1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
|
3
|
|
|
""" |
4
|
|
|
This test contains a ExtractionTurbineCHP class. |
5
|
|
|
|
6
|
|
|
|
7
|
|
|
This file is part of project oemof (github.com/oemof/oemof). It's copyrighted |
8
|
|
|
by the contributors recorded in the version control history of the file, |
9
|
|
|
available from its original location |
10
|
|
|
oemof/tests/test_scripts/test_solph/test_variable_chp/test_variable_chp.py |
11
|
|
|
|
12
|
|
|
SPDX-License-Identifier: MIT |
13
|
|
|
""" |
14
|
|
|
|
15
|
|
|
import logging |
16
|
|
|
import os |
17
|
|
|
|
18
|
|
|
import pandas as pd |
19
|
|
|
import pytest |
20
|
|
|
|
21
|
|
|
from oemof import solph |
22
|
|
|
from oemof.solph import views |
23
|
|
|
|
24
|
|
|
|
25
|
|
|
def test_variable_chp(filename="variable_chp.csv", solver="cbc"): |
26
|
|
|
logging.info("Initialize the energy system") |
27
|
|
|
|
28
|
|
|
# create time index for 192 hours in May. |
29
|
|
|
date_time_index = pd.date_range("5/5/2012", periods=5, freq="h") |
30
|
|
|
energysystem = solph.EnergySystem( |
31
|
|
|
timeindex=date_time_index, infer_last_interval=True |
32
|
|
|
) |
33
|
|
|
|
34
|
|
|
# Read data file with heat and electrical demand (192 hours) |
35
|
|
|
full_filename = os.path.join(os.path.dirname(__file__), filename) |
36
|
|
|
data = pd.read_csv(full_filename, sep=",") |
37
|
|
|
|
38
|
|
|
########################################################################## |
39
|
|
|
# Create oemof.solph objects |
40
|
|
|
########################################################################## |
41
|
|
|
|
42
|
|
|
logging.info("Create oemof.solph objects") |
43
|
|
|
|
44
|
|
|
# create natural gas bus |
45
|
|
|
bgas = solph.buses.Bus(label=("natural", "gas")) |
46
|
|
|
energysystem.add(bgas) |
47
|
|
|
|
48
|
|
|
# create commodity object for gas resource |
49
|
|
|
energysystem.add( |
50
|
|
|
solph.components.Source( |
51
|
|
|
label=("commodity", "gas"), |
52
|
|
|
outputs={bgas: solph.flows.Flow(variable_costs=50)}, |
53
|
|
|
) |
54
|
|
|
) |
55
|
|
|
|
56
|
|
|
# create two electricity buses and two heat buses |
57
|
|
|
bel = solph.buses.Bus(label=("electricity", 1)) |
58
|
|
|
bel2 = solph.buses.Bus(label=("electricity", 2)) |
59
|
|
|
bth = solph.buses.Bus(label=("heat", 1)) |
60
|
|
|
bth2 = solph.buses.Bus(label=("heat", 2)) |
61
|
|
|
energysystem.add(bel, bel2, bth, bth2) |
62
|
|
|
|
63
|
|
|
# create excess components for the elec/heat bus to allow overproduction |
64
|
|
|
energysystem.add( |
65
|
|
|
solph.components.Sink( |
66
|
|
|
label=("excess", "bth_2"), inputs={bth2: solph.flows.Flow()} |
67
|
|
|
) |
68
|
|
|
) |
69
|
|
|
energysystem.add( |
70
|
|
|
solph.components.Sink( |
71
|
|
|
label=("excess", "bth_1"), inputs={bth: solph.flows.Flow()} |
72
|
|
|
) |
73
|
|
|
) |
74
|
|
|
energysystem.add( |
75
|
|
|
solph.components.Sink( |
76
|
|
|
label=("excess", "bel_2"), inputs={bel2: solph.flows.Flow()} |
77
|
|
|
) |
78
|
|
|
) |
79
|
|
|
energysystem.add( |
80
|
|
|
solph.components.Sink( |
81
|
|
|
label=("excess", "bel_1"), inputs={bel: solph.flows.Flow()} |
82
|
|
|
) |
83
|
|
|
) |
84
|
|
|
|
85
|
|
|
# create simple sink object for electrical demand for each electrical bus |
86
|
|
|
energysystem.add( |
87
|
|
|
solph.components.Sink( |
88
|
|
|
label=("demand", "elec1"), |
89
|
|
|
inputs={ |
90
|
|
|
bel: solph.flows.Flow( |
91
|
|
|
fix=data["demand_el"], nominal_capacity=1 |
92
|
|
|
) |
93
|
|
|
}, |
94
|
|
|
) |
95
|
|
|
) |
96
|
|
|
energysystem.add( |
97
|
|
|
solph.components.Sink( |
98
|
|
|
label=("demand", "elec2"), |
99
|
|
|
inputs={ |
100
|
|
|
bel2: solph.flows.Flow( |
101
|
|
|
fix=data["demand_el"], nominal_capacity=1 |
102
|
|
|
) |
103
|
|
|
}, |
104
|
|
|
) |
105
|
|
|
) |
106
|
|
|
|
107
|
|
|
# create simple sink object for heat demand for each thermal bus |
108
|
|
|
energysystem.add( |
109
|
|
|
solph.components.Sink( |
110
|
|
|
label=("demand", "therm1"), |
111
|
|
|
inputs={ |
112
|
|
|
bth: solph.flows.Flow( |
113
|
|
|
fix=data["demand_th"], nominal_capacity=741000 |
114
|
|
|
) |
115
|
|
|
}, |
116
|
|
|
) |
117
|
|
|
) |
118
|
|
|
energysystem.add( |
119
|
|
|
solph.components.Sink( |
120
|
|
|
label=("demand", "therm2"), |
121
|
|
|
inputs={ |
122
|
|
|
bth2: solph.flows.Flow( |
123
|
|
|
fix=data["demand_th"], nominal_capacity=741000 |
124
|
|
|
) |
125
|
|
|
}, |
126
|
|
|
) |
127
|
|
|
) |
128
|
|
|
|
129
|
|
|
# create a fixed converter to distribute to the heat_2 and elec_2 buses |
130
|
|
|
energysystem.add( |
131
|
|
|
solph.components.Converter( |
132
|
|
|
label=("fixed_chp", "gas"), |
133
|
|
|
inputs={bgas: solph.flows.Flow(nominal_capacity=1e11)}, |
134
|
|
|
outputs={bel2: solph.flows.Flow(), bth2: solph.flows.Flow()}, |
135
|
|
|
conversion_factors={bel2: 0.3, bth2: 0.5}, |
136
|
|
|
) |
137
|
|
|
) |
138
|
|
|
|
139
|
|
|
# create a fixed converter to distribute to the heat and elec buses |
140
|
|
|
energysystem.add( |
141
|
|
|
solph.components.ExtractionTurbineCHP( |
142
|
|
|
label=("variable_chp", "gas"), |
143
|
|
|
inputs={bgas: solph.flows.Flow(nominal_capacity=1e11)}, |
144
|
|
|
outputs={bel: solph.flows.Flow(), bth: solph.flows.Flow()}, |
145
|
|
|
conversion_factors={bel: 0.3, bth: 0.5}, |
146
|
|
|
conversion_factor_full_condensation={bel: 0.5}, |
147
|
|
|
) |
148
|
|
|
) |
149
|
|
|
|
150
|
|
|
########################################################################## |
151
|
|
|
# Optimise the energy system and plot the results |
152
|
|
|
########################################################################## |
153
|
|
|
|
154
|
|
|
logging.info("Optimise the energy system") |
155
|
|
|
|
156
|
|
|
om = solph.Model(energysystem) |
157
|
|
|
|
158
|
|
|
logging.info("Solve the optimization problem") |
159
|
|
|
om.solve(solver=solver) |
160
|
|
|
|
161
|
|
|
optimisation_results = solph.processing.results(om) |
162
|
|
|
parameter = solph.processing.parameter_as_dict(energysystem) |
163
|
|
|
|
164
|
|
|
myresults = views.node(optimisation_results, "('natural', 'gas')") |
165
|
|
|
sumresults = myresults["sequences"].sum(axis=0) |
166
|
|
|
maxresults = myresults["sequences"].max(axis=0) |
167
|
|
|
|
168
|
|
|
variable_chp_dict_sum = { |
169
|
|
|
(("('natural', 'gas')", "('variable_chp', 'gas')"), "flow"): 2823024, |
170
|
|
|
(("('natural', 'gas')", "('fixed_chp', 'gas')"), "flow"): 3710208, |
171
|
|
|
(("('commodity', 'gas')", "('natural', 'gas')"), "flow"): 6533232, |
172
|
|
|
} |
173
|
|
|
|
174
|
|
|
variable_chp_dict_max = { |
175
|
|
|
(("('natural', 'gas')", "('variable_chp', 'gas')"), "flow"): 630332, |
176
|
|
|
(("('natural', 'gas')", "('fixed_chp', 'gas')"), "flow"): 785934, |
177
|
|
|
(("('commodity', 'gas')", "('natural', 'gas')"), "flow"): 1416266, |
178
|
|
|
} |
179
|
|
|
|
180
|
|
|
for key in variable_chp_dict_max.keys(): |
181
|
|
|
logging.debug("Test the maximum value of {0}".format(key)) |
182
|
|
|
assert maxresults[[key]].iloc[0] == pytest.approx( |
183
|
|
|
variable_chp_dict_max[key] |
184
|
|
|
) |
185
|
|
|
|
186
|
|
|
for key in variable_chp_dict_sum.keys(): |
187
|
|
|
logging.debug("Test the summed up value of {0}".format(key)) |
188
|
|
|
assert sumresults[[key]].iloc[0] == pytest.approx( |
189
|
|
|
variable_chp_dict_sum[key] |
190
|
|
|
) |
191
|
|
|
|
192
|
|
|
assert ( |
193
|
|
|
parameter[(energysystem.groups["('fixed_chp', 'gas')"], None)][ |
194
|
|
|
"scalars" |
195
|
|
|
]["label"] |
196
|
|
|
== "('fixed_chp', 'gas')" |
197
|
|
|
) |
198
|
|
|
assert ( |
199
|
|
|
parameter[(energysystem.groups["('fixed_chp', 'gas')"], None)][ |
200
|
|
|
"scalars" |
201
|
|
|
]["conversion_factors_('electricity', 2)"] |
202
|
|
|
) == pytest.approx(0.3) |
203
|
|
|
|
204
|
|
|
# objective function |
205
|
|
|
assert solph.processing.meta_results(om)["objective"] == pytest.approx( |
206
|
|
|
326661590, abs=0.5 |
207
|
|
|
) |
208
|
|
|
|