1
|
|
|
from oemof import solph |
2
|
|
|
|
3
|
|
|
|
4
|
|
View Code Duplication |
def results_opex(): |
|
|
|
|
5
|
|
|
|
6
|
|
|
date_time_index = solph.create_time_index(2025, number=4) |
7
|
|
|
|
8
|
|
|
# create the energysystem and assign the time index |
9
|
|
|
energysystem = solph.EnergySystem( |
10
|
|
|
timeindex=date_time_index, infer_last_interval=True |
11
|
|
|
) |
12
|
|
|
|
13
|
|
|
el_bus = solph.buses.Bus("el_bus") |
14
|
|
|
heat_bus = solph.buses.Bus("heat_bus") |
15
|
|
|
|
16
|
|
|
energysystem.add(el_bus, heat_bus) |
17
|
|
|
|
18
|
|
|
source = solph.components.Source( |
19
|
|
|
"source", |
20
|
|
|
outputs={ |
21
|
|
|
el_bus: solph.flows.Flow(variable_costs=[10, 15, 20, 30, 15]) |
22
|
|
|
}, |
23
|
|
|
) |
24
|
|
|
|
25
|
|
|
demand = solph.components.Sink( |
26
|
|
|
"heat_demand", |
27
|
|
|
inputs={ |
28
|
|
|
heat_bus: solph.flows.Flow(fix=[15, 42, 3, 9, 12], nominal_value=1) |
29
|
|
|
}, |
30
|
|
|
) |
31
|
|
|
|
32
|
|
|
hp = solph.components.Converter( |
33
|
|
|
"heat_pump", |
34
|
|
|
inputs={el_bus: solph.flows.Flow()}, |
35
|
|
|
outputs={heat_bus: solph.flows.Flow()}, |
36
|
|
|
conversion_factors={el_bus: 1 / 3}, |
37
|
|
|
) |
38
|
|
|
|
39
|
|
|
energysystem.add(source, demand, hp) |
40
|
|
|
|
41
|
|
|
energysystem_model = solph.Model(energysystem) |
42
|
|
|
|
43
|
|
|
energysystem_model.solve(solver="cbc", solve_kwargs={"tee": True}) |
44
|
|
|
|
45
|
|
|
results = solph.Results(energysystem_model) |
46
|
|
|
|
47
|
|
|
assert results.to_df("variable_costs").iloc[:, 2].values == [ |
48
|
|
|
50, |
49
|
|
|
210, |
50
|
|
|
20, |
51
|
|
|
90, |
52
|
|
|
60, |
53
|
|
|
] |
54
|
|
|
|
55
|
|
|
|
56
|
|
View Code Duplication |
def results_capex(): |
|
|
|
|
57
|
|
|
|
58
|
|
|
date_time_index = solph.create_time_index(2025, number=4) |
59
|
|
|
|
60
|
|
|
# create the energysystem and assign the time index |
61
|
|
|
energysystem = solph.EnergySystem( |
62
|
|
|
timeindex=date_time_index, infer_last_interval=True |
63
|
|
|
) |
64
|
|
|
|
65
|
|
|
el_bus = solph.buses.Bus("el_bus") |
66
|
|
|
heat_bus = solph.buses.Bus("heat_bus") |
67
|
|
|
|
68
|
|
|
energysystem.add(el_bus, heat_bus) |
69
|
|
|
|
70
|
|
|
source = solph.components.Source( |
71
|
|
|
"source", |
72
|
|
|
outputs={el_bus: solph.flows.Flow()}, |
73
|
|
|
) |
74
|
|
|
|
75
|
|
|
demand = solph.components.Sink( |
76
|
|
|
"heat_demand", |
77
|
|
|
inputs={ |
78
|
|
|
heat_bus: solph.flows.Flow(fix=[15, 42, 3, 9, 12], nominal_value=1) |
79
|
|
|
}, |
80
|
|
|
) |
81
|
|
|
|
82
|
|
|
hp = solph.components.Converter( |
83
|
|
|
"heat_pump", |
84
|
|
|
inputs={el_bus: solph.flows.Flow()}, |
85
|
|
|
outputs={ |
86
|
|
|
heat_bus: solph.flows.Flow( |
87
|
|
|
solph.Investment(ep_costs=100, fixed_costs=200) |
88
|
|
|
) |
89
|
|
|
}, |
90
|
|
|
conversion_factors={el_bus: 1 / 3}, |
91
|
|
|
) |
92
|
|
|
|
93
|
|
|
energysystem.add(source, demand, hp) |
94
|
|
|
|
95
|
|
|
energysystem_model = solph.Model(energysystem) |
96
|
|
|
|
97
|
|
|
energysystem_model.solve(solver="cbc", solve_kwargs={"tee": True}) |
98
|
|
|
|
99
|
|
|
results = solph.Results(energysystem_model) |
100
|
|
|
|
101
|
|
|
assert results.to_df("investment_costs").iloc[0, 0] == 42 * 100 + 200 |
102
|
|
|
|
103
|
|
|
|
104
|
|
|
def results_storage(): |
105
|
|
|
date_time_index = solph.create_time_index(2025, number=4) |
106
|
|
|
|
107
|
|
|
# create the energysystem and assign the time index |
108
|
|
|
energysystem = solph.EnergySystem( |
109
|
|
|
timeindex=date_time_index, infer_last_interval=True |
110
|
|
|
) |
111
|
|
|
|
112
|
|
|
bus = solph.buses.Bus("bus") |
113
|
|
|
energysystem.add(bus) |
114
|
|
|
|
115
|
|
|
source = solph.components.Source( |
116
|
|
|
"source", |
117
|
|
|
outputs={ |
118
|
|
|
bus: solph.flows.Flow(fix=[20, 20, 10, 0, 0], nominal_value=1) |
119
|
|
|
}, |
120
|
|
|
) |
121
|
|
|
|
122
|
|
|
demand = solph.components.Sink( |
123
|
|
|
"demand", |
124
|
|
|
inputs={bus: solph.flows.Flow(fix=10, nominal_value=1)}, |
125
|
|
|
) |
126
|
|
|
|
127
|
|
|
storage = solph.components.GenericStorage( |
128
|
|
|
"storage", |
129
|
|
|
inputs={bus: solph.flows.Flow(solph.Investment(ep_costs=10))}, |
130
|
|
|
outputs={bus: solph.flows.Flow()}, |
131
|
|
|
nominal_capacity=solph.Investment(ep_costs=100), |
132
|
|
|
) |
133
|
|
|
energysystem.add(source, demand, storage) |
134
|
|
|
|
135
|
|
|
energysystem_model = solph.Model(energysystem) |
136
|
|
|
|
137
|
|
|
energysystem_model.solve(solver="cbc", solve_kwargs={"tee": True}) |
138
|
|
|
|
139
|
|
|
results = solph.Results(energysystem_model) |
140
|
|
|
|
141
|
|
|
assert results.to_df("investment_costs").iloc[0, 0] == 100 |
142
|
|
|
assert results.to_df("investment_costs").iloc[0, 1] == 2000 |
143
|
|
|
|