1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
|
3
|
|
|
""" |
4
|
|
|
SPDX-FileCopyrightText: Patrik Schönfeldt |
5
|
|
|
SPDX-FileCopyrightText: Daniel Niederhöfer |
6
|
|
|
SPDX-FileCopyrightText: DLR e.V. |
7
|
|
|
|
8
|
|
|
SPDX-License-Identifier: MIT |
9
|
|
|
""" |
10
|
|
|
# %%[imports] |
11
|
|
|
import os |
12
|
|
|
import matplotlib.pyplot as plt |
13
|
|
|
import networkx as nx |
14
|
|
|
import numpy as np |
15
|
|
|
from oemof.network.graph import create_nx_graph |
16
|
|
|
import pandas as pd |
17
|
|
|
|
18
|
|
|
from oemof import solph |
19
|
|
|
|
20
|
|
|
# %%[input_data] |
21
|
|
|
|
22
|
|
|
file_path = os.path.dirname(__file__) |
23
|
|
|
filename = os.path.join(file_path, "pv_example_data.csv") |
24
|
|
|
input_data = pd.read_csv( |
25
|
|
|
filename, index_col="timestep", parse_dates=["timestep"] |
26
|
|
|
) |
27
|
|
|
|
28
|
|
|
# %%[energy_system] |
29
|
|
|
|
30
|
|
|
# parse_dates does not set the freq attribute. |
31
|
|
|
# However, we want to use it for the EnergySystem. |
32
|
|
|
input_data.index.freq = pd.infer_freq(input_data.index) |
33
|
|
|
|
34
|
|
|
energy_system = solph.EnergySystem( |
35
|
|
|
timeindex=input_data.index, |
36
|
|
|
infer_last_interval=True, |
37
|
|
|
) |
38
|
|
|
|
39
|
|
|
# %%[dispatch_model] |
40
|
|
|
|
41
|
|
|
el_bus = solph.Bus(label="electricity") |
42
|
|
|
|
43
|
|
|
demand = solph.components.Sink( |
44
|
|
|
label="demand", |
45
|
|
|
inputs={ |
46
|
|
|
el_bus: solph.Flow( |
47
|
|
|
nominal_capacity=1, |
48
|
|
|
fix=input_data["electricity demand (kW)"], |
49
|
|
|
) |
50
|
|
|
}, |
51
|
|
|
) |
52
|
|
|
|
53
|
|
|
energy_system.add(el_bus, demand) |
54
|
|
|
|
55
|
|
|
grid = solph.Bus( |
56
|
|
|
label="grid", |
57
|
|
|
inputs={el_bus: solph.Flow(variable_costs=-0.06)}, |
58
|
|
|
outputs={el_bus: solph.Flow(variable_costs=0.3)}, |
59
|
|
|
balanced=False, |
60
|
|
|
) |
61
|
|
|
|
62
|
|
|
energy_system.add(grid) |
63
|
|
|
|
64
|
|
|
pv_specific_costs = 1500 # €/kW |
65
|
|
|
pv_lifetime = 20 # years |
66
|
|
|
pv_epc = pv_specific_costs / pv_lifetime |
67
|
|
|
|
68
|
|
|
pv_system = solph.components.Source( |
69
|
|
|
label="PV", |
70
|
|
|
outputs={ |
71
|
|
|
el_bus: solph.Flow( |
72
|
|
|
nominal_capacity=solph.Investment(ep_costs=pv_epc, maximum=10), |
73
|
|
|
max=input_data["pv yield (kW/kW)"], |
74
|
|
|
) |
75
|
|
|
}, |
76
|
|
|
) |
77
|
|
|
|
78
|
|
|
energy_system.add(pv_system) |
79
|
|
|
|
80
|
|
|
# %%[battery] |
81
|
|
|
|
82
|
|
|
battery_specific_costs = 1000 # €/kW |
83
|
|
|
battery_lifetime = 10 # years |
84
|
|
|
battery_epc = battery_specific_costs / battery_lifetime |
85
|
|
|
battery_size = 10 # kWh |
86
|
|
|
|
87
|
|
|
battery = solph.components.GenericStorage( |
88
|
|
|
label="Battery", |
89
|
|
|
nominal_capacity=battery_size, |
90
|
|
|
inputs={el_bus: solph.Flow()}, |
91
|
|
|
outputs={el_bus: solph.Flow()}, |
92
|
|
|
inflow_conversion_factor=0.9, |
93
|
|
|
loss_rate=0.01, |
94
|
|
|
) |
95
|
|
|
|
96
|
|
|
energy_system.add(battery) |
97
|
|
|
|
98
|
|
|
# %%[graph_plotting] |
99
|
|
|
plt.figure() |
100
|
|
|
graph = create_nx_graph(energy_system) |
101
|
|
|
nx.drawing.nx_pydot.write_dot(graph, "home_pv_graph_4.dot") |
102
|
|
|
nx.draw(graph, with_labels=True, font_size=8) |
103
|
|
|
# %%[model_optimisation] |
104
|
|
|
model = solph.Model(energy_system) |
105
|
|
|
|
106
|
|
|
model.solve(solver="cbc", solve_kwargs={"tee": True}) |
107
|
|
|
results = solph.processing.results(model) |
108
|
|
|
meta_results = solph.processing.meta_results(model) |
109
|
|
|
|
110
|
|
|
# %%[results] |
111
|
|
|
|
112
|
|
|
pv_size = results[(pv_system, el_bus)]["scalars"]["invest"] |
113
|
|
|
|
114
|
|
|
battery_annuity = battery_epc * battery_size |
115
|
|
|
pv_annuity = pv_epc * results[(pv_system, el_bus)]["scalars"]["invest"] |
116
|
|
|
annual_grid_supply = results[(grid, el_bus)]["sequences"]["flow"].sum() |
117
|
|
|
el_costs = 0.3 * annual_grid_supply |
118
|
|
|
el_revenue = 0.1 * results[(el_bus, grid)]["sequences"]["flow"].sum() |
119
|
|
|
|
120
|
|
|
tce = meta_results["objective"] + battery_annuity |
121
|
|
|
|
122
|
|
|
print(f"The optimal PV size is {pv_size:.2f} kW.") |
123
|
|
|
|
124
|
|
|
print(f"The annual costs for grid electricity are {el_costs:.2f} €.") |
125
|
|
|
print(f"The annual revenue from feed-in is {el_revenue:.2f} €.") |
126
|
|
|
print(f"The annuity for the PV system is {pv_annuity:.2f} €.") |
127
|
|
|
print(f"The annuity for the battery is {battery_annuity:.2f} €.") |
128
|
|
|
print(f"The total annual costs are {tce:.2f} €.") |
129
|
|
|
|
130
|
|
|
annual_demand = input_data["electricity demand (kW)"].sum() |
131
|
|
|
|
132
|
|
|
print( |
133
|
|
|
f"Autarky is 1 - {annual_grid_supply:.2f} kWh / {annual_demand:.2f} kWh" |
134
|
|
|
+ f" = {100 - 100 * annual_grid_supply / annual_demand:.2f} %." |
135
|
|
|
) |
136
|
|
|
|
137
|
|
|
electricity_fows = solph.views.node(results, "electricity")["sequences"] |
138
|
|
|
|
139
|
|
|
baseline = np.zeros(len(electricity_fows)) |
140
|
|
|
|
141
|
|
|
plt.figure() |
142
|
|
|
|
143
|
|
|
mode = "light" |
144
|
|
|
# mode = "dark" |
145
|
|
|
if mode == "dark": |
146
|
|
|
plt.style.use("dark_background") |
147
|
|
|
|
148
|
|
|
plt.fill_between( |
149
|
|
|
electricity_fows.index, |
150
|
|
|
baseline, |
151
|
|
|
baseline + electricity_fows[(("grid", "electricity"), "flow")], |
152
|
|
|
step="pre", |
153
|
|
|
label="Grid supply", |
154
|
|
|
) |
155
|
|
|
|
156
|
|
|
baseline += electricity_fows[(("grid", "electricity"), "flow")] |
157
|
|
|
|
158
|
|
|
plt.fill_between( |
159
|
|
|
electricity_fows.index, |
160
|
|
|
baseline, |
161
|
|
|
baseline + electricity_fows[(("PV", "electricity"), "flow")], |
162
|
|
|
step="pre", |
163
|
|
|
label="PV supply", |
164
|
|
|
) |
165
|
|
|
|
166
|
|
|
baseline += electricity_fows[(("PV", "electricity"), "flow")] |
167
|
|
|
|
168
|
|
|
plt.fill_between( |
169
|
|
|
electricity_fows.index, |
170
|
|
|
baseline, |
171
|
|
|
baseline + electricity_fows[(("Battery", "electricity"), "flow")], |
172
|
|
|
step="pre", |
173
|
|
|
label="Battery supply", |
174
|
|
|
) |
175
|
|
|
|
176
|
|
|
plt.step( |
177
|
|
|
electricity_fows.index, |
178
|
|
|
electricity_fows[(("electricity", "demand"), "flow")], |
179
|
|
|
"-", |
180
|
|
|
color="darkgrey", |
181
|
|
|
label="Electricity demand", |
182
|
|
|
) |
183
|
|
|
|
184
|
|
|
plt.step( |
185
|
|
|
electricity_fows.index, |
186
|
|
|
electricity_fows[(("electricity", "demand"), "flow")] |
187
|
|
|
+ electricity_fows[(("electricity", "Battery"), "flow")], |
188
|
|
|
"--", |
189
|
|
|
color="darkgrey", |
190
|
|
|
label="Battery charging", |
191
|
|
|
) |
192
|
|
|
|
193
|
|
|
plt.step( |
194
|
|
|
electricity_fows.index, |
195
|
|
|
electricity_fows[(("electricity", "demand"), "flow")] |
196
|
|
|
+ electricity_fows[(("electricity", "Battery"), "flow")] |
197
|
|
|
+ electricity_fows[(("electricity", "grid"), "flow")], |
198
|
|
|
":", |
199
|
|
|
color="darkgrey", |
200
|
|
|
label="Feed-In", |
201
|
|
|
) |
202
|
|
|
|
203
|
|
|
plt.legend() |
204
|
|
|
plt.ylabel("Power (kW)") |
205
|
|
|
plt.xlim(pd.Timestamp("2020-02-21 00:00"), pd.Timestamp("2020-02-28 00:00")) |
206
|
|
|
plt.gcf().autofmt_xdate() |
207
|
|
|
|
208
|
|
|
plt.savefig(f"home_pv_result-4_{mode}.svg") |
209
|
|
|
|
210
|
|
|
plt.show() |
211
|
|
|
|