1
|
|
|
# -*- coding: utf-8 - |
2
|
|
|
|
3
|
|
|
"""Tests the processing module of solph. |
4
|
|
|
|
5
|
|
|
This file is part of project oemof (github.com/oemof/oemof). It's copyrighted |
6
|
|
|
by the contributors recorded in the version control history of the file, |
7
|
|
|
available from its original location oemof/tests/test_processing.py |
8
|
|
|
|
9
|
|
|
SPDX-License-Identifier: MIT |
10
|
|
|
""" |
11
|
|
|
|
12
|
|
|
import pandas |
13
|
|
|
import pytest |
14
|
|
|
from pandas.testing import assert_frame_equal |
15
|
|
|
from pandas.testing import assert_series_equal |
16
|
|
|
|
17
|
|
|
from oemof.solph import EnergySystem |
18
|
|
|
from oemof.solph import Investment |
19
|
|
|
from oemof.solph import Model |
20
|
|
|
from oemof.solph import processing |
21
|
|
|
from oemof.solph import views |
22
|
|
|
from oemof.solph.buses import Bus |
23
|
|
|
from oemof.solph.components import Converter |
24
|
|
|
from oemof.solph.components import GenericStorage |
25
|
|
|
from oemof.solph.components import Sink |
26
|
|
|
from oemof.solph.flows import Flow |
27
|
|
|
|
28
|
|
|
|
29
|
|
|
class TestParameterResult: |
30
|
|
|
@classmethod |
31
|
|
|
def setup_class(cls): |
32
|
|
|
cls.period = 24 |
33
|
|
|
cls.es = EnergySystem( |
34
|
|
|
timeindex=pandas.date_range( |
35
|
|
|
"2016-01-01", |
36
|
|
|
periods=cls.period, |
37
|
|
|
freq="h", |
38
|
|
|
), |
39
|
|
|
infer_last_interval=True, |
40
|
|
|
) |
41
|
|
|
|
42
|
|
|
# BUSSES |
43
|
|
|
b_el1 = Bus(label="b_el1") |
44
|
|
|
b_el2 = Bus(label="b_el2") |
45
|
|
|
b_diesel = Bus(label="b_diesel", balanced=False) |
46
|
|
|
cls.es.add(b_el1, b_el2, b_diesel) |
47
|
|
|
|
48
|
|
|
# TEST DIESEL: |
49
|
|
|
dg = Converter( |
50
|
|
|
label="diesel", |
51
|
|
|
inputs={b_diesel: Flow(variable_costs=2)}, |
52
|
|
|
outputs={ |
53
|
|
|
b_el1: Flow( |
54
|
|
|
variable_costs=1, nominal_capacity=Investment(ep_costs=0.5) |
55
|
|
|
) |
56
|
|
|
}, |
57
|
|
|
conversion_factors={b_el1: 2}, |
58
|
|
|
) |
59
|
|
|
|
60
|
|
|
batt = GenericStorage( |
61
|
|
|
label="storage", |
62
|
|
|
inputs={b_el1: Flow(variable_costs=3)}, |
63
|
|
|
outputs={b_el2: Flow(variable_costs=2.5)}, |
64
|
|
|
loss_rate=0.00, |
65
|
|
|
initial_storage_level=0, |
66
|
|
|
invest_relation_input_capacity=1 / 6, |
67
|
|
|
invest_relation_output_capacity=1 / 6, |
68
|
|
|
inflow_conversion_factor=1, |
69
|
|
|
outflow_conversion_factor=0.8, |
70
|
|
|
nominal_capacity=Investment(ep_costs=0.4), |
71
|
|
|
) |
72
|
|
|
|
73
|
|
|
cls.demand_values = [0.0] + [100] * 23 |
74
|
|
|
demand = Sink( |
75
|
|
|
label="demand_el", |
76
|
|
|
inputs={ |
77
|
|
|
b_el2: Flow( |
78
|
|
|
nominal_capacity=1, |
79
|
|
|
fix=cls.demand_values, |
80
|
|
|
) |
81
|
|
|
}, |
82
|
|
|
) |
83
|
|
|
cls.es.add(dg, batt, demand) |
84
|
|
|
cls.om = Model(cls.es) |
85
|
|
|
cls.om.receive_duals() |
86
|
|
|
cls.om.solve() |
87
|
|
|
cls.mod = Model(cls.es) |
88
|
|
|
cls.mod.solve() |
89
|
|
|
|
90
|
|
|
def test_flows_with_none_exclusion(self): |
91
|
|
|
b_el2 = self.es.groups["b_el2"] |
92
|
|
|
demand = self.es.groups["demand_el"] |
93
|
|
|
param_results = processing.parameter_as_dict( |
94
|
|
|
self.es, exclude_none=True |
95
|
|
|
) |
96
|
|
|
assert_series_equal( |
97
|
|
|
param_results[(b_el2, demand)]["scalars"].sort_index(), |
98
|
|
|
pandas.Series( |
99
|
|
|
{ |
100
|
|
|
"bidirectional": False, |
101
|
|
|
"integer": False, |
102
|
|
|
"nominal_capacity": 1, |
103
|
|
|
"max": 1, |
104
|
|
|
"min": 0, |
105
|
|
|
"variable_costs": 0, |
106
|
|
|
"label": str(b_el2.outputs[demand].label), |
107
|
|
|
} |
108
|
|
|
).sort_index(), |
109
|
|
|
) |
110
|
|
|
assert_frame_equal( |
111
|
|
|
param_results[(b_el2, demand)]["sequences"], |
112
|
|
|
pandas.DataFrame({"fix": self.demand_values}), |
113
|
|
|
check_like=True, |
114
|
|
|
) |
115
|
|
|
|
116
|
|
|
def test_flows_without_none_exclusion(self): |
117
|
|
|
b_el2 = self.es.groups["b_el2"] |
118
|
|
|
demand = self.es.groups["demand_el"] |
119
|
|
|
param_results = processing.parameter_as_dict( |
120
|
|
|
self.es, exclude_none=False |
121
|
|
|
) |
122
|
|
|
default_attributes = { |
123
|
|
|
"age": None, |
124
|
|
|
"lifetime": None, |
125
|
|
|
"integer": False, |
126
|
|
|
"investment": None, |
127
|
|
|
"nominal_capacity": 1, |
128
|
|
|
"nonconvex": None, |
129
|
|
|
"bidirectional": False, |
130
|
|
|
"full_load_time_max": None, |
131
|
|
|
"full_load_time_min": None, |
132
|
|
|
"max": 1, |
133
|
|
|
"min": 0, |
134
|
|
|
"negative_gradient_limit": None, |
135
|
|
|
"positive_gradient_limit": None, |
136
|
|
|
"variable_costs": 0, |
137
|
|
|
"fixed_costs": None, |
138
|
|
|
"flow": None, |
139
|
|
|
"values": None, |
140
|
|
|
"label": str(b_el2.outputs[demand].label), |
141
|
|
|
} |
142
|
|
|
assert_series_equal( |
143
|
|
|
param_results[(b_el2, demand)]["scalars"].sort_index(), |
144
|
|
|
pandas.Series(default_attributes).sort_index(), |
145
|
|
|
) |
146
|
|
|
sequences_attributes = { |
147
|
|
|
"fix": self.demand_values, |
148
|
|
|
} |
149
|
|
|
|
150
|
|
|
assert_frame_equal( |
151
|
|
|
param_results[(b_el2, demand)]["sequences"], |
152
|
|
|
pandas.DataFrame(sequences_attributes), |
153
|
|
|
check_like=True, |
154
|
|
|
) |
155
|
|
|
|
156
|
|
View Code Duplication |
def test_nodes_with_none_exclusion(self): |
|
|
|
|
157
|
|
|
param_results = processing.parameter_as_dict( |
158
|
|
|
self.es, exclude_none=True |
159
|
|
|
) |
160
|
|
|
param_results = processing.convert_keys_to_strings(param_results) |
161
|
|
|
assert_series_equal( |
162
|
|
|
param_results[("storage", "None")]["scalars"], |
163
|
|
|
pandas.Series( |
164
|
|
|
{ |
165
|
|
|
"balanced": True, |
166
|
|
|
"initial_storage_level": 0, |
167
|
|
|
"investment_age": 0, |
168
|
|
|
"investment_existing": 0, |
169
|
|
|
"investment_nonconvex": False, |
170
|
|
|
"investment_ep_costs": 0.4, |
171
|
|
|
"investment_maximum": float("inf"), |
172
|
|
|
"investment_minimum": 0, |
173
|
|
|
"investment_nonconvex": False, |
174
|
|
|
"investment_offset": 0, |
175
|
|
|
"label": "storage", |
176
|
|
|
"fixed_costs": 0, |
177
|
|
|
"fixed_losses_absolute": 0, |
178
|
|
|
"fixed_losses_relative": 0, |
179
|
|
|
"inflow_conversion_factor": 1, |
180
|
|
|
"invest_relation_input_capacity": 1 / 6, |
181
|
|
|
"invest_relation_output_capacity": 1 / 6, |
182
|
|
|
"loss_rate": 0, |
183
|
|
|
"max_storage_level": 1, |
184
|
|
|
"min_storage_level": 0, |
185
|
|
|
"outflow_conversion_factor": 0.8, |
186
|
|
|
} |
187
|
|
|
), |
188
|
|
|
) |
189
|
|
|
assert_frame_equal( |
190
|
|
|
param_results[("storage", "None")]["sequences"], pandas.DataFrame() |
191
|
|
|
) |
192
|
|
|
|
193
|
|
View Code Duplication |
def test_nodes_with_none_exclusion_old_name(self): |
|
|
|
|
194
|
|
|
param_results = processing.parameter_as_dict( |
195
|
|
|
self.es, exclude_none=True |
196
|
|
|
) |
197
|
|
|
param_results = processing.convert_keys_to_strings( |
198
|
|
|
param_results, keep_none_type=True |
199
|
|
|
) |
200
|
|
|
assert_series_equal( |
201
|
|
|
param_results[("storage", None)]["scalars"], |
202
|
|
|
pandas.Series( |
203
|
|
|
{ |
204
|
|
|
"balanced": True, |
205
|
|
|
"initial_storage_level": 0, |
206
|
|
|
"investment_age": 0, |
207
|
|
|
"investment_existing": 0, |
208
|
|
|
"investment_nonconvex": False, |
209
|
|
|
"investment_ep_costs": 0.4, |
210
|
|
|
"investment_maximum": float("inf"), |
211
|
|
|
"investment_minimum": 0, |
212
|
|
|
"investment_nonconvex": False, |
213
|
|
|
"investment_offset": 0, |
214
|
|
|
"label": "storage", |
215
|
|
|
"fixed_costs": 0, |
216
|
|
|
"fixed_losses_absolute": 0, |
217
|
|
|
"fixed_losses_relative": 0, |
218
|
|
|
"inflow_conversion_factor": 1, |
219
|
|
|
"invest_relation_input_capacity": 1 / 6, |
220
|
|
|
"invest_relation_output_capacity": 1 / 6, |
221
|
|
|
"loss_rate": 0, |
222
|
|
|
"max_storage_level": 1, |
223
|
|
|
"min_storage_level": 0, |
224
|
|
|
"outflow_conversion_factor": 0.8, |
225
|
|
|
} |
226
|
|
|
), |
227
|
|
|
) |
228
|
|
|
assert_frame_equal( |
229
|
|
|
param_results[("storage", None)]["sequences"], pandas.DataFrame() |
230
|
|
|
) |
231
|
|
|
|
232
|
|
|
def test_nodes_without_none_exclusion(self): |
233
|
|
|
diesel = self.es.groups["diesel"] |
234
|
|
|
param_results = processing.parameter_as_dict( |
235
|
|
|
self.es, exclude_none=False |
236
|
|
|
) |
237
|
|
|
assert_series_equal( |
238
|
|
|
param_results[(diesel, None)]["scalars"], |
239
|
|
|
pandas.Series( |
240
|
|
|
{ |
241
|
|
|
"label": "diesel", |
242
|
|
|
"conversion_factors_b_el1": 2, |
243
|
|
|
"conversion_factors_b_diesel": 1, |
244
|
|
|
} |
245
|
|
|
), |
246
|
|
|
) |
247
|
|
|
assert_frame_equal( |
248
|
|
|
param_results[(diesel, None)]["sequences"], pandas.DataFrame() |
249
|
|
|
) |
250
|
|
|
|
251
|
|
|
def test_nodes_with_excluded_attrs(self): |
252
|
|
|
diesel = self.es.groups["diesel"] |
253
|
|
|
param_results = processing.parameter_as_dict( |
254
|
|
|
self.es, exclude_attrs=["conversion_factors"] |
255
|
|
|
) |
256
|
|
|
assert_series_equal( |
257
|
|
|
param_results[(diesel, None)]["scalars"], |
258
|
|
|
pandas.Series( |
259
|
|
|
{ |
260
|
|
|
"label": "diesel", |
261
|
|
|
} |
262
|
|
|
), |
263
|
|
|
) |
264
|
|
|
assert_frame_equal( |
265
|
|
|
param_results[(diesel, None)]["sequences"], pandas.DataFrame() |
266
|
|
|
) |
267
|
|
|
|
268
|
|
|
def test_parameter_with_node_view(self): |
269
|
|
|
param_results = processing.parameter_as_dict( |
270
|
|
|
self.es, exclude_none=True |
271
|
|
|
) |
272
|
|
|
bel1 = views.node(param_results, "b_el1") |
273
|
|
|
assert ( |
274
|
|
|
bel1["scalars"][[(("b_el1", "storage"), "variable_costs")]].values |
275
|
|
|
== 3 |
276
|
|
|
) |
277
|
|
|
|
278
|
|
|
bel1_m = views.node(param_results, "b_el1", multiindex=True) |
279
|
|
|
assert bel1_m["scalars"][("b_el1", "storage", "variable_costs")] == 3 |
280
|
|
|
|
281
|
|
|
def test_multiindex_sequences(self): |
282
|
|
|
results = processing.results(self.om) |
283
|
|
|
bel1 = views.node(results, "b_el1", multiindex=True) |
284
|
|
|
assert ( |
285
|
|
|
int(bel1["sequences"][("diesel", "b_el1", "flow")].sum()) == 2875 |
286
|
|
|
) |
287
|
|
|
|
288
|
|
|
def test_error_from_nan_values(self): |
289
|
|
|
trsf = self.es.groups["diesel"] |
290
|
|
|
bus = self.es.groups["b_el1"] |
291
|
|
|
self.mod.flow[trsf, bus, 5] = float("nan") |
292
|
|
|
with pytest.raises(ValueError): |
293
|
|
|
processing.results(self.mod) |
294
|
|
|
|
295
|
|
|
def test_duals(self): |
296
|
|
|
results = processing.results(self.om) |
297
|
|
|
bel = views.node(results, "b_el1", multiindex=True) |
298
|
|
|
assert int(bel["sequences"]["b_el1", "None", "duals"].sum()) == 48 |
299
|
|
|
|
300
|
|
|
def test_node_weight_by_type(self): |
301
|
|
|
results = processing.results(self.om) |
302
|
|
|
storage_content = views.node_weight_by_type( |
303
|
|
|
results, node_type=GenericStorage |
304
|
|
|
) |
305
|
|
|
assert ( |
306
|
|
|
storage_content.sum().iloc[0] == pytest.approx(1437.5, abs=0.1) |
307
|
|
|
).all() |
308
|
|
|
|
309
|
|
|
def test_output_by_type_view(self): |
310
|
|
|
results = processing.results(self.om) |
311
|
|
|
converter_output = views.node_output_by_type( |
312
|
|
|
results, node_type=Converter |
313
|
|
|
) |
314
|
|
|
compare = views.node(results, "diesel", multiindex=True)["sequences"][ |
315
|
|
|
("diesel", "b_el1", "flow") |
316
|
|
|
] |
317
|
|
|
assert converter_output.sum().iloc[0] == pytest.approx(compare.sum()) |
318
|
|
|
|
319
|
|
|
def test_input_by_type_view(self): |
320
|
|
|
results = processing.results(self.om) |
321
|
|
|
sink_input = views.node_input_by_type(results, node_type=Sink) |
322
|
|
|
compare = views.node(results, "demand_el", multiindex=True) |
323
|
|
|
assert sink_input.sum().iloc[0] == pytest.approx( |
324
|
|
|
compare["sequences"][("b_el2", "demand_el", "flow")].sum() |
325
|
|
|
) |
326
|
|
|
|
327
|
|
|
def test_net_storage_flow(self): |
328
|
|
|
results = processing.results(self.om) |
329
|
|
|
storage_flow = views.net_storage_flow( |
330
|
|
|
results, node_type=GenericStorage |
331
|
|
|
) |
332
|
|
|
|
333
|
|
|
compare = views.node(results, "storage", multiindex=True)["sequences"] |
334
|
|
|
|
335
|
|
|
assert ( |
336
|
|
|
( |
337
|
|
|
( |
338
|
|
|
compare[("storage", "b_el2", "flow")] |
339
|
|
|
- compare[("b_el1", "storage", "flow")] |
340
|
|
|
) |
341
|
|
|
.to_frame() |
342
|
|
|
.fillna(0) |
343
|
|
|
== storage_flow.values |
344
|
|
|
) |
345
|
|
|
.all() |
346
|
|
|
.iloc[0] |
347
|
|
|
) |
348
|
|
|
|
349
|
|
|
def test_output_by_type_view_empty(self): |
350
|
|
|
results = processing.results(self.om) |
351
|
|
|
view = views.node_output_by_type(results, node_type=Flow) |
352
|
|
|
assert view is None |
353
|
|
|
|
354
|
|
|
def test_input_by_type_view_empty(self): |
355
|
|
|
results = processing.results(self.om) |
356
|
|
|
view = views.node_input_by_type(results, node_type=Flow) |
357
|
|
|
assert view is None |
358
|
|
|
|
359
|
|
|
def test_net_storage_flow_empty(self): |
360
|
|
|
results = processing.results(self.om) |
361
|
|
|
view = views.net_storage_flow(results, node_type=Sink) |
362
|
|
|
assert view is None |
363
|
|
|
view2 = views.net_storage_flow(results, node_type=Flow) |
364
|
|
|
assert view2 is None |
365
|
|
|
|
366
|
|
|
def test_node_weight_by_type_empty(self): |
367
|
|
|
results = processing.results(self.om) |
368
|
|
|
view = views.node_weight_by_type(results, node_type=Flow) |
369
|
|
|
assert view is None |
370
|
|
|
|