|
1
|
|
|
# -*- coding: utf-8 -*- |
|
2
|
|
|
|
|
3
|
|
|
""" |
|
4
|
|
|
General description |
|
5
|
|
|
------------------- |
|
6
|
|
|
This Code generates the picture of an energysystem used for the grid icons in |
|
7
|
|
|
the docs |
|
8
|
|
|
|
|
9
|
|
|
License |
|
10
|
|
|
------- |
|
11
|
|
|
`MIT license <https://github.com/oemof/oemof-solph/blob/dev/LICENSE>`_ |
|
12
|
|
|
""" |
|
13
|
|
|
########################################################################### |
|
14
|
|
|
# imports |
|
15
|
|
|
########################################################################### |
|
16
|
|
|
|
|
17
|
|
|
import logging |
|
18
|
|
|
import os |
|
19
|
|
|
|
|
20
|
|
|
import matplotlib.pyplot as plt |
|
21
|
|
|
import pandas as pd |
|
22
|
|
|
import plotly.io as pio |
|
23
|
|
|
from oemof.tools import logger |
|
24
|
|
|
from oemof.visio import ESGraphRenderer |
|
25
|
|
|
|
|
26
|
|
|
from oemof.solph import EnergySystem |
|
27
|
|
|
from oemof.solph import Model |
|
28
|
|
|
from oemof.solph import buses |
|
29
|
|
|
from oemof.solph import components |
|
30
|
|
|
from oemof.solph import create_time_index |
|
31
|
|
|
from oemof.solph import flows |
|
32
|
|
|
from oemof.solph import processing |
|
33
|
|
|
|
|
34
|
|
|
|
|
35
|
|
View Code Duplication |
def plot_figures_for(element: dict) -> None: |
|
|
|
|
|
|
36
|
|
|
figure, axes = plt.subplots(figsize=(10, 5)) |
|
37
|
|
|
element["sequences"].plot(ax=axes, kind="line", drawstyle="steps-post") |
|
38
|
|
|
plt.legend( |
|
39
|
|
|
loc="upper center", |
|
40
|
|
|
prop={"size": 8}, |
|
41
|
|
|
bbox_to_anchor=(0.5, 1.25), |
|
42
|
|
|
ncol=2, |
|
43
|
|
|
) |
|
44
|
|
|
figure.subplots_adjust(top=0.8) |
|
45
|
|
|
plt.show() |
|
46
|
|
|
|
|
47
|
|
|
|
|
48
|
|
|
# uses data from the basic example |
|
49
|
|
|
def main(): |
|
50
|
|
|
|
|
51
|
|
|
# ************************************************************************* |
|
52
|
|
|
# ********** PART 1 - Define and optimise the energy system *************** |
|
53
|
|
|
# ************************************************************************* |
|
54
|
|
|
|
|
55
|
|
|
# Read data file |
|
56
|
|
|
file_name = os.path.realpath( |
|
57
|
|
|
os.path.join( |
|
58
|
|
|
__file__, |
|
59
|
|
|
"..", |
|
60
|
|
|
"..", |
|
61
|
|
|
"..", |
|
62
|
|
|
"..", |
|
63
|
|
|
r"examples\result_object\time_series.csv", |
|
64
|
|
|
) |
|
65
|
|
|
) |
|
66
|
|
|
data = pd.read_csv(file_name) |
|
67
|
|
|
|
|
68
|
|
|
solver = "cbc" # 'glpk', 'gurobi',.... |
|
69
|
|
|
number_of_time_steps = len(data) |
|
70
|
|
|
solver_verbose = False # show/hide solver output |
|
71
|
|
|
|
|
72
|
|
|
# initiate the logger (see the API docs for more information) |
|
73
|
|
|
logger.define_logging( |
|
74
|
|
|
logfile="oemof_example.log", |
|
75
|
|
|
screen_level=logging.INFO, |
|
76
|
|
|
file_level=logging.INFO, |
|
77
|
|
|
) |
|
78
|
|
|
|
|
79
|
|
|
logging.info("Initialize the energy system") |
|
80
|
|
|
date_time_index = create_time_index(2012, number=number_of_time_steps) |
|
81
|
|
|
|
|
82
|
|
|
# create the energysystem and assign the time index |
|
83
|
|
|
energysystem = EnergySystem( |
|
84
|
|
|
timeindex=date_time_index, infer_last_interval=False |
|
85
|
|
|
) |
|
86
|
|
|
|
|
87
|
|
|
########################################################################## |
|
88
|
|
|
# Create oemof objects |
|
89
|
|
|
########################################################################## |
|
90
|
|
|
|
|
91
|
|
|
logging.info("Create oemof objects") |
|
92
|
|
|
|
|
93
|
|
|
# The bus objects were assigned to variables which makes it easier to |
|
94
|
|
|
# connect components to these buses (see below). |
|
95
|
|
|
|
|
96
|
|
|
# create natural gas bus |
|
97
|
|
|
bus_gas = buses.Bus(label="natural gas") |
|
98
|
|
|
|
|
99
|
|
|
# create electricity bus |
|
100
|
|
|
bus_electricity = buses.Bus(label="electricity") |
|
101
|
|
|
|
|
102
|
|
|
# create heat bus |
|
103
|
|
|
bus_heat = buses.Bus(label="heat") |
|
104
|
|
|
|
|
105
|
|
|
# adding the buses to the energy system |
|
106
|
|
|
energysystem.add(bus_gas, bus_electricity, bus_heat) |
|
107
|
|
|
|
|
108
|
|
|
# create sink for heat demand |
|
109
|
|
|
energysystem.add( |
|
110
|
|
|
components.Sink( |
|
111
|
|
|
label="Heat Demand", |
|
112
|
|
|
inputs={ |
|
113
|
|
|
bus_heat: flows.Flow(fix=data["demand_el"], nominal_value=2) |
|
114
|
|
|
}, |
|
115
|
|
|
) |
|
116
|
|
|
) |
|
117
|
|
|
|
|
118
|
|
|
# create source object representing the gas commodity |
|
119
|
|
|
energysystem.add( |
|
120
|
|
|
components.Source( |
|
121
|
|
|
label="Gas Grid", |
|
122
|
|
|
outputs={bus_gas: flows.Flow()}, |
|
123
|
|
|
) |
|
124
|
|
|
) |
|
125
|
|
|
|
|
126
|
|
|
# create fixed source object representing power grid |
|
127
|
|
|
energysystem.add( |
|
128
|
|
|
components.Source( |
|
129
|
|
|
label="Power Grid", |
|
130
|
|
|
outputs={bus_electricity: flows.Flow()}, |
|
131
|
|
|
) |
|
132
|
|
|
) |
|
133
|
|
|
|
|
134
|
|
|
# create fixed source object representing pv power plants |
|
135
|
|
|
energysystem.add( |
|
136
|
|
|
components.Source( |
|
137
|
|
|
label="Pv Plant", |
|
138
|
|
|
outputs={ |
|
139
|
|
|
bus_electricity: flows.Flow( |
|
140
|
|
|
fix=data["pv"], nominal_value=582000 |
|
141
|
|
|
) |
|
142
|
|
|
}, |
|
143
|
|
|
) |
|
144
|
|
|
) |
|
145
|
|
|
|
|
146
|
|
|
# create simple sink object representing the electrical demand |
|
147
|
|
|
# nominal_capacity is set to 1 because demand_el is not a normalised series |
|
148
|
|
|
energysystem.add( |
|
149
|
|
|
components.Sink( |
|
150
|
|
|
label="Electricity Demand", |
|
151
|
|
|
inputs={ |
|
152
|
|
|
bus_electricity: flows.Flow( |
|
153
|
|
|
fix=data["demand_el"], nominal_value=1 |
|
154
|
|
|
) |
|
155
|
|
|
}, |
|
156
|
|
|
) |
|
157
|
|
|
) |
|
158
|
|
|
|
|
159
|
|
|
# create simple converter object representing a gas boiler |
|
160
|
|
|
energysystem.add( |
|
161
|
|
|
components.Converter( |
|
162
|
|
|
label="Gas boiler", |
|
163
|
|
|
inputs={bus_gas: flows.Flow()}, |
|
164
|
|
|
outputs={bus_heat: flows.Flow(variable_costs=50)}, |
|
165
|
|
|
conversion_factors={bus_electricity: 0.58}, |
|
166
|
|
|
) |
|
167
|
|
|
) |
|
168
|
|
|
|
|
169
|
|
|
# create simple converter object representing a heatpump |
|
170
|
|
|
energysystem.add( |
|
171
|
|
|
components.Converter( |
|
172
|
|
|
label="Heatpump", |
|
173
|
|
|
inputs={bus_electricity: flows.Flow()}, |
|
174
|
|
|
outputs={bus_heat: flows.Flow(variable_costs=50)}, |
|
175
|
|
|
conversion_factors={bus_electricity: 0.58}, |
|
176
|
|
|
) |
|
177
|
|
|
) |
|
178
|
|
|
|
|
179
|
|
|
########################################################################## |
|
180
|
|
|
# Optimise the energy system and plot the results |
|
181
|
|
|
########################################################################## |
|
182
|
|
|
|
|
183
|
|
|
logging.info("Optimise the energy system") |
|
184
|
|
|
|
|
185
|
|
|
# initialise the operational model |
|
186
|
|
|
energysystem_model = Model(energysystem) |
|
187
|
|
|
|
|
188
|
|
|
esgr = ESGraphRenderer( |
|
189
|
|
|
energysystem_model, |
|
190
|
|
|
legend=False, |
|
191
|
|
|
filepath=os.path.realpath( |
|
192
|
|
|
os.path.join(__file__, "..", "..", "ES.svg") |
|
193
|
|
|
), |
|
194
|
|
|
img_format="svg", |
|
195
|
|
|
) |
|
196
|
|
|
esgr.render() |
|
197
|
|
|
|
|
198
|
|
|
# if tee_switch is true solver messages will be displayed |
|
199
|
|
|
logging.info("Solve the optimization problem") |
|
200
|
|
|
energysystem_model.solve( |
|
201
|
|
|
solver=solver, solve_kwargs={"tee": solver_verbose} |
|
202
|
|
|
) |
|
203
|
|
|
|
|
204
|
|
|
# after the solve method of the model has been called |
|
205
|
|
|
results = processing.results(energysystem_model) |
|
206
|
|
|
fig_dict = esgr.sankey(results) |
|
207
|
|
|
pio.show(fig_dict) |
|
208
|
|
|
|
|
209
|
|
|
|
|
210
|
|
|
main() |
|
211
|
|
|
|