| Conditions | 3 |
| Total Lines | 112 |
| Code Lines | 69 |
| Lines | 0 |
| Ratio | 0 % |
| Changes | 0 | ||
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
| 1 | """ |
||
| 17 | def prepare_input_data(): |
||
| 18 | url_temperature = ( |
||
| 19 | "https://oemof.org/wp-content/uploads/2025/12/temperature.csv" |
||
| 20 | ) |
||
| 21 | url_energy = "https://oemof.org/wp-content/uploads/2025/12/energy.csv" |
||
| 22 | |||
| 23 | print( |
||
| 24 | "Data is licensed from M. Schlemminger, T. Ohrdes, E. Schneider," |
||
| 25 | " and M. Knoop. Under Creative Commons Attribution 4.0 International" |
||
| 26 | " License. It is also available at doi: 10.5281/zenodo.5642902." |
||
| 27 | " (We use single family home 26 plus the south-facing PV" |
||
| 28 | " from that dataset.)" |
||
| 29 | ) |
||
| 30 | |||
| 31 | file_path = Path(__file__).parent |
||
| 32 | |||
| 33 | temperature_file = Path(file_path, "temperature.csv") |
||
| 34 | if not temperature_file.exists(): |
||
| 35 | urlretrieve(url_temperature, temperature_file) |
||
| 36 | temperature = pd.read_csv( |
||
| 37 | temperature_file, |
||
| 38 | index_col="Unix Epoch", |
||
| 39 | ) |
||
| 40 | timedelta = np.empty(len(temperature)) |
||
| 41 | timedelta[:-1] = (temperature.index[1:] - temperature.index[:-1]) / 3600 |
||
| 42 | timedelta[-1] = np.nan |
||
| 43 | |||
| 44 | temperature.index = pd.to_datetime( |
||
| 45 | temperature.index, |
||
| 46 | unit="s", |
||
| 47 | utc=True, |
||
| 48 | ) |
||
| 49 | |||
| 50 | building_area = 120 # m² (from publication) |
||
| 51 | specific_heat_demand = 60 # kWh/m²/a (educated guess) |
||
| 52 | holidays = dict(Germany().holidays(2019)) |
||
| 53 | |||
| 54 | # We estimate the heat demand from the ambient temperature using demandlib. |
||
| 55 | # This returns energy per time step in units of kWh. |
||
| 56 | temperature["heat demand (kWh)"] = demandlib.bdew.HeatBuilding( |
||
| 57 | temperature.index, |
||
| 58 | holidays=holidays, |
||
| 59 | temperature=temperature["Air Temperature (°C)"], |
||
| 60 | shlp_type="EFH", |
||
| 61 | building_class=1, |
||
| 62 | wind_class=1, |
||
| 63 | annual_heat_demand=building_area * specific_heat_demand, |
||
| 64 | name="EFH", |
||
| 65 | ).get_bdew_profile() |
||
| 66 | |||
| 67 | temperature["heat demand (kW)"] = ( |
||
| 68 | temperature["heat demand (kWh)"] / timedelta |
||
| 69 | ) |
||
| 70 | |||
| 71 | energy_file = Path(file_path, "energy.csv") |
||
| 72 | if not energy_file.exists(): |
||
| 73 | urlretrieve(url_energy, energy_file) |
||
| 74 | |||
| 75 | energy = pd.read_csv( |
||
| 76 | energy_file, |
||
| 77 | index_col=0, |
||
| 78 | ) |
||
| 79 | energy.index = pd.to_datetime( |
||
| 80 | energy.index, |
||
| 81 | unit="s", |
||
| 82 | utc=True, |
||
| 83 | ) |
||
| 84 | |||
| 85 | energy[energy == np.inf] = np.nan |
||
| 86 | # ToDo: Auf 1 Minuten samplen und Nan-Werte interpolieren (linear) |
||
| 87 | # Daten in W |
||
| 88 | # demand ist absolut |
||
| 89 | # COP einfügen |
||
| 90 | # Mobilitätszeitreihe, die zu den Daten passt. |
||
| 91 | # Zeitstempel beachten ohne Offset! |
||
| 92 | |||
| 93 | energy = ( |
||
| 94 | energy.resample("1 min") |
||
| 95 | .mean() |
||
| 96 | ) |
||
| 97 | temperature[temperature == np.inf] = np.nan |
||
| 98 | temperature = ( |
||
| 99 | temperature[10:].resample("1 min") |
||
| 100 | .mean() |
||
| 101 | ) |
||
| 102 | df = pd.concat([energy, temperature], axis=1) |
||
| 103 | df = df.interpolate() |
||
| 104 | |||
| 105 | # **************** COP calculation ********************************** |
||
| 106 | t_supply = 60 |
||
| 107 | efficiency = 0.5 # source? |
||
| 108 | cop_max = 7 # source??? |
||
| 109 | |||
| 110 | cop_hp = (t_supply + 273.15 * efficiency) / ( |
||
| 111 | t_supply - df["Air Temperature (°C)"] |
||
| 112 | ) |
||
| 113 | cop_hp.loc[cop_hp > cop_max] = cop_max |
||
| 114 | |||
| 115 | df["cop"] = cop_hp |
||
| 116 | |||
| 117 | df["PV (kW/kWp)"] = df["PV (W)"] / 14.5e3 # Wp from publication |
||
| 118 | |||
| 119 | df["electricity demand (W)"] /= 1000 |
||
| 120 | df.rename( |
||
| 121 | columns={"electricity demand (W)": "electricity demand (kW)"}, |
||
| 122 | inplace=True, |
||
| 123 | ) |
||
| 124 | |||
| 125 | # drop colums that are no longer useful |
||
| 126 | df.drop(columns=["PV (W)", "heat demand (kWh)"], inplace=True) |
||
| 127 | |||
| 128 | return df |
||
| 129 | |||
| 133 |