1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
|
3
|
|
|
"""This example shows how to create an energysystem with oemof objects and |
4
|
|
|
solve it with the solph module. |
5
|
|
|
|
6
|
|
|
This file is part of project oemof (github.com/oemof/oemof). It's copyrighted |
7
|
|
|
by the contributors recorded in the version control history of the file, |
8
|
|
|
available from its original location |
9
|
|
|
oemof/tests/test_scripts/test_solph/test_simple_dispatch/test_simple_dispatch.py |
10
|
|
|
|
11
|
|
|
SPDX-License-Identifier: MIT |
12
|
|
|
""" |
13
|
|
|
|
14
|
|
|
import pytest |
15
|
|
|
|
16
|
|
|
from oemof.solph import EnergySystem |
17
|
|
|
from oemof.solph import Model |
18
|
|
|
from oemof.solph import processing |
19
|
|
|
from oemof.solph import views |
20
|
|
|
from oemof.solph.buses import Bus |
21
|
|
|
from oemof.solph.components import Converter |
22
|
|
|
from oemof.solph.components import Sink |
23
|
|
|
from oemof.solph.components import Source |
24
|
|
|
from oemof.solph.flows import Flow |
25
|
|
|
|
26
|
|
|
|
27
|
|
View Code Duplication |
def test_dispatch_one_time_step(solver="cbc"): |
|
|
|
|
28
|
|
|
"""Create an energy system and optimize the dispatch at least costs.""" |
29
|
|
|
|
30
|
|
|
# ######################### create energysystem components ################ |
31
|
|
|
# resource buses |
32
|
|
|
bgas = Bus(label="gas", balanced=False) |
33
|
|
|
|
34
|
|
|
# electricity and heat |
35
|
|
|
bel = Bus(label="b_el") |
36
|
|
|
bth = Bus(label="b_th") |
37
|
|
|
|
38
|
|
|
# an excess and a shortage variable can help to avoid infeasible problems |
39
|
|
|
excess_el = Sink(label="excess_el", inputs={bel: Flow()}) |
40
|
|
|
|
41
|
|
|
# sources |
42
|
|
|
wind = Source( |
43
|
|
|
label="wind", outputs={bel: Flow(fix=0.5, nominal_capacity=66.3)} |
44
|
|
|
) |
45
|
|
|
|
46
|
|
|
# demands (electricity/heat) |
47
|
|
|
demand_el = Sink( |
48
|
|
|
label="demand_elec", inputs={bel: Flow(nominal_capacity=85, fix=0.3)} |
49
|
|
|
) |
50
|
|
|
|
51
|
|
|
demand_th = Sink( |
52
|
|
|
label="demand_therm", inputs={bth: Flow(nominal_capacity=40, fix=0.2)} |
53
|
|
|
) |
54
|
|
|
|
55
|
|
|
# combined heat and power plant (chp) |
56
|
|
|
pp_chp = Converter( |
57
|
|
|
label="pp_chp", |
58
|
|
|
inputs={bgas: Flow()}, |
59
|
|
|
outputs={ |
60
|
|
|
bel: Flow(nominal_capacity=30, variable_costs=42), |
61
|
|
|
bth: Flow(nominal_capacity=40), |
62
|
|
|
}, |
63
|
|
|
conversion_factors={bel: 0.3, bth: 0.4}, |
64
|
|
|
) |
65
|
|
|
|
66
|
|
|
# heatpump with a coefficient of performance (COP) of 3 |
67
|
|
|
b_heat_source = Bus(label="b_heat_source") |
68
|
|
|
|
69
|
|
|
heat_source = Source(label="heat_source", outputs={b_heat_source: Flow()}) |
70
|
|
|
|
71
|
|
|
cop = 3 |
72
|
|
|
heat_pump = Converter( |
73
|
|
|
label="heat_pump", |
74
|
|
|
inputs={bel: Flow(), b_heat_source: Flow()}, |
75
|
|
|
outputs={bth: Flow(nominal_capacity=10)}, |
76
|
|
|
conversion_factors={bel: 1 / 3, b_heat_source: (cop - 1) / cop}, |
77
|
|
|
) |
78
|
|
|
|
79
|
|
|
energysystem = EnergySystem(timeincrement=[1]) |
80
|
|
|
energysystem.add( |
81
|
|
|
bgas, |
82
|
|
|
bel, |
83
|
|
|
bth, |
84
|
|
|
excess_el, |
85
|
|
|
wind, |
86
|
|
|
demand_el, |
87
|
|
|
demand_th, |
88
|
|
|
pp_chp, |
89
|
|
|
b_heat_source, |
90
|
|
|
heat_source, |
91
|
|
|
heat_pump, |
92
|
|
|
) |
93
|
|
|
|
94
|
|
|
# ################################ optimization ########################### |
95
|
|
|
|
96
|
|
|
# create optimization model based on energy_system |
97
|
|
|
optimization_model = Model(energysystem=energysystem) |
98
|
|
|
|
99
|
|
|
# solve problem |
100
|
|
|
optimization_model.solve(solver=solver) |
101
|
|
|
|
102
|
|
|
# write back results from optimization object to energysystem |
103
|
|
|
optimization_model.results() |
104
|
|
|
|
105
|
|
|
# ################################ results ################################ |
106
|
|
|
data = views.node(processing.results(model=optimization_model), "b_el") |
107
|
|
|
|
108
|
|
|
# generate results to be evaluated in tests |
109
|
|
|
results = data["sequences"].sum(axis=0).to_dict() |
110
|
|
|
|
111
|
|
|
print("DateTimeIndex:", data["sequences"].index) |
112
|
|
|
|
113
|
|
|
test_results = { |
114
|
|
|
(("wind", "b_el"), "flow"): 33, |
115
|
|
|
(("b_el", "demand_elec"), "flow"): 26, |
116
|
|
|
(("b_el", "excess_el"), "flow"): 5, |
117
|
|
|
(("b_el", "heat_pump"), "flow"): 3, |
118
|
|
|
} |
119
|
|
|
|
120
|
|
|
for key in test_results.keys(): |
121
|
|
|
assert results[key] == pytest.approx(test_results[key], abs=0.5) |
122
|
|
|
|