| Conditions | 2 |
| Total Lines | 124 |
| Code Lines | 83 |
| Lines | 0 |
| Ratio | 0 % |
| Changes | 0 | ||
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
| 1 | # -*- coding: utf-8 -*- |
||
| 30 | def test_connect_invest(): |
||
| 31 | date_time_index = pd.date_range("1/1/2012", periods=24 * 7, freq="h") |
||
| 32 | |||
| 33 | es = EnergySystem(timeindex=date_time_index, infer_last_interval=True) |
||
| 34 | |||
| 35 | # Read data file |
||
| 36 | full_filename = os.path.join( |
||
| 37 | os.path.dirname(__file__), "connect_invest.csv" |
||
| 38 | ) |
||
| 39 | data = pd.read_csv(full_filename, sep=",") |
||
| 40 | |||
| 41 | logging.info("Create oemof objects") |
||
| 42 | |||
| 43 | # create electricity bus |
||
| 44 | bel1 = Bus(label="electricity1") |
||
| 45 | bel2 = Bus(label="electricity2") |
||
| 46 | es.add(bel1, bel2) |
||
| 47 | |||
| 48 | # create excess component for the electricity bus to allow overproduction |
||
| 49 | es.add(components.Sink(label="excess_bel", inputs={bel2: Flow()})) |
||
| 50 | es.add( |
||
| 51 | components.Source( |
||
| 52 | label="shortage", outputs={bel2: Flow(variable_costs=50000)} |
||
| 53 | ) |
||
| 54 | ) |
||
| 55 | |||
| 56 | # create fixed source object representing wind power plants |
||
| 57 | es.add( |
||
| 58 | components.Source( |
||
| 59 | label="wind", |
||
| 60 | outputs={bel1: Flow(fix=data["wind"], nominal_capacity=1000000)}, |
||
| 61 | ) |
||
| 62 | ) |
||
| 63 | |||
| 64 | # create simple sink object representing the electrical demand |
||
| 65 | es.add( |
||
| 66 | components.Sink( |
||
| 67 | label="demand", |
||
| 68 | inputs={bel1: Flow(fix=data["demand_el"], nominal_capacity=1)}, |
||
| 69 | ) |
||
| 70 | ) |
||
| 71 | |||
| 72 | storage = components.GenericStorage( |
||
| 73 | label="storage", |
||
| 74 | inputs={bel1: Flow(variable_costs=10e10)}, |
||
| 75 | outputs={bel1: Flow(variable_costs=10e10)}, |
||
| 76 | loss_rate=0.00, |
||
| 77 | initial_storage_level=0, |
||
| 78 | invest_relation_input_capacity=1 / 6, |
||
| 79 | invest_relation_output_capacity=1 / 6, |
||
| 80 | inflow_conversion_factor=1, |
||
| 81 | outflow_conversion_factor=0.8, |
||
| 82 | nominal_capacity=Investment(ep_costs=0.2), |
||
| 83 | ) |
||
| 84 | es.add(storage) |
||
| 85 | |||
| 86 | line12 = components.Converter( |
||
| 87 | label="line12", |
||
| 88 | inputs={bel1: Flow()}, |
||
| 89 | outputs={bel2: Flow(nominal_capacity=Investment(ep_costs=20))}, |
||
| 90 | ) |
||
| 91 | es.add(line12) |
||
| 92 | |||
| 93 | line21 = components.Converter( |
||
| 94 | label="line21", |
||
| 95 | inputs={bel2: Flow()}, |
||
| 96 | outputs={bel1: Flow(nominal_capacity=Investment(ep_costs=20))}, |
||
| 97 | ) |
||
| 98 | es.add(line21) |
||
| 99 | |||
| 100 | om = Model(es) |
||
| 101 | |||
| 102 | constraints.equate_variables( |
||
| 103 | om, |
||
| 104 | om.InvestmentFlowBlock.invest[line12, bel2, 0], |
||
| 105 | om.InvestmentFlowBlock.invest[line21, bel1, 0], |
||
| 106 | 2, |
||
| 107 | ) |
||
| 108 | constraints.equate_variables( |
||
| 109 | om, |
||
| 110 | om.InvestmentFlowBlock.invest[line12, bel2, 0], |
||
| 111 | om.GenericInvestmentStorageBlock.invest[storage, 0], |
||
| 112 | ) |
||
| 113 | |||
| 114 | # if tee_switch is true solver messages will be displayed |
||
| 115 | logging.info("Solve the optimization problem") |
||
| 116 | om.solve(solver="cbc", tee=True) |
||
| 117 | |||
| 118 | # check if the new result object is working for custom components |
||
| 119 | results = processing.results(om) |
||
| 120 | |||
| 121 | my_results = dict() |
||
| 122 | my_results["line12"] = ( |
||
| 123 | views.node(results, "line12")["scalars"] |
||
| 124 | .loc[[(("line12", "electricity2"), "invest")]] |
||
| 125 | .iloc[0] |
||
| 126 | ) |
||
| 127 | |||
| 128 | my_results["line21"] = ( |
||
| 129 | views.node(results, "line21")["scalars"] |
||
| 130 | .loc[[(("line21", "electricity1"), "invest")]] |
||
| 131 | .iloc[0] |
||
| 132 | ) |
||
| 133 | |||
| 134 | stor_res = views.node(results, "storage")["scalars"] |
||
| 135 | my_results["storage_in"] = stor_res[ |
||
| 136 | [(("electricity1", "storage"), "invest")] |
||
| 137 | ].iloc[0] |
||
| 138 | my_results["storage"] = stor_res[[(("storage", "None"), "invest")]].iloc[0] |
||
| 139 | my_results["storage_out"] = stor_res[ |
||
| 140 | [(("storage", "electricity1"), "invest")] |
||
| 141 | ].iloc[0] |
||
| 142 | |||
| 143 | connect_invest_dict = { |
||
| 144 | "line12": 814705, |
||
| 145 | "line21": 1629410, |
||
| 146 | "storage": 814705, |
||
| 147 | "storage_in": 135784, |
||
| 148 | "storage_out": 135784, |
||
| 149 | } |
||
| 150 | |||
| 151 | for key in connect_invest_dict.keys(): |
||
| 152 | assert my_results[key] == pytest.approx( |
||
| 153 | connect_invest_dict[key], abs=0.5 |
||
| 154 | ) |
||
| 155 |