|
1
|
|
|
# -*- coding: utf-8 -*- |
|
2
|
|
|
|
|
3
|
|
|
""" |
|
4
|
|
|
General description |
|
5
|
|
|
------------------- |
|
6
|
|
|
Example that shows the `storage_level_constraint`. |
|
7
|
|
|
|
|
8
|
|
|
Code |
|
9
|
|
|
---- |
|
10
|
|
|
Download source code: :download:`storage_level_constraint.py </../examples/storage_level_constraint/storage_level_constraint.py>` |
|
11
|
|
|
|
|
12
|
|
|
.. dropdown:: Click to display code |
|
13
|
|
|
|
|
14
|
|
|
.. literalinclude:: /../examples/storage_level_constraint/storage_level_constraint.py |
|
15
|
|
|
:language: python |
|
16
|
|
|
:lines: 33- |
|
17
|
|
|
|
|
18
|
|
|
Installation requirements |
|
19
|
|
|
------------------------- |
|
20
|
|
|
This example requires oemof.solph (at least v0.5.0) and matplotlib, install by: |
|
21
|
|
|
|
|
22
|
|
|
.. code:: bash |
|
23
|
|
|
|
|
24
|
|
|
pip install oemof.solph>=0.5 matplotlib |
|
25
|
|
|
|
|
26
|
|
|
|
|
27
|
|
|
License |
|
28
|
|
|
------- |
|
29
|
|
|
`MIT license <https://github.com/oemof/oemof-solph/blob/dev/LICENSE>`_ |
|
30
|
|
|
""" |
|
31
|
|
|
|
|
32
|
|
|
|
|
33
|
|
|
import matplotlib.pyplot as plt |
|
34
|
|
|
import pandas as pd |
|
35
|
|
|
|
|
36
|
|
|
from oemof.solph import Bus |
|
37
|
|
|
from oemof.solph import EnergySystem |
|
38
|
|
|
from oemof.solph import Flow |
|
39
|
|
|
from oemof.solph import Model |
|
40
|
|
|
from oemof.solph.components import GenericStorage |
|
41
|
|
|
from oemof.solph.components import Sink |
|
42
|
|
|
from oemof.solph.components import Source |
|
43
|
|
|
from oemof.solph.constraints import storage_level_constraint |
|
44
|
|
|
from oemof.solph.processing import results |
|
45
|
|
|
|
|
46
|
|
|
|
|
47
|
|
|
def main(optimize=True): |
|
48
|
|
|
es = EnergySystem( |
|
49
|
|
|
timeindex=pd.date_range("2022-01-01", freq="1H", periods=24), |
|
50
|
|
|
infer_last_interval=True, |
|
51
|
|
|
) |
|
52
|
|
|
|
|
53
|
|
|
multiplexer = Bus( |
|
54
|
|
|
label="multiplexer", |
|
55
|
|
|
) |
|
56
|
|
|
|
|
57
|
|
|
storage = GenericStorage( |
|
58
|
|
|
label="storage", |
|
59
|
|
|
nominal_capacity=3, |
|
60
|
|
|
initial_storage_level=1, |
|
61
|
|
|
balanced=True, |
|
62
|
|
|
loss_rate=0.05, |
|
63
|
|
|
inputs={multiplexer: Flow()}, |
|
64
|
|
|
outputs={multiplexer: Flow()}, |
|
65
|
|
|
) |
|
66
|
|
|
|
|
67
|
|
|
es.add(multiplexer, storage) |
|
68
|
|
|
|
|
69
|
|
|
in_0 = Source( |
|
70
|
|
|
label="in_0", |
|
71
|
|
|
outputs={multiplexer: Flow(nominal_capacity=0.5, variable_costs=0.15)}, |
|
72
|
|
|
) |
|
73
|
|
|
es.add(in_0) |
|
74
|
|
|
|
|
75
|
|
|
in_1 = Source( |
|
76
|
|
|
label="in_1", outputs={multiplexer: Flow(nominal_capacity=0.1)} |
|
77
|
|
|
) |
|
78
|
|
|
es.add(in_1) |
|
79
|
|
|
|
|
80
|
|
|
out_0 = Sink( |
|
81
|
|
|
label="out_0", |
|
82
|
|
|
inputs={multiplexer: Flow(nominal_capacity=0.25, variable_costs=-0.1)}, |
|
83
|
|
|
) |
|
84
|
|
|
es.add(out_0) |
|
85
|
|
|
|
|
86
|
|
|
out_1 = Sink( |
|
87
|
|
|
label="out_1", |
|
88
|
|
|
inputs={multiplexer: Flow(nominal_capacity=0.15, variable_costs=-0.1)}, |
|
89
|
|
|
) |
|
90
|
|
|
es.add(out_1) |
|
91
|
|
|
|
|
92
|
|
|
if optimize is False: |
|
93
|
|
|
return es |
|
94
|
|
|
|
|
95
|
|
|
model = Model(es) |
|
96
|
|
|
|
|
97
|
|
|
storage_level_constraint( |
|
98
|
|
|
model=model, |
|
99
|
|
|
name="multiplexer", |
|
100
|
|
|
storage_component=storage, |
|
101
|
|
|
multiplexer_bus=multiplexer, |
|
102
|
|
|
input_levels={in_1: 1 / 3}, # in_0 is always active |
|
103
|
|
|
output_levels={out_0: 1 / 6, out_1: 1 / 2}, |
|
104
|
|
|
) |
|
105
|
|
|
model.solve() |
|
106
|
|
|
|
|
107
|
|
|
my_results = results(model) |
|
108
|
|
|
|
|
109
|
|
|
df = pd.DataFrame(my_results[(storage, None)]["sequences"]) |
|
110
|
|
|
df["in1_status"] = my_results[(in_1, None)]["sequences"] |
|
111
|
|
|
df["out1_status"] = my_results[(out_1, None)]["sequences"] |
|
112
|
|
|
df["out0_status"] = my_results[(out_0, None)]["sequences"] |
|
113
|
|
|
|
|
114
|
|
|
df["in1"] = my_results[(in_1, multiplexer)]["sequences"] |
|
115
|
|
|
df["in0"] = my_results[(in_0, multiplexer)]["sequences"] |
|
116
|
|
|
df["out0"] = my_results[(multiplexer, out_0)]["sequences"] |
|
117
|
|
|
df["out1"] = my_results[(multiplexer, out_1)]["sequences"] |
|
118
|
|
|
|
|
119
|
|
|
plt.step(df.index, df["in0"], where="post", label="inflow (<= 1)") |
|
120
|
|
|
plt.step(df.index, df["in1"], where="post", label="inflow (< 1/3)") |
|
121
|
|
|
plt.step(df.index, df["out0"], where="post", label="outflow (> 1/6)") |
|
122
|
|
|
plt.step(df.index, df["out1"], where="post", label="outflow (> 1/2)") |
|
123
|
|
|
|
|
124
|
|
|
plt.grid() |
|
125
|
|
|
plt.legend() |
|
126
|
|
|
plt.ylabel("Flow Power (arb. units)") |
|
127
|
|
|
plt.ylim(0, 0.5) |
|
128
|
|
|
|
|
129
|
|
|
plt.twinx() |
|
130
|
|
|
|
|
131
|
|
|
plt.plot(df.index, df["storage_content"], "k--", label="storage content") |
|
132
|
|
|
plt.ylim(0, 3) |
|
133
|
|
|
plt.legend(loc="center right") |
|
134
|
|
|
plt.ylabel("Stored Energy (arb. units)") |
|
135
|
|
|
|
|
136
|
|
|
print(df) |
|
137
|
|
|
|
|
138
|
|
|
plt.show() |
|
139
|
|
|
|
|
140
|
|
|
|
|
141
|
|
|
if __name__ == "__main__": |
|
142
|
|
|
main() |
|
143
|
|
|
|