|
1
|
|
|
# -*- coding: utf-8 -*- |
|
2
|
|
|
|
|
3
|
|
|
"""Creating sets, variables, constraints and parts of the objective function |
|
4
|
|
|
for nonconvex FlowBlock objects. |
|
5
|
|
|
|
|
6
|
|
|
SPDX-FileCopyrightText: Uwe Krien <[email protected]> |
|
7
|
|
|
SPDX-FileCopyrightText: Simon Hilpert |
|
8
|
|
|
SPDX-FileCopyrightText: Cord Kaldemeyer |
|
9
|
|
|
SPDX-FileCopyrightText: Patrik Schönfeldt |
|
10
|
|
|
SPDX-FileCopyrightText: Birgit Schachler |
|
11
|
|
|
SPDX-FileCopyrightText: jnnr |
|
12
|
|
|
SPDX-FileCopyrightText: jmloenneberga |
|
13
|
|
|
SPDX-FileCopyrightText: Johannes Kochems (jokochems) |
|
14
|
|
|
|
|
15
|
|
|
SPDX-License-Identifier: MIT |
|
16
|
|
|
|
|
17
|
|
|
""" |
|
18
|
|
|
|
|
19
|
|
|
from pyomo.core import Binary |
|
20
|
|
|
from pyomo.core import BuildAction |
|
21
|
|
|
from pyomo.core import Constraint |
|
22
|
|
|
from pyomo.core import Expression |
|
23
|
|
|
from pyomo.core import Set |
|
24
|
|
|
from pyomo.core import Var |
|
25
|
|
|
from pyomo.core.base.block import ScalarBlock |
|
26
|
|
|
|
|
27
|
|
|
from oemof.solph._options import NonConvex |
|
28
|
|
|
|
|
29
|
|
|
from ._flow import Flow |
|
30
|
|
|
|
|
31
|
|
|
|
|
32
|
|
|
class NonConvexFlow(Flow): |
|
33
|
|
|
r""" |
|
34
|
|
|
Flow with a binary variable that states whether it is active or not. |
|
35
|
|
|
|
|
36
|
|
|
Parameters |
|
37
|
|
|
---------- |
|
38
|
|
|
startup_costs : numeric (iterable or scalar) |
|
39
|
|
|
Costs associated with a start of the flow (representing a unit). |
|
40
|
|
|
shutdown_costs : numeric (iterable or scalar) |
|
41
|
|
|
Costs associated with the shutdown of the flow (representing a unit). |
|
42
|
|
|
activity_costs : numeric (iterable or scalar) |
|
43
|
|
|
Costs associated with the active operation of the flow, independently |
|
44
|
|
|
from the actual output. |
|
45
|
|
|
minimum_uptime : numeric (1 or positive integer) |
|
46
|
|
|
Minimum time that a flow must be greater then its minimum flow after |
|
47
|
|
|
startup. Be aware that minimum up and downtimes can contradict each |
|
48
|
|
|
other and may lead to infeasible problems. |
|
49
|
|
|
minimum_downtime : numeric (1 or positive integer) |
|
50
|
|
|
Minimum time a flow is forced to zero after shutting down. |
|
51
|
|
|
Be aware that minimum up and downtimes can contradict each |
|
52
|
|
|
other and may to infeasible problems. |
|
53
|
|
|
maximum_startups : numeric (0 or positive integer) |
|
54
|
|
|
Maximum number of start-ups. |
|
55
|
|
|
maximum_shutdowns : numeric (0 or positive integer) |
|
56
|
|
|
Maximum number of shutdowns. |
|
57
|
|
|
initial_status : numeric (0 or 1) |
|
58
|
|
|
Integer value indicating the status of the flow in the first time step |
|
59
|
|
|
(0 = off, 1 = on). For minimum up and downtimes, the initial status |
|
60
|
|
|
is set for the respective values in the edge regions e.g. if a |
|
61
|
|
|
minimum uptime of four timesteps is defined, the initial status is |
|
62
|
|
|
fixed for the four first and last timesteps of the optimization period. |
|
63
|
|
|
If both, up and downtimes are defined, the initial status is set for |
|
64
|
|
|
the maximum of both e.g. for six timesteps if a minimum downtime of |
|
65
|
|
|
six timesteps is defined in addition to a four timestep minimum uptime. |
|
66
|
|
|
positive_gradient : :obj:`dict`, default: `{'ub': None, 'costs': 0}` |
|
67
|
|
|
A dictionary containing the following two keys: |
|
68
|
|
|
|
|
69
|
|
|
* `'ub'`: numeric (iterable, scalar or None), the normed *upper |
|
70
|
|
|
bound* on the positive difference (`flow[t-1] < flow[t]`) of |
|
71
|
|
|
two consecutive flow values. |
|
72
|
|
|
* `'costs``: numeric (scalar or None), the gradient cost per |
|
73
|
|
|
unit. |
|
74
|
|
|
|
|
75
|
|
|
negative_gradient : :obj:`dict`, default: `{'ub': None, 'costs': 0}` |
|
76
|
|
|
A dictionary containing the following two keys: |
|
77
|
|
|
|
|
78
|
|
|
* `'ub'`: numeric (iterable, scalar or None), the normed *upper |
|
79
|
|
|
bound* on the negative difference (`flow[t-1] > flow[t]`) of |
|
80
|
|
|
two consecutive flow values. |
|
81
|
|
|
* `'costs``: numeric (scalar or None), the gradient cost per |
|
82
|
|
|
unit. |
|
83
|
|
|
""" |
|
84
|
|
|
|
|
85
|
|
|
def __init__( |
|
86
|
|
|
self, |
|
87
|
|
|
startup_costs=None, |
|
88
|
|
|
shutdown_costs=None, |
|
89
|
|
|
activity_costs=None, |
|
90
|
|
|
inactivity_costs=None, |
|
91
|
|
|
minimum_uptime=None, |
|
92
|
|
|
minimum_downtime=None, |
|
93
|
|
|
maximum_startups=None, |
|
94
|
|
|
maximum_shutdowns=None, |
|
95
|
|
|
initial_status=0, |
|
96
|
|
|
positive_gradient=None, |
|
97
|
|
|
negative_gradient=None, |
|
98
|
|
|
**kwargs, |
|
99
|
|
|
): |
|
100
|
|
|
default_gradient = {"ub": None, "costs": 0} |
|
101
|
|
|
if positive_gradient is None: |
|
102
|
|
|
positive_gradient = default_gradient |
|
103
|
|
|
if negative_gradient is None: |
|
104
|
|
|
negative_gradient = default_gradient |
|
105
|
|
|
nonconvex = NonConvex( |
|
106
|
|
|
startup_costs=startup_costs, |
|
107
|
|
|
shutdown_costs=shutdown_costs, |
|
108
|
|
|
activity_costs=activity_costs, |
|
109
|
|
|
inactivity_costs=inactivity_costs, |
|
110
|
|
|
minimum_uptime=minimum_uptime, |
|
111
|
|
|
minimum_downtime=minimum_downtime, |
|
112
|
|
|
maximum_startups=maximum_startups, |
|
113
|
|
|
maximum_shutdowns=maximum_shutdowns, |
|
114
|
|
|
initial_status=initial_status, |
|
115
|
|
|
positive_gradient=positive_gradient, |
|
116
|
|
|
negative_gradient=negative_gradient, |
|
117
|
|
|
) |
|
118
|
|
|
super().__init__(nonconvex=nonconvex, **kwargs) |
|
119
|
|
|
|
|
120
|
|
|
|
|
121
|
|
|
class NonConvexFlowBlock(ScalarBlock): |
|
122
|
|
|
r""" |
|
123
|
|
|
**The following sets are created:** (-> see basic sets at |
|
124
|
|
|
:class:`.Model` ) |
|
125
|
|
|
|
|
126
|
|
|
A set of flows with the attribute `nonconvex` of type |
|
127
|
|
|
:class:`.options.NonConvex`. |
|
128
|
|
|
MIN_FLOWS |
|
129
|
|
|
A subset of set NONCONVEX_FLOWS with the attribute `min` |
|
130
|
|
|
being not None in the first timestep. |
|
131
|
|
|
ACTIVITYCOSTFLOWS |
|
132
|
|
|
A subset of set NONCONVEX_FLOWS with the attribute |
|
133
|
|
|
`activity_costs` being not None. |
|
134
|
|
|
INACTIVITYCOSTFLOWS |
|
135
|
|
|
A subset of set NONCONVEX_FLOWS with the attribute |
|
136
|
|
|
`inactivity_costs` being not None. |
|
137
|
|
|
STARTUPFLOWS |
|
138
|
|
|
A subset of set NONCONVEX_FLOWS with the attribute |
|
139
|
|
|
`maximum_startups` or `startup_costs` |
|
140
|
|
|
being not None. |
|
141
|
|
|
MAXSTARTUPFLOWS |
|
142
|
|
|
A subset of set STARTUPFLOWS with the attribute |
|
143
|
|
|
`maximum_startups` being not None. |
|
144
|
|
|
SHUTDOWNFLOWS |
|
145
|
|
|
A subset of set NONCONVEX_FLOWS with the attribute |
|
146
|
|
|
`maximum_shutdowns` or `shutdown_costs` |
|
147
|
|
|
being not None. |
|
148
|
|
|
MAXSHUTDOWNFLOWS |
|
149
|
|
|
A subset of set SHUTDOWNFLOWS with the attribute |
|
150
|
|
|
`maximum_shutdowns` being not None. |
|
151
|
|
|
MINUPTIMEFLOWS |
|
152
|
|
|
A subset of set NONCONVEX_FLOWS with the attribute |
|
153
|
|
|
`minimum_uptime` being not None. |
|
154
|
|
|
MINDOWNTIMEFLOWS |
|
155
|
|
|
A subset of set NONCONVEX_FLOWS with the attribute |
|
156
|
|
|
`minimum_downtime` being not None. |
|
157
|
|
|
POSITIVE_GRADIENT_FLOWS |
|
158
|
|
|
A subset of set NONCONVEX_FLOWS with the attribute |
|
159
|
|
|
`positive_gradient` being not None. |
|
160
|
|
|
NEGATIVE_GRADIENT_FLOWS |
|
161
|
|
|
A subset of set NONCONVEX_FLOWS with the attribute |
|
162
|
|
|
`negative_gradient` being not None. |
|
163
|
|
|
|
|
164
|
|
|
**The following variables are created:** |
|
165
|
|
|
|
|
166
|
|
|
Status variable (binary) `om.NonConvexFlowBlock.status`: |
|
167
|
|
|
Variable indicating if flow is >= 0 indexed by FLOWS |
|
168
|
|
|
|
|
169
|
|
|
Startup variable (binary) `om.NonConvexFlowBlock.startup`: |
|
170
|
|
|
Variable indicating startup of flow (component) indexed by |
|
171
|
|
|
STARTUPFLOWS |
|
172
|
|
|
|
|
173
|
|
|
Shutdown variable (binary) `om.NonConvexFlowBlock.shutdown`: |
|
174
|
|
|
Variable indicating shutdown of flow (component) indexed by |
|
175
|
|
|
SHUTDOWNFLOWS |
|
176
|
|
|
|
|
177
|
|
|
Positive gradient (continuous) `om.NonConvexFlowBlock.positive_gradient`: |
|
178
|
|
|
Variable indicating the positive gradient, i.e. the load increase |
|
179
|
|
|
between two consecutive timesteps, indexed by |
|
180
|
|
|
POSITIVE_GRADIENT_FLOWS |
|
181
|
|
|
|
|
182
|
|
|
Negative gradient (continuous) `om.NonConvexFlowBlock.negative_gradient`: |
|
183
|
|
|
Variable indicating the negative gradient, i.e. the load decrease |
|
184
|
|
|
between two consecutive timesteps, indexed by |
|
185
|
|
|
NEGATIVE_GRADIENT_FLOWS |
|
186
|
|
|
|
|
187
|
|
|
|
|
188
|
|
|
**The following constraints are created:** |
|
189
|
|
|
|
|
190
|
|
|
Minimum flow constraint `om.NonConvexFlowBlock.min[i,o,t]` |
|
191
|
|
|
.. math:: |
|
192
|
|
|
flow(i, o, t) \geq min(i, o, t) \cdot nominal\_value \ |
|
193
|
|
|
\cdot status(i, o, t), \\ |
|
194
|
|
|
\forall t \in \textrm{TIMESTEPS}, \\ |
|
195
|
|
|
\forall (i, o) \in \textrm{NONCONVEX\_FLOWS}. |
|
196
|
|
|
|
|
197
|
|
|
Maximum flow constraint `om.NonConvexFlowBlock.max[i,o,t]` |
|
198
|
|
|
.. math:: |
|
199
|
|
|
flow(i, o, t) \leq max(i, o, t) \cdot nominal\_value \ |
|
200
|
|
|
\cdot status(i, o, t), \\ |
|
201
|
|
|
\forall t \in \textrm{TIMESTEPS}, \\ |
|
202
|
|
|
\forall (i, o) \in \textrm{NONCONVEX\_FLOWS}. |
|
203
|
|
|
|
|
204
|
|
|
Startup constraint `om.NonConvexFlowBlock.startup_constr[i,o,t]` |
|
205
|
|
|
.. math:: |
|
206
|
|
|
startup(i, o, t) \geq \ |
|
207
|
|
|
status(i,o,t) - status(i, o, t-1) \\ |
|
208
|
|
|
\forall t \in \textrm{TIMESTEPS}, \\ |
|
209
|
|
|
\forall (i,o) \in \textrm{STARTUPFLOWS}. |
|
210
|
|
|
|
|
211
|
|
|
Maximum startups constraint |
|
212
|
|
|
`om.NonConvexFlowBlock.max_startup_constr[i,o,t]` |
|
213
|
|
|
.. math:: |
|
214
|
|
|
\sum_{t \in \textrm{TIMESTEPS}} startup(i, o, t) \leq \ |
|
215
|
|
|
N_{start}(i,o) |
|
216
|
|
|
\forall (i,o) \in \textrm{MAXSTARTUPFLOWS}. |
|
217
|
|
|
|
|
218
|
|
|
Shutdown constraint `om.NonConvexFlowBlock.shutdown_constr[i,o,t]` |
|
219
|
|
|
.. math:: |
|
220
|
|
|
shutdown(i, o, t) \geq \ |
|
221
|
|
|
status(i, o, t-1) - status(i, o, t) \\ |
|
222
|
|
|
\forall t \in \textrm{TIMESTEPS}, \\ |
|
223
|
|
|
\forall (i, o) \in \textrm{SHUTDOWNFLOWS}. |
|
224
|
|
|
|
|
225
|
|
|
Maximum shutdowns constraint |
|
226
|
|
|
`om.NonConvexFlowBlock.max_startup_constr[i,o,t]` |
|
227
|
|
|
.. math:: |
|
228
|
|
|
\sum_{t \in \textrm{TIMESTEPS}} startup(i, o, t) \leq \ |
|
229
|
|
|
N_{shutdown}(i,o) |
|
230
|
|
|
\forall (i,o) \in \textrm{MAXSHUTDOWNFLOWS}. |
|
231
|
|
|
|
|
232
|
|
|
Minimum uptime constraint `om.NonConvexFlowBlock.uptime_constr[i,o,t]` |
|
233
|
|
|
.. math:: |
|
234
|
|
|
(status(i, o, t)-status(i, o, t-1)) \cdot minimum\_uptime(i, o) \\ |
|
235
|
|
|
\leq \sum_{n=0}^{minimum\_uptime-1} status(i,o,t+n) \\ |
|
236
|
|
|
\forall t \in \textrm{TIMESTEPS} | \\ |
|
237
|
|
|
t \neq \{0..minimum\_uptime\} \cup \ |
|
238
|
|
|
\{t\_max-minimum\_uptime..t\_max\} , \\ |
|
239
|
|
|
\forall (i,o) \in \textrm{MINUPTIMEFLOWS}. |
|
240
|
|
|
\\ \\ |
|
241
|
|
|
status(i, o, t) = initial\_status(i, o) \\ |
|
242
|
|
|
\forall t \in \textrm{TIMESTEPS} | \\ |
|
243
|
|
|
t = \{0..minimum\_uptime\} \cup \ |
|
244
|
|
|
\{t\_max-minimum\_uptime..t\_max\} , \\ |
|
245
|
|
|
\forall (i,o) \in \textrm{MINUPTIMEFLOWS}. |
|
246
|
|
|
|
|
247
|
|
|
Minimum downtime constraint `om.NonConvexFlowBlock.downtime_constr[i,o,t]` |
|
248
|
|
|
.. math:: |
|
249
|
|
|
(status(i, o, t-1)-status(i, o, t)) \ |
|
250
|
|
|
\cdot minimum\_downtime(i, o) \\ |
|
251
|
|
|
\leq minimum\_downtime(i, o) \ |
|
252
|
|
|
- \sum_{n=0}^{minimum\_downtime-1} status(i,o,t+n) \\ |
|
253
|
|
|
\forall t \in \textrm{TIMESTEPS} | \\ |
|
254
|
|
|
t \neq \{0..minimum\_downtime\} \cup \ |
|
255
|
|
|
\{t\_max-minimum\_downtime..t\_max\} , \\ |
|
256
|
|
|
\forall (i,o) \in \textrm{MINDOWNTIMEFLOWS}. |
|
257
|
|
|
\\ \\ |
|
258
|
|
|
status(i, o, t) = initial\_status(i, o) \\ |
|
259
|
|
|
\forall t \in \textrm{TIMESTEPS} | \\ |
|
260
|
|
|
t = \{0..minimum\_downtime\} \cup \ |
|
261
|
|
|
\{t\_max-minimum\_downtime..t\_max\} , \\ |
|
262
|
|
|
\forall (i,o) \in \textrm{MINDOWNTIMEFLOWS}. |
|
263
|
|
|
|
|
264
|
|
|
Positive gradient constraint |
|
265
|
|
|
`om.NonConvexFlowBlock.positive_gradient_constr[i, o]`: |
|
266
|
|
|
.. math:: flow(i, o, t) \cdot status(i, o, t) |
|
267
|
|
|
- flow(i, o, t-1) \cdot status(i, o, t-1) \geq \ |
|
268
|
|
|
positive\_gradient(i, o, t), \\ |
|
269
|
|
|
\forall (i, o) \in \textrm{POSITIVE\_GRADIENT\_FLOWS}, \\ |
|
270
|
|
|
\forall t \in \textrm{TIMESTEPS}. |
|
271
|
|
|
|
|
272
|
|
|
Negative gradient constraint |
|
273
|
|
|
`om.NonConvexFlowBlock.negative_gradient_constr[i, o]`: |
|
274
|
|
|
.. math:: |
|
275
|
|
|
flow(i, o, t-1) \cdot status(i, o, t-1) |
|
276
|
|
|
- flow(i, o, t) \cdot status(i, o, t) \geq \ |
|
277
|
|
|
negative\_gradient(i, o, t), \\ |
|
278
|
|
|
\forall (i, o) \in \textrm{NEGATIVE\_GRADIENT\_FLOWS}, \\ |
|
279
|
|
|
\forall t \in \textrm{TIMESTEPS}. |
|
280
|
|
|
|
|
281
|
|
|
|
|
282
|
|
|
**The following parts of the objective function are created:** |
|
283
|
|
|
|
|
284
|
|
|
If `nonconvex.startup_costs` is set by the user: |
|
285
|
|
|
.. math:: |
|
286
|
|
|
\sum_{i, o \in STARTUPFLOWS} \sum_t startup(i, o, t) \ |
|
287
|
|
|
\cdot startup\_costs(i, o) |
|
288
|
|
|
|
|
289
|
|
|
If `nonconvex.shutdown_costs` is set by the user: |
|
290
|
|
|
.. math:: |
|
291
|
|
|
\sum_{i, o \in SHUTDOWNFLOWS} \sum_t shutdown(i, o, t) \ |
|
292
|
|
|
\cdot shutdown\_costs(i, o) |
|
293
|
|
|
|
|
294
|
|
|
If `nonconvex.activity_costs` is set by the user: |
|
295
|
|
|
.. math:: |
|
296
|
|
|
\sum_{i, o \in ACTIVITYCOSTFLOWS} \sum_t status(i, o, t) \ |
|
297
|
|
|
\cdot activity\_costs(i, o) |
|
298
|
|
|
|
|
299
|
|
|
If `nonconvex.inactivity_costs` is set by the user: |
|
300
|
|
|
.. math:: |
|
301
|
|
|
\sum_{i, o \in INACTIVITYCOSTFLOWS} \sum_t (1 - status(i, o, t)) \ |
|
302
|
|
|
\cdot inactivity\_costs(i, o) |
|
303
|
|
|
|
|
304
|
|
|
If `nonconvex.positive_gradient["costs"]` is set by the user: |
|
305
|
|
|
.. math:: |
|
306
|
|
|
\sum_{i, o \in POSITIVE_GRADIENT_FLOWS} \sum_t |
|
307
|
|
|
positive_gradient(i, o, t) \cdot positive\_gradient\_costs(i, o) |
|
308
|
|
|
|
|
309
|
|
|
If `nonconvex.negative_gradient["costs"]` is set by the user: |
|
310
|
|
|
.. math:: |
|
311
|
|
|
\sum_{i, o \in NEGATIVE_GRADIENT_FLOWS} \sum_t |
|
312
|
|
|
negative_gradient(i, o, t) \cdot negative\_gradient\_costs(i, o) |
|
313
|
|
|
|
|
314
|
|
|
""" |
|
315
|
|
|
|
|
316
|
|
|
def __init__(self, *args, **kwargs): |
|
317
|
|
|
super().__init__(*args, **kwargs) |
|
318
|
|
|
|
|
319
|
|
|
def _create(self, group=None): |
|
320
|
|
|
"""Creates set, variables, constraints for all flow object with |
|
321
|
|
|
an attribute flow of type class:`.NonConvexFlowBlock`. |
|
322
|
|
|
|
|
323
|
|
|
Parameters |
|
324
|
|
|
---------- |
|
325
|
|
|
group : list |
|
326
|
|
|
List of oemof.solph.NonConvexFlowBlock objects for which |
|
327
|
|
|
the constraints are build. |
|
328
|
|
|
""" |
|
329
|
|
|
if group is None: |
|
330
|
|
|
return None |
|
331
|
|
|
|
|
332
|
|
|
m = self.parent_block() |
|
333
|
|
|
# ########################## SETS ##################################### |
|
334
|
|
|
self.NONCONVEX_FLOWS = Set(initialize=[(g[0], g[1]) for g in group]) |
|
335
|
|
|
|
|
336
|
|
|
self.MIN_FLOWS = Set( |
|
337
|
|
|
initialize=[(g[0], g[1]) for g in group if g[2].min[0] is not None] |
|
338
|
|
|
) |
|
339
|
|
|
self.STARTUPFLOWS = Set( |
|
340
|
|
|
initialize=[ |
|
341
|
|
|
(g[0], g[1]) |
|
342
|
|
|
for g in group |
|
343
|
|
|
if g[2].nonconvex.startup_costs[0] is not None |
|
344
|
|
|
or g[2].nonconvex.maximum_startups is not None |
|
345
|
|
|
] |
|
346
|
|
|
) |
|
347
|
|
|
self.MAXSTARTUPFLOWS = Set( |
|
348
|
|
|
initialize=[ |
|
349
|
|
|
(g[0], g[1]) |
|
350
|
|
|
for g in group |
|
351
|
|
|
if g[2].nonconvex.maximum_startups is not None |
|
352
|
|
|
] |
|
353
|
|
|
) |
|
354
|
|
|
self.SHUTDOWNFLOWS = Set( |
|
355
|
|
|
initialize=[ |
|
356
|
|
|
(g[0], g[1]) |
|
357
|
|
|
for g in group |
|
358
|
|
|
if g[2].nonconvex.shutdown_costs[0] is not None |
|
359
|
|
|
or g[2].nonconvex.maximum_shutdowns is not None |
|
360
|
|
|
] |
|
361
|
|
|
) |
|
362
|
|
|
self.MAXSHUTDOWNFLOWS = Set( |
|
363
|
|
|
initialize=[ |
|
364
|
|
|
(g[0], g[1]) |
|
365
|
|
|
for g in group |
|
366
|
|
|
if g[2].nonconvex.maximum_shutdowns is not None |
|
367
|
|
|
] |
|
368
|
|
|
) |
|
369
|
|
|
self.MINUPTIMEFLOWS = Set( |
|
370
|
|
|
initialize=[ |
|
371
|
|
|
(g[0], g[1]) |
|
372
|
|
|
for g in group |
|
373
|
|
|
if g[2].nonconvex.minimum_uptime is not None |
|
374
|
|
|
] |
|
375
|
|
|
) |
|
376
|
|
|
|
|
377
|
|
|
self.MINDOWNTIMEFLOWS = Set( |
|
378
|
|
|
initialize=[ |
|
379
|
|
|
(g[0], g[1]) |
|
380
|
|
|
for g in group |
|
381
|
|
|
if g[2].nonconvex.minimum_downtime is not None |
|
382
|
|
|
] |
|
383
|
|
|
) |
|
384
|
|
|
|
|
385
|
|
|
self.ACTIVITYCOSTFLOWS = Set( |
|
386
|
|
|
initialize=[ |
|
387
|
|
|
(g[0], g[1]) |
|
388
|
|
|
for g in group |
|
389
|
|
|
if g[2].nonconvex.activity_costs[0] is not None |
|
390
|
|
|
] |
|
391
|
|
|
) |
|
392
|
|
|
|
|
393
|
|
|
self.INACTIVITYCOSTFLOWS = Set( |
|
394
|
|
|
initialize=[ |
|
395
|
|
|
(g[0], g[1]) |
|
396
|
|
|
for g in group |
|
397
|
|
|
if g[2].nonconvex.inactivity_costs[0] is not None |
|
398
|
|
|
] |
|
399
|
|
|
) |
|
400
|
|
|
|
|
401
|
|
|
self.NEGATIVE_GRADIENT_FLOWS = Set( |
|
402
|
|
|
initialize=[ |
|
403
|
|
|
(g[0], g[1]) |
|
404
|
|
|
for g in group |
|
405
|
|
|
if g[2].nonconvex.negative_gradient["ub"][0] is not None |
|
406
|
|
|
] |
|
407
|
|
|
) |
|
408
|
|
|
|
|
409
|
|
|
self.POSITIVE_GRADIENT_FLOWS = Set( |
|
410
|
|
|
initialize=[ |
|
411
|
|
|
(g[0], g[1]) |
|
412
|
|
|
for g in group |
|
413
|
|
|
if g[2].nonconvex.positive_gradient["ub"][0] is not None |
|
414
|
|
|
] |
|
415
|
|
|
) |
|
416
|
|
|
|
|
417
|
|
|
# ################### VARIABLES AND CONSTRAINTS ####################### |
|
418
|
|
|
self.status = Var(self.NONCONVEX_FLOWS, m.TIMESTEPS, within=Binary) |
|
419
|
|
|
|
|
420
|
|
|
if self.STARTUPFLOWS: |
|
421
|
|
|
self.startup = Var(self.STARTUPFLOWS, m.TIMESTEPS, within=Binary) |
|
422
|
|
|
|
|
423
|
|
|
if self.SHUTDOWNFLOWS: |
|
424
|
|
|
self.shutdown = Var(self.SHUTDOWNFLOWS, m.TIMESTEPS, within=Binary) |
|
425
|
|
|
|
|
426
|
|
|
if self.POSITIVE_GRADIENT_FLOWS: |
|
427
|
|
|
self.positive_gradient = Var( |
|
428
|
|
|
self.POSITIVE_GRADIENT_FLOWS, m.TIMESTEPS |
|
429
|
|
|
) |
|
430
|
|
|
|
|
431
|
|
|
if self.NEGATIVE_GRADIENT_FLOWS: |
|
432
|
|
|
self.negative_gradient = Var( |
|
433
|
|
|
self.NEGATIVE_GRADIENT_FLOWS, m.TIMESTEPS |
|
434
|
|
|
) |
|
435
|
|
|
|
|
436
|
|
|
def _minimum_flow_rule(block, i, o, t): |
|
437
|
|
|
"""Rule definition for MILP minimum flow constraints.""" |
|
438
|
|
|
expr = ( |
|
439
|
|
|
self.status[i, o, t] |
|
440
|
|
|
* m.flows[i, o].min[t] |
|
|
|
|
|
|
441
|
|
|
* m.flows[i, o].nominal_value |
|
442
|
|
|
<= m.flow[i, o, t] |
|
443
|
|
|
) |
|
444
|
|
|
return expr |
|
445
|
|
|
|
|
446
|
|
|
self.min = Constraint( |
|
447
|
|
|
self.MIN_FLOWS, m.TIMESTEPS, rule=_minimum_flow_rule |
|
448
|
|
|
) |
|
449
|
|
|
|
|
450
|
|
|
def _maximum_flow_rule(block, i, o, t): |
|
451
|
|
|
"""Rule definition for MILP maximum flow constraints.""" |
|
452
|
|
|
expr = ( |
|
453
|
|
|
self.status[i, o, t] |
|
454
|
|
|
* m.flows[i, o].max[t] |
|
|
|
|
|
|
455
|
|
|
* m.flows[i, o].nominal_value |
|
456
|
|
|
>= m.flow[i, o, t] |
|
457
|
|
|
) |
|
458
|
|
|
return expr |
|
459
|
|
|
|
|
460
|
|
|
self.max = Constraint( |
|
461
|
|
|
self.MIN_FLOWS, m.TIMESTEPS, rule=_maximum_flow_rule |
|
462
|
|
|
) |
|
463
|
|
|
|
|
464
|
|
View Code Duplication |
def _startup_rule(block, i, o, t): |
|
|
|
|
|
|
465
|
|
|
"""Rule definition for startup constraint of nonconvex flows.""" |
|
466
|
|
|
if t > m.TIMESTEPS[1]: |
|
|
|
|
|
|
467
|
|
|
expr = ( |
|
468
|
|
|
self.startup[i, o, t] |
|
469
|
|
|
>= self.status[i, o, t] - self.status[i, o, t - 1] |
|
470
|
|
|
) |
|
471
|
|
|
else: |
|
472
|
|
|
expr = ( |
|
473
|
|
|
self.startup[i, o, t] |
|
474
|
|
|
>= self.status[i, o, t] |
|
475
|
|
|
- m.flows[i, o].nonconvex.initial_status |
|
476
|
|
|
) |
|
477
|
|
|
return expr |
|
478
|
|
|
|
|
479
|
|
|
self.startup_constr = Constraint( |
|
480
|
|
|
self.STARTUPFLOWS, m.TIMESTEPS, rule=_startup_rule |
|
481
|
|
|
) |
|
482
|
|
|
|
|
483
|
|
|
def _max_startup_rule(block, i, o): |
|
484
|
|
|
"""Rule definition for maximum number of start-ups.""" |
|
485
|
|
|
lhs = sum(self.startup[i, o, t] for t in m.TIMESTEPS) |
|
|
|
|
|
|
486
|
|
|
return lhs <= m.flows[i, o].nonconvex.maximum_startups |
|
487
|
|
|
|
|
488
|
|
|
self.max_startup_constr = Constraint( |
|
489
|
|
|
self.MAXSTARTUPFLOWS, rule=_max_startup_rule |
|
490
|
|
|
) |
|
491
|
|
|
|
|
492
|
|
View Code Duplication |
def _shutdown_rule(block, i, o, t): |
|
|
|
|
|
|
493
|
|
|
"""Rule definition for shutdown constraints of nonconvex flows.""" |
|
494
|
|
|
if t > m.TIMESTEPS[1]: |
|
|
|
|
|
|
495
|
|
|
expr = ( |
|
496
|
|
|
self.shutdown[i, o, t] |
|
497
|
|
|
>= self.status[i, o, t - 1] - self.status[i, o, t] |
|
498
|
|
|
) |
|
499
|
|
|
else: |
|
500
|
|
|
expr = ( |
|
501
|
|
|
self.shutdown[i, o, t] |
|
502
|
|
|
>= m.flows[i, o].nonconvex.initial_status |
|
503
|
|
|
- self.status[i, o, t] |
|
504
|
|
|
) |
|
505
|
|
|
return expr |
|
506
|
|
|
|
|
507
|
|
|
self.shutdown_constr = Constraint( |
|
508
|
|
|
self.SHUTDOWNFLOWS, m.TIMESTEPS, rule=_shutdown_rule |
|
509
|
|
|
) |
|
510
|
|
|
|
|
511
|
|
|
def _max_shutdown_rule(block, i, o): |
|
512
|
|
|
"""Rule definition for maximum number of start-ups.""" |
|
513
|
|
|
lhs = sum(self.shutdown[i, o, t] for t in m.TIMESTEPS) |
|
|
|
|
|
|
514
|
|
|
return lhs <= m.flows[i, o].nonconvex.maximum_shutdowns |
|
515
|
|
|
|
|
516
|
|
|
self.max_shutdown_constr = Constraint( |
|
517
|
|
|
self.MAXSHUTDOWNFLOWS, rule=_max_shutdown_rule |
|
518
|
|
|
) |
|
519
|
|
|
|
|
520
|
|
View Code Duplication |
def _min_uptime_rule(block, i, o, t): |
|
|
|
|
|
|
521
|
|
|
""" |
|
522
|
|
|
Rule definition for min-uptime constraints of nonconvex flows. |
|
523
|
|
|
""" |
|
524
|
|
|
if ( |
|
525
|
|
|
m.flows[i, o].nonconvex.max_up_down |
|
|
|
|
|
|
526
|
|
|
<= t |
|
527
|
|
|
<= m.TIMESTEPS[-1] - m.flows[i, o].nonconvex.max_up_down |
|
528
|
|
|
): |
|
529
|
|
|
expr = 0 |
|
530
|
|
|
expr += ( |
|
531
|
|
|
self.status[i, o, t] - self.status[i, o, t - 1] |
|
532
|
|
|
) * m.flows[i, o].nonconvex.minimum_uptime |
|
533
|
|
|
expr += -sum( |
|
534
|
|
|
self.status[i, o, t + u] |
|
535
|
|
|
for u in range(0, m.flows[i, o].nonconvex.minimum_uptime) |
|
536
|
|
|
) |
|
537
|
|
|
return expr <= 0 |
|
538
|
|
|
else: |
|
539
|
|
|
expr = 0 |
|
540
|
|
|
expr += self.status[i, o, t] |
|
541
|
|
|
expr += -m.flows[i, o].nonconvex.initial_status |
|
542
|
|
|
return expr == 0 |
|
543
|
|
|
|
|
544
|
|
|
self.min_uptime_constr = Constraint( |
|
545
|
|
|
self.MINUPTIMEFLOWS, m.TIMESTEPS, rule=_min_uptime_rule |
|
546
|
|
|
) |
|
547
|
|
|
|
|
548
|
|
View Code Duplication |
def _min_downtime_rule(block, i, o, t): |
|
|
|
|
|
|
549
|
|
|
""" |
|
550
|
|
|
Rule definition for min-downtime constraints of nonconvex flows. |
|
551
|
|
|
""" |
|
552
|
|
|
if ( |
|
553
|
|
|
m.flows[i, o].nonconvex.max_up_down |
|
|
|
|
|
|
554
|
|
|
<= t |
|
555
|
|
|
<= m.TIMESTEPS[-1] - m.flows[i, o].nonconvex.max_up_down |
|
556
|
|
|
): |
|
557
|
|
|
expr = 0 |
|
558
|
|
|
expr += ( |
|
559
|
|
|
self.status[i, o, t - 1] - self.status[i, o, t] |
|
560
|
|
|
) * m.flows[i, o].nonconvex.minimum_downtime |
|
561
|
|
|
expr += -m.flows[i, o].nonconvex.minimum_downtime |
|
562
|
|
|
expr += sum( |
|
563
|
|
|
self.status[i, o, t + d] |
|
564
|
|
|
for d in range(0, m.flows[i, o].nonconvex.minimum_downtime) |
|
565
|
|
|
) |
|
566
|
|
|
return expr <= 0 |
|
567
|
|
|
else: |
|
568
|
|
|
expr = 0 |
|
569
|
|
|
expr += self.status[i, o, t] |
|
570
|
|
|
expr += -m.flows[i, o].nonconvex.initial_status |
|
571
|
|
|
return expr == 0 |
|
572
|
|
|
|
|
573
|
|
|
self.min_downtime_constr = Constraint( |
|
574
|
|
|
self.MINDOWNTIMEFLOWS, m.TIMESTEPS, rule=_min_downtime_rule |
|
575
|
|
|
) |
|
576
|
|
|
|
|
577
|
|
|
def _positive_gradient_flow_rule(block): |
|
578
|
|
|
"""Rule definition for positive gradient constraint.""" |
|
579
|
|
|
for i, o in self.POSITIVE_GRADIENT_FLOWS: |
|
580
|
|
|
for t in m.TIMESTEPS: |
|
|
|
|
|
|
581
|
|
|
if t > 0: |
|
582
|
|
|
lhs = ( |
|
583
|
|
|
m.flow[i, o, t] * self.status[i, o, t] |
|
584
|
|
|
- m.flow[i, o, t - 1] * self.status[i, o, t - 1] |
|
585
|
|
|
) |
|
586
|
|
|
rhs = self.positive_gradient[i, o, t] |
|
587
|
|
|
self.positive_gradient_constr.add( |
|
588
|
|
|
(i, o, t), lhs <= rhs |
|
589
|
|
|
) |
|
590
|
|
|
else: |
|
591
|
|
|
pass # return(Constraint.Skip) |
|
592
|
|
|
|
|
593
|
|
|
self.positive_gradient_constr = Constraint( |
|
594
|
|
|
self.POSITIVE_GRADIENT_FLOWS, m.TIMESTEPS, noruleinit=True |
|
595
|
|
|
) |
|
596
|
|
|
self.positive_gradient_build = BuildAction( |
|
597
|
|
|
rule=_positive_gradient_flow_rule |
|
598
|
|
|
) |
|
599
|
|
|
|
|
600
|
|
|
def _negative_gradient_flow_rule(block): |
|
601
|
|
|
"""Rule definition for negative gradient constraint.""" |
|
602
|
|
|
for i, o in self.NEGATIVE_GRADIENT_FLOWS: |
|
603
|
|
|
for t in m.TIMESTEPS: |
|
|
|
|
|
|
604
|
|
|
if t > 0: |
|
605
|
|
|
lhs = ( |
|
606
|
|
|
m.flow[i, o, t - 1] * self.status[i, o, t - 1] |
|
607
|
|
|
- m.flow[i, o, t] * self.status[i, o, t] |
|
608
|
|
|
) |
|
609
|
|
|
rhs = self.negative_gradient[i, o, t] |
|
610
|
|
|
self.negative_gradient_constr.add( |
|
611
|
|
|
(i, o, t), lhs <= rhs |
|
612
|
|
|
) |
|
613
|
|
|
else: |
|
614
|
|
|
pass # return(Constraint.Skip) |
|
615
|
|
|
|
|
616
|
|
|
self.negative_gradient_constr = Constraint( |
|
617
|
|
|
self.NEGATIVE_GRADIENT_FLOWS, m.TIMESTEPS, noruleinit=True |
|
618
|
|
|
) |
|
619
|
|
|
self.negative_gradient_build = BuildAction( |
|
620
|
|
|
rule=_negative_gradient_flow_rule |
|
621
|
|
|
) |
|
622
|
|
|
|
|
623
|
|
|
def _objective_expression(self): |
|
624
|
|
|
r"""Objective expression for nonconvex flows.""" |
|
625
|
|
|
if not hasattr(self, "NONCONVEX_FLOWS"): |
|
626
|
|
|
return 0 |
|
627
|
|
|
|
|
628
|
|
|
m = self.parent_block() |
|
629
|
|
|
|
|
630
|
|
|
startup_costs = 0 |
|
631
|
|
|
shutdown_costs = 0 |
|
632
|
|
|
activity_costs = 0 |
|
633
|
|
|
inactivity_costs = 0 |
|
634
|
|
|
gradient_costs = 0 |
|
635
|
|
|
|
|
636
|
|
|
if self.STARTUPFLOWS: |
|
637
|
|
|
for i, o in self.STARTUPFLOWS: |
|
638
|
|
|
if m.flows[i, o].nonconvex.startup_costs[0] is not None: |
|
639
|
|
|
startup_costs += sum( |
|
640
|
|
|
self.startup[i, o, t] |
|
641
|
|
|
* m.flows[i, o].nonconvex.startup_costs[t] |
|
642
|
|
|
for t in m.TIMESTEPS |
|
643
|
|
|
) |
|
644
|
|
|
self.startup_costs = Expression(expr=startup_costs) |
|
645
|
|
|
|
|
646
|
|
|
if self.SHUTDOWNFLOWS: |
|
647
|
|
|
for i, o in self.SHUTDOWNFLOWS: |
|
648
|
|
|
if m.flows[i, o].nonconvex.shutdown_costs[0] is not None: |
|
649
|
|
|
shutdown_costs += sum( |
|
650
|
|
|
self.shutdown[i, o, t] |
|
651
|
|
|
* m.flows[i, o].nonconvex.shutdown_costs[t] |
|
652
|
|
|
for t in m.TIMESTEPS |
|
653
|
|
|
) |
|
654
|
|
|
self.shutdown_costs = Expression(expr=shutdown_costs) |
|
655
|
|
|
|
|
656
|
|
|
if self.ACTIVITYCOSTFLOWS: |
|
657
|
|
|
for i, o in self.ACTIVITYCOSTFLOWS: |
|
658
|
|
|
if m.flows[i, o].nonconvex.activity_costs[0] is not None: |
|
659
|
|
|
activity_costs += sum( |
|
660
|
|
|
self.status[i, o, t] |
|
661
|
|
|
* m.flows[i, o].nonconvex.activity_costs[t] |
|
662
|
|
|
for t in m.TIMESTEPS |
|
663
|
|
|
) |
|
664
|
|
|
|
|
665
|
|
|
self.activity_costs = Expression(expr=activity_costs) |
|
666
|
|
|
|
|
667
|
|
|
if self.INACTIVITYCOSTFLOWS: |
|
668
|
|
|
for i, o in self.INACTIVITYCOSTFLOWS: |
|
669
|
|
|
if m.flows[i, o].nonconvex.inactivity_costs[0] is not None: |
|
670
|
|
|
inactivity_costs += sum( |
|
671
|
|
|
(1 - self.status[i, o, t]) |
|
672
|
|
|
* m.flows[i, o].nonconvex.inactivity_costs[t] |
|
673
|
|
|
for t in m.TIMESTEPS |
|
674
|
|
|
) |
|
675
|
|
|
|
|
676
|
|
|
self.inactivity_costs = Expression(expr=inactivity_costs) |
|
677
|
|
|
|
|
678
|
|
|
return ( |
|
679
|
|
|
startup_costs |
|
680
|
|
|
+ shutdown_costs |
|
681
|
|
|
+ activity_costs |
|
682
|
|
|
+ inactivity_costs |
|
683
|
|
|
+ gradient_costs |
|
684
|
|
|
) |
|
685
|
|
|
|