1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
|
3
|
|
|
""" |
4
|
|
|
General description |
5
|
|
|
------------------- |
6
|
|
|
|
7
|
|
|
A basic example to show how to model a simple energy system with oemof.solph. |
8
|
|
|
|
9
|
|
|
The following energy system is modeled: |
10
|
|
|
|
11
|
|
|
.. code-block:: text |
12
|
|
|
|
13
|
|
|
input/output bgas bel |
14
|
|
|
| | | |
15
|
|
|
| | | |
16
|
|
|
wind(FixedSource) |------------------>| |
17
|
|
|
| | | |
18
|
|
|
pv(FixedSource) |------------------>| |
19
|
|
|
| | | |
20
|
|
|
rgas(Commodity) |--------->| | |
21
|
|
|
| | | |
22
|
|
|
demand(Sink) |<------------------| |
23
|
|
|
| | | |
24
|
|
|
| | | |
25
|
|
|
pp_gas(Converter) |<---------| | |
26
|
|
|
|------------------>| |
27
|
|
|
| | | |
28
|
|
|
storage(Storage) |<------------------| |
29
|
|
|
|------------------>| |
30
|
|
|
|
31
|
|
|
Code |
32
|
|
|
---- |
33
|
|
|
Download source code: :download: |
34
|
|
|
`facade_example.py </../examples/facade/facade_example.py>` |
35
|
|
|
|
36
|
|
|
.. dropdown:: Click to display code |
37
|
|
|
|
38
|
|
|
.. literalinclude:: /../examples/facade/facade_example.py |
39
|
|
|
:language: python |
40
|
|
|
:lines: 61- |
41
|
|
|
|
42
|
|
|
Data |
43
|
|
|
---- |
44
|
|
|
Download data: :download: |
45
|
|
|
`facade_example_data.csv </../examples/facade/facade_example_data.csv>` |
46
|
|
|
|
47
|
|
|
Installation requirements |
48
|
|
|
------------------------- |
49
|
|
|
This example requires oemof.solph (v0.5.x), install by: |
50
|
|
|
|
51
|
|
|
.. code:: bash |
52
|
|
|
|
53
|
|
|
pip install oemof.solph[examples] |
54
|
|
|
|
55
|
|
|
License |
56
|
|
|
------- |
57
|
|
|
`MIT license <https://github.com/oemof/oemof-solph/blob/dev/LICENSE>`_ |
58
|
|
|
""" |
59
|
|
|
########################################################################### |
60
|
|
|
# imports |
61
|
|
|
########################################################################### |
62
|
|
|
|
63
|
|
|
import logging |
64
|
|
|
import os |
65
|
|
|
|
66
|
|
|
import matplotlib.pyplot as plt |
67
|
|
|
import pandas as pd |
68
|
|
|
from facade import DSO |
69
|
|
|
from oemof.tools import logger |
70
|
|
|
|
71
|
|
|
from oemof.solph import EnergySystem |
72
|
|
|
from oemof.solph import Model |
73
|
|
|
from oemof.solph import Results |
74
|
|
|
from oemof.solph import buses |
75
|
|
|
from oemof.solph import components |
76
|
|
|
from oemof.solph import create_time_index |
77
|
|
|
from oemof.solph import flows |
78
|
|
|
from oemof.solph import helpers |
79
|
|
|
|
80
|
|
|
STORAGE_LABEL = "battery_storage" |
81
|
|
|
|
82
|
|
|
|
83
|
|
|
def get_data_from_file_path(file_path: str) -> pd.DataFrame: |
84
|
|
|
my_dir = os.path.dirname(os.path.abspath(__file__)) |
85
|
|
|
data = pd.read_csv(my_dir + "/" + file_path) |
86
|
|
|
return data |
87
|
|
|
|
88
|
|
|
|
89
|
|
View Code Duplication |
def plot_figures_for(element: dict) -> None: |
|
|
|
|
90
|
|
|
figure, axes = plt.subplots(figsize=(10, 5)) |
91
|
|
|
element["sequences"].plot(ax=axes, kind="line", drawstyle="steps-post") |
92
|
|
|
plt.legend( |
93
|
|
|
loc="upper center", |
94
|
|
|
prop={"size": 8}, |
95
|
|
|
bbox_to_anchor=(0.5, 1.25), |
96
|
|
|
ncol=2, |
97
|
|
|
) |
98
|
|
|
figure.subplots_adjust(top=0.8) |
99
|
|
|
plt.show() |
100
|
|
|
|
101
|
|
|
|
102
|
|
|
def main(): |
103
|
|
|
# For models that need a long time to optimise, saving and loading the |
104
|
|
|
# EnergySystem might be advised. By default, we do not do this here. Feel |
105
|
|
|
# free to experiment with this once you understood the rest of the code. |
106
|
|
|
|
107
|
|
|
# ************************************************************************* |
108
|
|
|
# ********** PART 1 - Define and optimise the energy system *************** |
109
|
|
|
# ************************************************************************* |
110
|
|
|
|
111
|
|
|
# Read data file |
112
|
|
|
file_name = "facade_example_data.csv" |
113
|
|
|
data = get_data_from_file_path(file_name) |
114
|
|
|
|
115
|
|
|
solver = "cbc" # 'glpk', 'gurobi',.... |
116
|
|
|
debug = False # Set number_of_timesteps to 3 to get a readable lp-file. |
117
|
|
|
number_of_time_steps = len(data) |
118
|
|
|
solver_verbose = False # show/hide solver output |
119
|
|
|
|
120
|
|
|
# initiate the logger (see the API docs for more information) |
121
|
|
|
logger.define_logging( |
122
|
|
|
logfile="oemof_example.log", |
123
|
|
|
screen_level=logging.INFO, |
124
|
|
|
file_level=logging.INFO, |
125
|
|
|
) |
126
|
|
|
|
127
|
|
|
logging.info("Initialize the energy system") |
128
|
|
|
date_time_index = create_time_index(2012, number=number_of_time_steps) |
129
|
|
|
|
130
|
|
|
# create the energysystem and assign the time index |
131
|
|
|
energysystem = EnergySystem( |
132
|
|
|
timeindex=date_time_index, infer_last_interval=False |
133
|
|
|
) |
134
|
|
|
########################################################################## |
135
|
|
|
# Create oemof objects |
136
|
|
|
########################################################################## |
137
|
|
|
|
138
|
|
|
logging.info("Create oemof objects") |
139
|
|
|
|
140
|
|
|
# The bus objects were assigned to variables which makes it easier to |
141
|
|
|
# connect components to these buses (see below). |
142
|
|
|
|
143
|
|
|
# create natural gas bus |
144
|
|
|
bus_gas = buses.Bus(label="natural_gas") |
145
|
|
|
|
146
|
|
|
# create electricity bus |
147
|
|
|
bus_electricity = buses.Bus(label="electricity") |
148
|
|
|
|
149
|
|
|
# adding the buses to the energy system |
150
|
|
|
energysystem.add(bus_gas, bus_electricity) |
151
|
|
|
|
152
|
|
|
# create excess component for the electricity bus to allow overproduction |
153
|
|
|
energysystem.add( |
154
|
|
|
components.Sink( |
155
|
|
|
label="excess_bus_electricity", |
156
|
|
|
inputs={bus_electricity: flows.Flow()}, |
157
|
|
|
) |
158
|
|
|
) |
159
|
|
|
|
160
|
|
|
energysystem.add( |
161
|
|
|
DSO( |
162
|
|
|
label="My_DSO", |
163
|
|
|
el_bus=bus_electricity, |
164
|
|
|
energy_price=0.1, |
165
|
|
|
feedin_tariff=0.04, |
166
|
|
|
) |
167
|
|
|
) |
168
|
|
|
# energysystem.add( |
169
|
|
|
# components.Source( |
170
|
|
|
# label="DSO_simple", |
171
|
|
|
# outputs={ |
172
|
|
|
# bus_electricity: flows.Flow(variable_costs=0.1) |
173
|
|
|
# }, |
174
|
|
|
# ) |
175
|
|
|
# ) |
176
|
|
|
|
177
|
|
|
# create fixed source object representing wind power plants |
178
|
|
|
energysystem.add( |
179
|
|
|
components.Source( |
180
|
|
|
label="wind", |
181
|
|
|
outputs={ |
182
|
|
|
bus_electricity: flows.Flow( |
183
|
|
|
fix=data["wind"], nominal_capacity=1000000 |
184
|
|
|
) |
185
|
|
|
}, |
186
|
|
|
) |
187
|
|
|
) |
188
|
|
|
|
189
|
|
|
# create fixed source object representing pv power plants |
190
|
|
|
energysystem.add( |
191
|
|
|
components.Source( |
192
|
|
|
label="pv", |
193
|
|
|
outputs={ |
194
|
|
|
bus_electricity: flows.Flow( |
195
|
|
|
fix=data["pv"], nominal_capacity=582000 |
196
|
|
|
) |
197
|
|
|
}, |
198
|
|
|
) |
199
|
|
|
) |
200
|
|
|
|
201
|
|
|
# create simple sink object representing the electrical demand |
202
|
|
|
# nominal_value is set to 1 because demand_el is not a normalised series |
203
|
|
|
energysystem.add( |
204
|
|
|
components.Sink( |
205
|
|
|
label="demand", |
206
|
|
|
inputs={ |
207
|
|
|
bus_electricity: flows.Flow( |
208
|
|
|
fix=data["demand_el"], nominal_capacity=1 |
209
|
|
|
) |
210
|
|
|
}, |
211
|
|
|
) |
212
|
|
|
) |
213
|
|
|
|
214
|
|
|
# create storage object representing a battery |
215
|
|
|
nominal_capacity = 10077997 |
216
|
|
|
nominal_value = nominal_capacity / 6 |
217
|
|
|
|
218
|
|
|
battery_storage = components.GenericStorage( |
219
|
|
|
nominal_capacity=nominal_capacity, |
220
|
|
|
label=STORAGE_LABEL, |
221
|
|
|
inputs={bus_electricity: flows.Flow(nominal_capacity=nominal_value)}, |
222
|
|
|
outputs={ |
223
|
|
|
bus_electricity: flows.Flow( |
224
|
|
|
nominal_capacity=nominal_value, variable_costs=0.001 |
225
|
|
|
) |
226
|
|
|
}, |
227
|
|
|
loss_rate=0.00, |
228
|
|
|
initial_storage_level=None, |
229
|
|
|
inflow_conversion_factor=1, |
230
|
|
|
outflow_conversion_factor=0.8, |
231
|
|
|
) |
232
|
|
|
|
233
|
|
|
energysystem.add(battery_storage) |
234
|
|
|
|
235
|
|
|
########################################################################## |
236
|
|
|
# Optimise the energy system and plot the results |
237
|
|
|
########################################################################## |
238
|
|
|
|
239
|
|
|
logging.info("Optimise the energy system") |
240
|
|
|
|
241
|
|
|
# initialise the operational model |
242
|
|
|
energysystem_model = Model(energysystem) |
243
|
|
|
|
244
|
|
|
# This is for debugging only. It is not(!) necessary to solve the problem |
245
|
|
|
# and should be set to False to save time and disc space in normal use. For |
246
|
|
|
# debugging the timesteps should be set to 3, to increase the readability |
247
|
|
|
# of the lp-file. |
248
|
|
|
if debug: |
249
|
|
|
file_path = os.path.join( |
250
|
|
|
helpers.extend_basic_path("lp_files"), "basic_example.lp" |
251
|
|
|
) |
252
|
|
|
logging.info(f"Store lp-file in {file_path}.") |
253
|
|
|
io_option = {"symbolic_solver_labels": True} |
254
|
|
|
energysystem_model.write(file_path, io_options=io_option) |
255
|
|
|
|
256
|
|
|
# if tee_switch is true solver messages will be displayed |
257
|
|
|
logging.info("Solve the optimization problem") |
258
|
|
|
energysystem_model.solve( |
259
|
|
|
solver=solver, solve_kwargs={"tee": solver_verbose} |
260
|
|
|
) |
261
|
|
|
results = Results(energysystem_model) |
262
|
|
|
|
263
|
|
|
# ToDO Implement a filter methode for the Result object to exclude |
264
|
|
|
# subcomponents of a facade/sub-network |
265
|
|
|
# The following lines are meant to show how the result should look like |
266
|
|
|
# in case the subcomponents should be exclude. There should not be a |
267
|
|
|
# postprocessing it is better to filter the nodes directly |
268
|
|
|
|
269
|
|
|
# Filter columns that are internal only |
270
|
|
|
keep_columns = [ |
271
|
|
|
c |
272
|
|
|
for c in results.flow.columns |
273
|
|
|
if getattr(c[1].label, "parent", None) |
274
|
|
|
!= getattr(c[0].label, "parent", None) |
275
|
|
|
or ( |
276
|
|
|
getattr(c[0].label, "parent", True) is True |
277
|
|
|
and getattr(c[1].label, "parent", True) is True |
278
|
|
|
) |
279
|
|
|
] |
280
|
|
|
flow_results_filtered = results.flow[keep_columns].copy() |
281
|
|
|
|
282
|
|
|
# Replace subcomponent with facade object |
283
|
|
|
for level in [0, 1]: |
284
|
|
|
flow_results_filtered.rename( |
285
|
|
|
columns={ |
286
|
|
|
c[level]: getattr(c[level].label, "parent", c[level]) |
287
|
|
|
for c in flow_results_filtered.columns |
288
|
|
|
}, |
289
|
|
|
level=level, |
290
|
|
|
inplace=True, |
291
|
|
|
) |
292
|
|
|
|
293
|
|
|
print("**** All results ****") |
294
|
|
|
print(results.flow.sum()) |
295
|
|
|
|
296
|
|
|
print("**** Filtered results ****") |
297
|
|
|
print(flow_results_filtered.sum()) |
298
|
|
|
|
299
|
|
|
|
300
|
|
|
if __name__ == "__main__": |
301
|
|
|
main() |
302
|
|
|
|