1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
""" |
3
|
|
|
Example that illustrates how to use component `GenericCHP` can be used. |
4
|
|
|
|
5
|
|
|
In this case it is used to model a combined cycle extraction turbine. |
6
|
|
|
|
7
|
|
|
This file is part of project oemof (github.com/oemof/oemof). It's copyrighted |
8
|
|
|
by the contributors recorded in the version control history of the file, |
9
|
|
|
available from its original location |
10
|
|
|
oemof/tests/test_scripts/test_solph/test_generic_caes/test_generic_caes.py |
11
|
|
|
|
12
|
|
|
SPDX-License-Identifier: MIT |
13
|
|
|
""" |
14
|
|
|
|
15
|
|
|
import os |
16
|
|
|
|
17
|
|
|
import pandas as pd |
18
|
|
|
import pytest |
19
|
|
|
|
20
|
|
|
from oemof.solph import EnergySystem |
21
|
|
|
from oemof.solph import Model |
22
|
|
|
from oemof.solph import processing |
23
|
|
|
from oemof.solph import views |
24
|
|
|
from oemof.solph.buses import Bus |
25
|
|
|
from oemof.solph.components import Sink |
26
|
|
|
from oemof.solph.components import Source |
27
|
|
|
from oemof.solph.components.experimental import GenericCAES |
28
|
|
|
from oemof.solph.flows import Flow |
29
|
|
|
|
30
|
|
|
|
31
|
|
|
def test_gen_caes(): |
32
|
|
|
# read sequence data |
33
|
|
|
full_filename = os.path.join(os.path.dirname(__file__), "generic_caes.csv") |
34
|
|
|
data = pd.read_csv(full_filename) |
35
|
|
|
|
36
|
|
|
# select periods |
37
|
|
|
periods = len(data) |
38
|
|
|
|
39
|
|
|
# create an energy system |
40
|
|
|
idx = pd.date_range("1/1/2017", periods=periods, freq="h") |
41
|
|
|
es = EnergySystem(timeindex=idx, infer_last_interval=True) |
42
|
|
|
|
43
|
|
|
# resources |
44
|
|
|
bgas = Bus(label="bgas") |
45
|
|
|
es.add(bgas) |
46
|
|
|
|
47
|
|
|
es.add(Source(label="rgas", outputs={bgas: Flow(variable_costs=20)})) |
48
|
|
|
|
49
|
|
|
# power |
50
|
|
|
bel_source = Bus(label="bel_source") |
51
|
|
|
es.add(bel_source) |
52
|
|
|
es.add( |
53
|
|
|
Source( |
54
|
|
|
label="source_el", |
55
|
|
|
outputs={bel_source: Flow(variable_costs=data["price_el_source"])}, |
56
|
|
|
) |
57
|
|
|
) |
58
|
|
|
|
59
|
|
|
bel_sink = Bus(label="bel_sink") |
60
|
|
|
es.add(bel_sink) |
61
|
|
|
es.add( |
62
|
|
|
Sink( |
63
|
|
|
label="sink_el", |
64
|
|
|
inputs={bel_sink: Flow(variable_costs=data["price_el_sink"])}, |
65
|
|
|
) |
66
|
|
|
) |
67
|
|
|
|
68
|
|
|
# dictionary with parameters for a specific CAES plant |
69
|
|
|
# based on thermal modelling and linearization techniques |
70
|
|
|
concept = { |
71
|
|
|
"cav_e_in_b": 0, |
72
|
|
|
"cav_e_in_m": 0.6457267578, |
73
|
|
|
"cav_e_out_b": 0, |
74
|
|
|
"cav_e_out_m": 0.3739636077, |
75
|
|
|
"cav_eta_temp": 1.0, |
76
|
|
|
"cav_level_max": 211.11, |
77
|
|
|
"cmp_p_max_b": 86.0918959849, |
78
|
|
|
"cmp_p_max_m": 0.0679999932, |
79
|
|
|
"cmp_p_min": 1, |
80
|
|
|
"cmp_q_out_b": -19.3996965679, |
81
|
|
|
"cmp_q_out_m": 1.1066036114, |
82
|
|
|
"cmp_q_tes_share": 0, |
83
|
|
|
"exp_p_max_b": 46.1294016678, |
84
|
|
|
"exp_p_max_m": 0.2528340303, |
85
|
|
|
"exp_p_min": 1, |
86
|
|
|
"exp_q_in_b": -2.2073411014, |
87
|
|
|
"exp_q_in_m": 1.129249765, |
88
|
|
|
"exp_q_tes_share": 0, |
89
|
|
|
"tes_eta_temp": 1.0, |
90
|
|
|
"tes_level_max": 0.0, |
91
|
|
|
} |
92
|
|
|
|
93
|
|
|
# generic compressed air energy storage (caes) plant |
94
|
|
|
es.add( |
95
|
|
|
GenericCAES( |
96
|
|
|
label="caes", |
97
|
|
|
electrical_input={bel_source: Flow()}, |
98
|
|
|
fuel_input={bgas: Flow()}, |
99
|
|
|
electrical_output={bel_sink: Flow()}, |
100
|
|
|
params=concept, |
101
|
|
|
) |
102
|
|
|
) |
103
|
|
|
|
104
|
|
|
# create an optimization problem and solve it |
105
|
|
|
om = Model(es) |
106
|
|
|
|
107
|
|
|
# solve model |
108
|
|
|
om.solve(solver="cbc") |
109
|
|
|
|
110
|
|
|
# create result object |
111
|
|
|
results = processing.results(om) |
112
|
|
|
|
113
|
|
|
data = ( |
114
|
|
|
views.node(results, "caes", keep_none_type=True)["sequences"] |
115
|
|
|
.sum(axis=0) |
116
|
|
|
.to_dict() |
117
|
|
|
) |
118
|
|
|
|
119
|
|
|
test_dict = { |
120
|
|
|
(("caes", None), "cav_level"): 25658.82964382, |
121
|
|
|
(("caes", None), "exp_p"): 5020.801997000007, |
122
|
|
|
(("caes", None), "exp_q_fuel_in"): 5170.880360999999, |
123
|
|
|
(("caes", None), "tes_e_out"): 0.0, |
124
|
|
|
(("caes", None), "exp_st"): 226.0, |
125
|
|
|
(("bgas", "caes"), "flow"): 5170.880360999999, |
126
|
|
|
(("caes", None), "cav_e_out"): 1877.5972265299995, |
127
|
|
|
(("caes", None), "exp_p_max"): 17512.352336, |
128
|
|
|
(("caes", None), "cmp_q_waste"): 2499.9125993000007, |
129
|
|
|
(("caes", None), "cmp_p"): 2907.7271520000004, |
130
|
|
|
(("caes", None), "exp_q_add_in"): 0.0, |
131
|
|
|
(("caes", None), "cmp_st"): 37.0, |
132
|
|
|
(("caes", None), "cmp_q_out_sum"): 2499.9125993000007, |
133
|
|
|
(("caes", None), "tes_level"): 0.0, |
134
|
|
|
(("caes", None), "tes_e_in"): 0.0, |
135
|
|
|
(("caes", None), "exp_q_in_sum"): 5170.880360999999, |
136
|
|
|
(("caes", None), "cmp_p_max"): 22320.76334300001, |
137
|
|
|
(("caes", "bel_sink"), "flow"): 5020.801997000007, |
138
|
|
|
(("bel_source", "caes"), "flow"): 2907.7271520000004, |
139
|
|
|
(("caes", None), "cav_e_in"): 1877.597226, |
140
|
|
|
} |
141
|
|
|
|
142
|
|
|
for key in test_dict.keys(): |
143
|
|
|
assert data[key] == pytest.approx(test_dict[key]) |
144
|
|
|
|