Conditions | 2 |
Total Lines | 124 |
Code Lines | 83 |
Lines | 0 |
Ratio | 0 % |
Changes | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
1 | # -*- coding: utf-8 -*- |
||
30 | def test_connect_invest(): |
||
31 | date_time_index = pd.date_range("1/1/2012", periods=24 * 7, freq="h") |
||
32 | |||
33 | es = EnergySystem(timeindex=date_time_index, infer_last_interval=True) |
||
34 | |||
35 | # Read data file |
||
36 | full_filename = os.path.join( |
||
37 | os.path.dirname(__file__), "connect_invest.csv" |
||
38 | ) |
||
39 | data = pd.read_csv(full_filename, sep=",") |
||
40 | |||
41 | logging.info("Create oemof objects") |
||
42 | |||
43 | # create electricity bus |
||
44 | bel1 = Bus(label="electricity1") |
||
45 | bel2 = Bus(label="electricity2") |
||
46 | es.add(bel1, bel2) |
||
47 | |||
48 | # create excess component for the electricity bus to allow overproduction |
||
49 | es.add(components.Sink(label="excess_bel", inputs={bel2: Flow()})) |
||
50 | es.add( |
||
51 | components.Source( |
||
52 | label="shortage", outputs={bel2: Flow(variable_costs=50000)} |
||
53 | ) |
||
54 | ) |
||
55 | |||
56 | # create fixed source object representing wind power plants |
||
57 | es.add( |
||
58 | components.Source( |
||
59 | label="wind", |
||
60 | outputs={bel1: Flow(fix=data["wind"], nominal_capacity=1000000)}, |
||
61 | ) |
||
62 | ) |
||
63 | |||
64 | # create simple sink object representing the electrical demand |
||
65 | es.add( |
||
66 | components.Sink( |
||
67 | label="demand", |
||
68 | inputs={bel1: Flow(fix=data["demand_el"], nominal_capacity=1)}, |
||
69 | ) |
||
70 | ) |
||
71 | |||
72 | storage = components.GenericStorage( |
||
73 | label="storage", |
||
74 | inputs={bel1: Flow(variable_costs=10e10)}, |
||
75 | outputs={bel1: Flow(variable_costs=10e10)}, |
||
76 | loss_rate=0.00, |
||
77 | initial_storage_level=0, |
||
78 | invest_relation_input_capacity=1 / 6, |
||
79 | invest_relation_output_capacity=1 / 6, |
||
80 | inflow_conversion_factor=1, |
||
81 | outflow_conversion_factor=0.8, |
||
82 | nominal_capacity=Investment(ep_costs=0.2), |
||
83 | ) |
||
84 | es.add(storage) |
||
85 | |||
86 | line12 = components.Converter( |
||
87 | label="line12", |
||
88 | inputs={bel1: Flow()}, |
||
89 | outputs={bel2: Flow(nominal_capacity=Investment(ep_costs=20))}, |
||
90 | ) |
||
91 | es.add(line12) |
||
92 | |||
93 | line21 = components.Converter( |
||
94 | label="line21", |
||
95 | inputs={bel2: Flow()}, |
||
96 | outputs={bel1: Flow(nominal_capacity=Investment(ep_costs=20))}, |
||
97 | ) |
||
98 | es.add(line21) |
||
99 | |||
100 | om = Model(es) |
||
101 | |||
102 | constraints.equate_variables( |
||
103 | om, |
||
104 | om.InvestmentFlowBlock.invest[line12, bel2, 0], |
||
105 | om.InvestmentFlowBlock.invest[line21, bel1, 0], |
||
106 | 2, |
||
107 | ) |
||
108 | constraints.equate_variables( |
||
109 | om, |
||
110 | om.InvestmentFlowBlock.invest[line12, bel2, 0], |
||
111 | om.GenericInvestmentStorageBlock.invest[storage, 0], |
||
112 | ) |
||
113 | |||
114 | # if tee_switch is true solver messages will be displayed |
||
115 | logging.info("Solve the optimization problem") |
||
116 | om.solve(solver="cbc", tee=True) |
||
117 | |||
118 | # check if the new result object is working for custom components |
||
119 | results = processing.results(om) |
||
120 | |||
121 | my_results = dict() |
||
122 | my_results["line12"] = ( |
||
123 | views.node(results, "line12")["scalars"] |
||
124 | .loc[[(("line12", "electricity2"), "invest")]] |
||
125 | .iloc[0] |
||
126 | ) |
||
127 | |||
128 | my_results["line21"] = ( |
||
129 | views.node(results, "line21")["scalars"] |
||
130 | .loc[[(("line21", "electricity1"), "invest")]] |
||
131 | .iloc[0] |
||
132 | ) |
||
133 | |||
134 | stor_res = views.node(results, "storage")["scalars"] |
||
135 | my_results["storage_in"] = stor_res[ |
||
136 | [(("electricity1", "storage"), "invest")] |
||
137 | ].iloc[0] |
||
138 | my_results["storage"] = stor_res[[(("storage", "None"), "invest")]].iloc[0] |
||
139 | my_results["storage_out"] = stor_res[ |
||
140 | [(("storage", "electricity1"), "invest")] |
||
141 | ].iloc[0] |
||
142 | |||
143 | connect_invest_dict = { |
||
144 | "line12": 814705, |
||
145 | "line21": 1629410, |
||
146 | "storage": 814705, |
||
147 | "storage_in": 135784, |
||
148 | "storage_out": 135784, |
||
149 | } |
||
150 | |||
151 | for key in connect_invest_dict.keys(): |
||
152 | assert my_results[key] == pytest.approx( |
||
153 | connect_invest_dict[key], abs=0.5 |
||
154 | ) |
||
155 |