), abs=1e-2 |
|
211
|
|
|
) |
|
212
|
|
|
assert flows["storage-None"][6] == pytest.approx(0, abs=1e-2) |
|
213
|
|
|
assert flows["storage-None"][7] == pytest.approx(first_input) |
|
214
|
|
|
|