1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
|
3
|
|
|
"""Modules for providing a convenient data structure for solph results. |
4
|
|
|
|
5
|
|
|
Information about the possible usage is provided within the examples. |
6
|
|
|
|
7
|
|
|
SPDX-FileCopyrightText: Uwe Krien <[email protected]> |
8
|
|
|
SPDX-FileCopyrightText: Simon Hilpert |
9
|
|
|
SPDX-FileCopyrightText: Cord Kaldemeyer |
10
|
|
|
SPDX-FileCopyrightText: Stephan Günther |
11
|
|
|
SPDX-FileCopyrightText: henhuy |
12
|
|
|
SPDX-FileCopyrightText: Johannes Kochems |
13
|
|
|
SPDX-FileCopyrightText: Patrik Schönfeldt <[email protected]> |
14
|
|
|
|
15
|
|
|
SPDX-License-Identifier: MIT |
16
|
|
|
|
17
|
|
|
""" |
18
|
|
|
import itertools |
19
|
|
|
import numbers |
20
|
|
|
import operator |
21
|
|
|
import sys |
22
|
|
|
from collections import abc |
23
|
|
|
from itertools import groupby |
24
|
|
|
from typing import Dict |
25
|
|
|
from typing import Tuple |
26
|
|
|
|
27
|
|
|
import numpy as np |
28
|
|
|
import pandas as pd |
29
|
|
|
from oemof.network.network import Entity |
30
|
|
|
from pyomo.core.base.piecewise import IndexedPiecewise |
31
|
|
|
from pyomo.core.base.var import Var |
32
|
|
|
|
33
|
|
|
from oemof.solph.components._generic_storage import GenericStorage |
34
|
|
|
|
35
|
|
|
from ._plumbing import _FakeSequence |
36
|
|
|
from .helpers import flatten |
37
|
|
|
|
38
|
|
|
PERIOD_INDEXES = ("invest", "total", "old", "old_end", "old_exo") |
39
|
|
|
|
40
|
|
|
|
41
|
|
|
def get_tuple(x): |
42
|
|
|
"""Get oemof tuple within iterable or create it |
43
|
|
|
|
44
|
|
|
Tuples from Pyomo are of type `(n, n, int)`, `(n, n)` and `(n, int)`. |
45
|
|
|
For single nodes `n` a tuple with one object `(n,)` is created. |
46
|
|
|
""" |
47
|
|
|
for i in x: |
48
|
|
|
if isinstance(i, tuple): |
49
|
|
|
return i |
50
|
|
|
elif issubclass(type(i), Entity): |
51
|
|
|
return (i,) |
52
|
|
|
|
53
|
|
|
# for standalone variables, x is used as identifying tuple |
54
|
|
|
if isinstance(x, tuple): |
55
|
|
|
return x |
56
|
|
|
|
57
|
|
|
|
58
|
|
|
def get_timestep(x): |
59
|
|
|
"""Get the timestep from oemof tuples |
60
|
|
|
|
61
|
|
|
The timestep from tuples `(n, n, int)`, `(n, n)`, `(n, int)` and (n,) |
62
|
|
|
is fetched as the last element. For time-independent data (scalars) |
63
|
|
|
zero ist returned. |
64
|
|
|
""" |
65
|
|
|
if all(issubclass(type(n), Entity) for n in x): |
66
|
|
|
return 0 |
67
|
|
|
else: |
68
|
|
|
return x[-1] |
69
|
|
|
|
70
|
|
|
|
71
|
|
|
def remove_timestep(x): |
72
|
|
|
"""Remove the timestep from oemof tuples |
73
|
|
|
|
74
|
|
|
The timestep is removed from tuples of type `(n, n, int)` and `(n, int)`. |
75
|
|
|
""" |
76
|
|
|
if all(issubclass(type(n), Entity) for n in x): |
77
|
|
|
return x |
78
|
|
|
else: |
79
|
|
|
return x[:-1] |
80
|
|
|
|
81
|
|
|
|
82
|
|
|
def create_dataframe(om): |
83
|
|
|
"""Create a result DataFrame with all optimization data |
84
|
|
|
|
85
|
|
|
Results from Pyomo are written into one common pandas.DataFrame where |
86
|
|
|
separate columns are created for the variable index e.g. for tuples |
87
|
|
|
of the flows and components or the timesteps. |
88
|
|
|
""" |
89
|
|
|
# get all pyomo variables including their block |
90
|
|
|
block_vars = list( |
91
|
|
|
set([bv.parent_component() for bv in om.component_data_objects(Var)]) |
92
|
|
|
) |
93
|
|
|
var_dict = {} |
94
|
|
|
for bv in block_vars: |
95
|
|
|
# Drop the auxiliary variables introduced by pyomo's Piecewise |
96
|
|
|
parent_component = bv.parent_block().parent_component() |
97
|
|
|
if not isinstance(parent_component, IndexedPiecewise): |
98
|
|
|
try: |
99
|
|
|
idx_set = getattr(bv, "_index_set") |
100
|
|
|
except AttributeError: |
101
|
|
|
# To make it compatible with Pyomo < 6.4.1 |
102
|
|
|
idx_set = getattr(bv, "_index") |
103
|
|
|
|
104
|
|
|
for i in idx_set: |
105
|
|
|
key = (str(bv).split(".")[0], str(bv).split(".")[-1], i) |
106
|
|
|
value = bv[i].value |
107
|
|
|
var_dict[key] = value |
108
|
|
|
|
109
|
|
|
# use this to create a pandas dataframe |
110
|
|
|
df = pd.DataFrame(list(var_dict.items()), columns=["pyomo_tuple", "value"]) |
111
|
|
|
df["variable_name"] = df["pyomo_tuple"].str[1] |
112
|
|
|
|
113
|
|
|
# adapt the dataframe by separating tuple data into columns depending |
114
|
|
|
# on which dimension the variable/parameter has (scalar/sequence). |
115
|
|
|
# columns for the oemof tuple and timestep are created |
116
|
|
|
df["oemof_tuple"] = df["pyomo_tuple"].map(get_tuple) |
117
|
|
|
df = df[df["oemof_tuple"].map(lambda x: x is not None)] |
118
|
|
|
df["timestep"] = df["oemof_tuple"].map(get_timestep) |
119
|
|
|
df["oemof_tuple"] = df["oemof_tuple"].map(remove_timestep) |
120
|
|
|
|
121
|
|
|
# Use another call of remove timestep to get rid of period not needed |
122
|
|
|
df.loc[df["variable_name"] == "flow", "oemof_tuple"] = df.loc[ |
123
|
|
|
df["variable_name"] == "flow", "oemof_tuple" |
124
|
|
|
].map(remove_timestep) |
125
|
|
|
|
126
|
|
|
# order the data by oemof tuple and timestep |
127
|
|
|
df = df.sort_values(["oemof_tuple", "timestep"], ascending=[True, True]) |
128
|
|
|
|
129
|
|
|
# drop empty decision variables |
130
|
|
|
df = df.dropna(subset=["value"]) |
131
|
|
|
|
132
|
|
|
return df |
133
|
|
|
|
134
|
|
|
|
135
|
|
|
def divide_scalars_sequences(df_dict, k): |
136
|
|
|
"""Split results into scalars and sequences results |
137
|
|
|
|
138
|
|
|
Parameters |
139
|
|
|
---------- |
140
|
|
|
df_dict: dict |
141
|
|
|
dict of pd.DataFrames, keyed by oemof tuples |
142
|
|
|
k: tuple |
143
|
|
|
oemof tuple for results processing |
144
|
|
|
""" |
145
|
|
|
try: |
146
|
|
|
condition = df_dict[k][:-1].isnull().any() |
147
|
|
|
scalars = df_dict[k].loc[:, condition].dropna().iloc[0] |
148
|
|
|
sequences = df_dict[k].loc[:, ~condition] |
149
|
|
|
return {"scalars": scalars, "sequences": sequences} |
150
|
|
|
except IndexError: |
151
|
|
|
error_message = ( |
152
|
|
|
"Cannot access index on result data. " |
153
|
|
|
+ "Did the optimization terminate" |
154
|
|
|
+ " without errors?" |
155
|
|
|
) |
156
|
|
|
raise IndexError(error_message) |
157
|
|
|
|
158
|
|
|
|
159
|
|
|
def set_result_index(df_dict, k, result_index): |
160
|
|
|
"""Define index for results |
161
|
|
|
|
162
|
|
|
Parameters |
163
|
|
|
---------- |
164
|
|
|
df_dict: dict |
165
|
|
|
dict of pd.DataFrames, keyed by oemof tuples |
166
|
|
|
k: tuple |
167
|
|
|
oemof tuple for results processing |
168
|
|
|
result_index: pd.Index |
169
|
|
|
Index to use for results |
170
|
|
|
""" |
171
|
|
|
try: |
172
|
|
|
df_dict[k].index = result_index |
173
|
|
|
except ValueError: |
174
|
|
|
try: |
175
|
|
|
df_dict[k] = df_dict[k][:-1] |
176
|
|
|
df_dict[k].index = result_index |
177
|
|
|
except ValueError as e: |
178
|
|
|
msg = ( |
179
|
|
|
"\nFlow: {0}-{1}. This could be caused by NaN-values " |
180
|
|
|
"in your input data." |
181
|
|
|
) |
182
|
|
|
raise type(e)( |
183
|
|
|
str(e) + msg.format(k[0].label, k[1].label) |
184
|
|
|
).with_traceback(sys.exc_info()[2]) |
185
|
|
|
|
186
|
|
|
|
187
|
|
|
def set_sequences_index(df, result_index): |
188
|
|
|
try: |
189
|
|
|
df.index = result_index |
190
|
|
|
except ValueError: |
191
|
|
|
try: |
192
|
|
|
df = df[:-1] |
193
|
|
|
df.index = result_index |
194
|
|
|
except ValueError: |
195
|
|
|
raise ValueError("Results extraction failed!") |
196
|
|
|
|
197
|
|
|
|
198
|
|
|
def results(model, remove_last_time_point=False): |
199
|
|
|
"""Create a nested result dictionary from the result DataFrame |
200
|
|
|
|
201
|
|
|
The already rearranged results from Pyomo from the result DataFrame are |
202
|
|
|
transferred into a nested dictionary of pandas objects. |
203
|
|
|
The first level key of that dictionary is a node (denoting the respective |
204
|
|
|
flow or component). |
205
|
|
|
|
206
|
|
|
The second level keys are "sequences" and "scalars" for a *standard model*: |
207
|
|
|
|
208
|
|
|
* A pd.DataFrame holds all results that are time-dependent, i.e. given as |
209
|
|
|
a sequence and can be indexed with the energy system's timeindex. |
210
|
|
|
* A pd.Series holds all scalar values which are applicable for timestep 0 |
211
|
|
|
(i.e. investments). |
212
|
|
|
|
213
|
|
|
For a *multi-period model*, the second level key for "sequences" remains |
214
|
|
|
the same while instead of "scalars", the key "period_scalars" is used: |
215
|
|
|
|
216
|
|
|
* For sequences, see standard model. |
217
|
|
|
* Instead of a pd.Series, a pd.DataFrame holds scalar values indexed |
218
|
|
|
by periods. These hold investment-related variables. |
219
|
|
|
|
220
|
|
|
Examples |
221
|
|
|
-------- |
222
|
|
|
* *Standard model*: `results[idx]['scalars']` |
223
|
|
|
and flows `results[n, n]['sequences']`. |
224
|
|
|
* *Multi-period model*: `results[idx]['period_scalars']` |
225
|
|
|
and flows `results[n, n]['sequences']`. |
226
|
|
|
|
227
|
|
|
Parameters |
228
|
|
|
---------- |
229
|
|
|
model : oemof.solph.Model |
230
|
|
|
A solved oemof.solph model. |
231
|
|
|
remove_last_time_point : bool |
232
|
|
|
The last time point of all TIMEPOINT variables is removed to get the |
233
|
|
|
same length as the TIMESTEP (interval) variables without getting |
234
|
|
|
nan-values. By default, the last time point is removed if it has not |
235
|
|
|
been defined by the user in the EnergySystem but inferred. If all |
236
|
|
|
time points have been defined explicitly by the user the last time |
237
|
|
|
point will not be removed by default. In that case all interval |
238
|
|
|
variables will get one row with nan-values to have the same index |
239
|
|
|
for all variables. |
240
|
|
|
""" |
241
|
|
|
# Extraction steps that are the same for both model types |
242
|
|
|
df = create_dataframe(model) |
243
|
|
|
|
244
|
|
|
# create a dict of dataframes keyed by oemof tuples |
245
|
|
|
df_dict = { |
246
|
|
|
k if len(k) > 1 else (k[0], None): v[ |
247
|
|
|
["timestep", "variable_name", "value"] |
248
|
|
|
] |
249
|
|
|
for k, v in df.groupby("oemof_tuple") |
250
|
|
|
} |
251
|
|
|
|
252
|
|
|
# Define index |
253
|
|
|
if model.es.tsa_parameters: |
254
|
|
|
for p, period_data in enumerate(model.es.tsa_parameters): |
255
|
|
|
if p == 0: |
256
|
|
|
if model.es.periods is None: |
257
|
|
|
timeindex = model.es.timeindex |
258
|
|
|
else: |
259
|
|
|
timeindex = model.es.periods[0] |
260
|
|
|
result_index = _disaggregate_tsa_timeindex( |
261
|
|
|
timeindex, period_data |
262
|
|
|
) |
263
|
|
|
else: |
264
|
|
|
result_index = result_index.union( |
|
|
|
|
265
|
|
|
_disaggregate_tsa_timeindex( |
266
|
|
|
model.es.periods[p], period_data |
267
|
|
|
) |
268
|
|
|
) |
269
|
|
|
else: |
270
|
|
|
if model.es.timeindex is None: |
271
|
|
|
result_index = list(range(len(model.es.timeincrement) + 1)) |
272
|
|
|
else: |
273
|
|
|
result_index = model.es.timeindex |
274
|
|
|
|
275
|
|
|
if model.es.tsa_parameters is not None: |
276
|
|
|
df_dict = _disaggregate_tsa_result(df_dict, model.es.tsa_parameters) |
277
|
|
|
|
278
|
|
|
# create final result dictionary by splitting up the dataframes in the |
279
|
|
|
# dataframe dict into a series for scalar data and dataframe for sequences |
280
|
|
|
result = {} |
281
|
|
|
|
282
|
|
|
# Standard model results extraction |
283
|
|
|
if model.es.periods is None: |
284
|
|
|
result = _extract_standard_model_result( |
285
|
|
|
df_dict, result, result_index, remove_last_time_point |
286
|
|
|
) |
287
|
|
|
scalars_col = "scalars" |
288
|
|
|
|
289
|
|
|
# Results extraction for a multi-period model |
290
|
|
|
else: |
291
|
|
|
period_indexed = ["invest", "total", "old", "old_end", "old_exo"] |
292
|
|
|
|
293
|
|
|
result = _extract_multi_period_model_result( |
294
|
|
|
model, |
295
|
|
|
df_dict, |
296
|
|
|
period_indexed, |
297
|
|
|
result, |
298
|
|
|
result_index, |
299
|
|
|
remove_last_time_point, |
300
|
|
|
) |
301
|
|
|
scalars_col = "period_scalars" |
302
|
|
|
|
303
|
|
|
# add dual variables for bus constraints |
304
|
|
|
if model.dual is not None: |
305
|
|
|
grouped = groupby( |
306
|
|
|
sorted(model.BusBlock.balance.iterkeys()), lambda t: t[0] |
307
|
|
|
) |
308
|
|
|
for bus, timestep in grouped: |
309
|
|
|
duals = [ |
310
|
|
|
model.dual[model.BusBlock.balance[bus, t]] for _, t in timestep |
311
|
|
|
] |
312
|
|
|
if model.es.periods is None: |
313
|
|
|
df = pd.DataFrame({"duals": duals}, index=result_index[:-1]) |
314
|
|
|
# TODO: Align with standard model |
315
|
|
|
else: |
316
|
|
|
df = pd.DataFrame({"duals": duals}, index=result_index) |
317
|
|
|
if (bus, None) not in result.keys(): |
318
|
|
|
result[(bus, None)] = { |
319
|
|
|
"sequences": df, |
320
|
|
|
scalars_col: pd.Series(dtype=float), |
321
|
|
|
} |
322
|
|
|
else: |
323
|
|
|
result[(bus, None)]["sequences"]["duals"] = duals |
324
|
|
|
|
325
|
|
|
return result |
326
|
|
|
|
327
|
|
|
|
328
|
|
|
def _extract_standard_model_result( |
329
|
|
|
df_dict, result, result_index, remove_last_time_point |
330
|
|
|
): |
331
|
|
|
"""Extract and return the results of a standard model |
332
|
|
|
|
333
|
|
|
* Optionally remove last time point or include it elsewise. |
334
|
|
|
* Set index to timeindex and pivot results such that values are displayed |
335
|
|
|
for the respective variables. Reindex with the energy system's timeindex. |
336
|
|
|
* Filter for columns with nan values to retrieve scalar variables. Split |
337
|
|
|
up the DataFrame into sequences and scalars and return it. |
338
|
|
|
|
339
|
|
|
Parameters |
340
|
|
|
---------- |
341
|
|
|
df_dict : dict |
342
|
|
|
dictionary of results DataFrames |
343
|
|
|
result : dict |
344
|
|
|
dictionary to store the results |
345
|
|
|
result_index : pd.DatetimeIndex |
346
|
|
|
timeindex to use for the results (derived from EnergySystem) |
347
|
|
|
remove_last_time_point : bool |
348
|
|
|
if True, remove the last time point |
349
|
|
|
|
350
|
|
|
Returns |
351
|
|
|
------- |
352
|
|
|
result : dict |
353
|
|
|
dictionary with results stored |
354
|
|
|
""" |
355
|
|
|
if remove_last_time_point: |
356
|
|
|
# The values of intervals belong to the time at the beginning of the |
357
|
|
|
# interval. |
358
|
|
|
for k in df_dict: |
359
|
|
|
df_dict[k].set_index("timestep", inplace=True) |
360
|
|
|
df_dict[k] = df_dict[k].pivot( |
361
|
|
|
columns="variable_name", values="value" |
362
|
|
|
) |
363
|
|
|
set_result_index(df_dict, k, result_index[:-1]) |
364
|
|
|
result[k] = divide_scalars_sequences(df_dict, k) |
365
|
|
|
else: |
366
|
|
|
for k in df_dict: |
367
|
|
|
df_dict[k].set_index("timestep", inplace=True) |
368
|
|
|
df_dict[k] = df_dict[k].pivot( |
369
|
|
|
columns="variable_name", values="value" |
370
|
|
|
) |
371
|
|
|
# Add empty row with nan at the end of the table by adding 1 to the |
372
|
|
|
# last value of the numeric index. |
373
|
|
|
df_dict[k].loc[df_dict[k].index[-1] + 1, :] = np.nan |
374
|
|
|
set_result_index(df_dict, k, result_index) |
375
|
|
|
result[k] = divide_scalars_sequences(df_dict, k) |
376
|
|
|
|
377
|
|
|
return result |
378
|
|
|
|
379
|
|
|
|
380
|
|
|
def _extract_multi_period_model_result( |
381
|
|
|
model, |
382
|
|
|
df_dict, |
383
|
|
|
period_indexed=None, |
384
|
|
|
result=None, |
385
|
|
|
result_index=None, |
386
|
|
|
remove_last_time_point=False, |
387
|
|
|
): |
388
|
|
|
"""Extract and return the results of a multi-period model |
389
|
|
|
|
390
|
|
|
Difference to standard model is in the way, scalar values are extracted |
391
|
|
|
since they now depend on periods. |
392
|
|
|
|
393
|
|
|
Parameters |
394
|
|
|
---------- |
395
|
|
|
model : oemof.solph.models.Model |
396
|
|
|
The optimization model |
397
|
|
|
df_dict : dict |
398
|
|
|
dictionary of results DataFrames |
399
|
|
|
period_indexed : list |
400
|
|
|
list of variables that are indexed by periods |
401
|
|
|
result : dict |
402
|
|
|
dictionary to store the results |
403
|
|
|
result_index : pd.DatetimeIndex |
404
|
|
|
timeindex to use for the results (derived from EnergySystem) |
405
|
|
|
remove_last_time_point : bool |
406
|
|
|
if True, remove the last time point |
407
|
|
|
|
408
|
|
|
Returns |
409
|
|
|
------- |
410
|
|
|
result : dict |
411
|
|
|
dictionary with results stored |
412
|
|
|
""" |
413
|
|
|
for k in df_dict: |
414
|
|
|
df_dict[k].set_index("timestep", inplace=True) |
415
|
|
|
df_dict[k] = df_dict[k].pivot(columns="variable_name", values="value") |
416
|
|
|
# Split data set |
417
|
|
|
period_cols = [ |
418
|
|
|
col for col in df_dict[k].columns if col in period_indexed |
419
|
|
|
] |
420
|
|
|
# map periods to their start years for displaying period results |
421
|
|
|
d = { |
422
|
|
|
key: val + model.es.periods[0].min().year |
423
|
|
|
for key, val in enumerate(model.es.periods_years) |
424
|
|
|
} |
425
|
|
|
period_scalars = df_dict[k].loc[:, period_cols].dropna() |
426
|
|
|
sequences = df_dict[k].loc[ |
427
|
|
|
:, [col for col in df_dict[k].columns if col not in period_cols] |
428
|
|
|
] |
429
|
|
|
if remove_last_time_point: |
430
|
|
|
set_sequences_index(sequences, result_index[:-1]) |
431
|
|
|
else: |
432
|
|
|
set_sequences_index(sequences, result_index) |
433
|
|
|
if period_scalars.empty: |
434
|
|
|
period_scalars = pd.DataFrame(index=d.values()) |
435
|
|
|
try: |
436
|
|
|
period_scalars.rename(index=d, inplace=True) |
437
|
|
|
period_scalars.index.name = "period" |
438
|
|
|
result[k] = { |
439
|
|
|
"period_scalars": period_scalars, |
440
|
|
|
"sequences": sequences, |
441
|
|
|
} |
442
|
|
|
except IndexError: |
443
|
|
|
error_message = ( |
444
|
|
|
"Some indices seem to be not matching.\n" |
445
|
|
|
"Cannot properly extract model results." |
446
|
|
|
) |
447
|
|
|
raise IndexError(error_message) |
448
|
|
|
|
449
|
|
|
return result |
450
|
|
|
|
451
|
|
|
|
452
|
|
|
def _disaggregate_tsa_result(df_dict, tsa_parameters): |
453
|
|
|
""" |
454
|
|
|
Disaggregate timeseries aggregated by TSAM |
455
|
|
|
|
456
|
|
|
All component flows are disaggregated using mapping order of original and |
457
|
|
|
typical clusters in TSAM parameters. Additionally, storage SOC is |
458
|
|
|
disaggregated from inter and intra storage contents. |
459
|
|
|
|
460
|
|
|
Multi-period indexes are removed from results up front and added again |
461
|
|
|
after disaggregation. |
462
|
|
|
|
463
|
|
|
Parameters |
464
|
|
|
---------- |
465
|
|
|
df_dict : dict |
466
|
|
|
Raw results from oemof model |
467
|
|
|
tsa_parameters : list-of-dicts |
468
|
|
|
TSAM parameters holding order, occurrences and timsteps_per_period for |
469
|
|
|
each period |
470
|
|
|
|
471
|
|
|
Returns |
472
|
|
|
------- |
473
|
|
|
dict: Disaggregated sequences |
474
|
|
|
""" |
475
|
|
|
periodic_dict = {} |
476
|
|
|
flow_dict = {} |
477
|
|
|
for key, data in df_dict.items(): |
478
|
|
|
periodic_values = data[data["variable_name"].isin(PERIOD_INDEXES)] |
479
|
|
|
if not periodic_values.empty: |
480
|
|
|
periodic_dict[key] = periodic_values |
481
|
|
|
flow_dict[key] = data[~data["variable_name"].isin(PERIOD_INDEXES)] |
482
|
|
|
|
483
|
|
|
# Find storages and remove related entries from flow dict: |
484
|
|
|
storages, storage_keys = _get_storage_soc_flows_and_keys(flow_dict) |
485
|
|
|
for key in storage_keys: |
486
|
|
|
del flow_dict[key] |
487
|
|
|
|
488
|
|
|
# Find multiplexer and remove related entries from flow dict: |
489
|
|
|
multiplexer, multiplexer_keys = _get_multiplexer_flows_and_keys(flow_dict) |
490
|
|
|
for key in multiplexer_keys: |
491
|
|
|
del flow_dict[key] |
492
|
|
|
|
493
|
|
|
# Disaggregate flows |
494
|
|
|
for flow in flow_dict: |
495
|
|
|
disaggregated_flow_frames = [] |
496
|
|
|
period_offset = 0 |
497
|
|
|
for tsa_period in tsa_parameters: |
498
|
|
|
for k in tsa_period["order"]: |
499
|
|
|
flow_k = flow_dict[flow].iloc[ |
500
|
|
|
period_offset |
501
|
|
|
+ k * tsa_period["timesteps"] : period_offset |
502
|
|
|
+ (k + 1) * tsa_period["timesteps"] |
503
|
|
|
] |
504
|
|
|
# Disaggregate segmentation |
505
|
|
|
if "segments" in tsa_period: |
506
|
|
|
flow_k = _disaggregate_segmentation( |
507
|
|
|
flow_k, tsa_period["segments"], k |
508
|
|
|
) |
509
|
|
|
disaggregated_flow_frames.append(flow_k) |
510
|
|
|
period_offset += tsa_period["timesteps"] * len( |
511
|
|
|
tsa_period["occurrences"] |
512
|
|
|
) |
513
|
|
|
ts = pd.concat(disaggregated_flow_frames) |
514
|
|
|
ts.timestep = range(len(ts)) |
515
|
|
|
ts = ts.set_index("timestep") # Have to set and reset index as |
516
|
|
|
# interpolation in pandas<2.1.0 cannot handle NANs in index |
517
|
|
|
flow_dict[flow] = ts.ffill().reset_index("timestep") |
518
|
|
|
|
519
|
|
|
# Add storage SOC flows: |
520
|
|
|
for storage, soc in storages.items(): |
521
|
|
|
flow_dict[(storage, None)] = _calculate_soc_from_inter_and_intra_soc( |
522
|
|
|
soc, storage, tsa_parameters |
523
|
|
|
) |
524
|
|
|
# Add multiplexer boolean actives values: |
525
|
|
|
for multiplexer, values in multiplexer.items(): |
526
|
|
|
flow_dict[(multiplexer, None)] = _calculate_multiplexer_actives( |
527
|
|
|
values, multiplexer, tsa_parameters |
528
|
|
|
) |
529
|
|
|
# Add periodic values (they get extracted in period extraction fct) |
530
|
|
|
for key, data in periodic_dict.items(): |
531
|
|
|
flow_dict[key] = pd.concat([flow_dict[key], data]) |
532
|
|
|
|
533
|
|
|
return flow_dict |
534
|
|
|
|
535
|
|
|
|
536
|
|
|
def _disaggregate_segmentation( |
537
|
|
|
df: pd.DataFrame, |
538
|
|
|
segments: Dict[Tuple[int, int], int], |
539
|
|
|
current_period: int, |
540
|
|
|
) -> pd.DataFrame: |
541
|
|
|
"""Disaggregate segmentation |
542
|
|
|
|
543
|
|
|
For each segment values are reindex by segment length holding None values, |
544
|
|
|
which are interpolated in a later step (as storages need linear |
545
|
|
|
interpolation while flows need padded interpolation). |
546
|
|
|
|
547
|
|
|
Parameters |
548
|
|
|
---------- |
549
|
|
|
df : pd.Dataframe |
550
|
|
|
holding values for each segment |
551
|
|
|
segments : Dict[Tuple[int, int], int] |
552
|
|
|
Segmentation dict from TSAM, holding segmentation length for each |
553
|
|
|
timestep in each typical period |
554
|
|
|
current_period: int |
555
|
|
|
Typical period the data belongs to, needed to extract related segments |
556
|
|
|
|
557
|
|
|
Returns |
558
|
|
|
------- |
559
|
|
|
pd.Dataframe |
560
|
|
|
holding values for each timestep instead of each segment. |
561
|
|
|
Added timesteps contain None values and are interpolated later. |
562
|
|
|
""" |
563
|
|
|
current_segments = list( |
564
|
|
|
v for ((k, s), v) in segments.items() if k == current_period |
565
|
|
|
) |
566
|
|
|
df.index = range(len(current_segments)) |
567
|
|
|
segmented_index = itertools.chain.from_iterable( |
568
|
|
|
[i] + list(itertools.repeat(None, s - 1)) |
569
|
|
|
for i, s in enumerate(current_segments) |
570
|
|
|
) |
571
|
|
|
disaggregated_data = df.reindex(segmented_index) |
572
|
|
|
return disaggregated_data |
573
|
|
|
|
574
|
|
|
|
575
|
|
|
def _calculate_soc_from_inter_and_intra_soc(soc, storage, tsa_parameters): |
576
|
|
|
"""Calculate resulting SOC from inter and intra SOC flows""" |
577
|
|
|
soc_frames = [] |
578
|
|
|
i_offset = 0 |
579
|
|
|
t_offset = 0 |
580
|
|
|
for p, tsa_period in enumerate(tsa_parameters): |
581
|
|
|
for i, k in enumerate(tsa_period["order"]): |
582
|
|
|
inter_value = soc["inter"].iloc[i_offset + i]["value"] |
583
|
|
|
# Self-discharge has to be taken into account for calculating |
584
|
|
|
# inter SOC for each timestep in cluster |
585
|
|
|
t0 = t_offset + i * tsa_period["timesteps"] |
586
|
|
|
# Add last timesteps of simulation in order to interpolate SOC for |
587
|
|
|
# last segment correctly: |
588
|
|
|
is_last_timestep = ( |
589
|
|
|
p == len(tsa_parameters) - 1 |
|
|
|
|
590
|
|
|
and i == len(tsa_period["order"]) - 1 |
591
|
|
|
) |
592
|
|
|
timesteps = ( |
593
|
|
|
tsa_period["timesteps"] + 1 |
594
|
|
|
if is_last_timestep |
595
|
|
|
else tsa_period["timesteps"] |
596
|
|
|
) |
597
|
|
|
inter_series = ( |
598
|
|
|
pd.Series( |
599
|
|
|
itertools.accumulate( |
600
|
|
|
( |
601
|
|
|
( |
602
|
|
|
(1 - storage.loss_rate[t]) |
|
|
|
|
603
|
|
|
** tsa_period["segments"][(k, t - t0)] |
604
|
|
|
if "segments" in tsa_period |
605
|
|
|
else 1 - storage.loss_rate[t] |
606
|
|
|
) |
607
|
|
|
for t in range( |
608
|
|
|
t0, |
609
|
|
|
t0 + timesteps - 1, |
610
|
|
|
) |
611
|
|
|
), |
612
|
|
|
operator.mul, |
613
|
|
|
initial=1, |
614
|
|
|
) |
615
|
|
|
) |
616
|
|
|
* inter_value |
617
|
|
|
) |
618
|
|
|
intra_series = soc["intra"][(p, k)].iloc[0:timesteps] |
619
|
|
|
soc_frame = pd.DataFrame( |
620
|
|
|
intra_series["value"].values |
621
|
|
|
+ inter_series.values, # Neglect indexes, otherwise none |
622
|
|
|
columns=["value"], |
623
|
|
|
) |
624
|
|
|
|
625
|
|
|
# Disaggregate segmentation |
626
|
|
|
if "segments" in tsa_period: |
627
|
|
|
soc_disaggregated = _disaggregate_segmentation( |
628
|
|
|
soc_frame[:-1] if is_last_timestep else soc_frame, |
629
|
|
|
tsa_period["segments"], |
630
|
|
|
k, |
631
|
|
|
) |
632
|
|
|
if is_last_timestep: |
633
|
|
|
soc_disaggregated.loc[len(soc_disaggregated)] = ( |
634
|
|
|
soc_frame.iloc[-1] |
635
|
|
|
) |
636
|
|
|
soc_frame = soc_disaggregated |
637
|
|
|
|
638
|
|
|
soc_frames.append(soc_frame) |
639
|
|
|
i_offset += len(tsa_period["order"]) |
640
|
|
|
t_offset += i_offset * tsa_period["timesteps"] |
641
|
|
|
soc_ts = pd.concat(soc_frames) |
642
|
|
|
soc_ts["variable_name"] = "soc" |
643
|
|
|
soc_ts["timestep"] = range(len(soc_ts)) |
644
|
|
|
|
645
|
|
|
# Disaggregate segments by linear interpolation and remove |
646
|
|
|
# last timestep afterwards (only needed for interpolation) |
647
|
|
|
interpolated_soc = soc_ts.interpolate() |
648
|
|
|
return interpolated_soc.iloc[:-1] |
649
|
|
|
|
650
|
|
|
|
651
|
|
|
def _calculate_multiplexer_actives(values, multiplexer, tsa_parameters): |
652
|
|
|
"""Calculate multiplexer actives""" |
653
|
|
|
actives_frames = [] |
654
|
|
|
for p, tsa_period in enumerate(tsa_parameters): |
655
|
|
|
for i, k in enumerate(tsa_period["order"]): |
656
|
|
|
timesteps = tsa_period["timesteps"] |
657
|
|
|
actives_frames.append( |
658
|
|
|
pd.DataFrame( |
659
|
|
|
values[(p, k)].iloc[0:timesteps], columns=["value"] |
660
|
|
|
) |
661
|
|
|
) |
662
|
|
|
actives_frames_ts = pd.concat(actives_frames) |
663
|
|
|
actives_frames_ts["variable_name"] = values[(p, k)][ |
|
|
|
|
664
|
|
|
"variable_name" |
665
|
|
|
].values[0] |
666
|
|
|
actives_frames_ts["timestep"] = range(len(actives_frames_ts)) |
667
|
|
|
return actives_frames_ts |
668
|
|
|
|
669
|
|
|
|
670
|
|
|
def _get_storage_soc_flows_and_keys(flow_dict): |
671
|
|
|
"""Detect storage flows in flow dict""" |
672
|
|
|
storages = {} |
673
|
|
|
storage_keys = [] |
674
|
|
|
for oemof_tuple, data in flow_dict.items(): |
675
|
|
|
if not isinstance(oemof_tuple[0], GenericStorage): |
676
|
|
|
continue # Skip components other than Storage |
677
|
|
|
if oemof_tuple[1] is not None and not isinstance(oemof_tuple[1], int): |
678
|
|
|
continue # Skip storage output flows |
679
|
|
|
|
680
|
|
|
# Here we have either inter or intra storage index, |
681
|
|
|
# depending on oemof tuple length |
682
|
|
|
storage_keys.append(oemof_tuple) |
683
|
|
|
if oemof_tuple[0] not in storages: |
684
|
|
|
storages[oemof_tuple[0]] = {"inter": 0, "intra": {}} |
685
|
|
|
if len(oemof_tuple) == 2: |
686
|
|
|
# Must be filtered for variable name "inter_storage_content", |
687
|
|
|
# otherwise "init_content" variable (in non-multi-period approach) |
688
|
|
|
# interferes with SOC results |
689
|
|
|
storages[oemof_tuple[0]]["inter"] = data[ |
690
|
|
|
data["variable_name"] == "inter_storage_content" |
691
|
|
|
] |
692
|
|
|
if len(oemof_tuple) == 3: |
693
|
|
|
storages[oemof_tuple[0]]["intra"][ |
694
|
|
|
(oemof_tuple[1], oemof_tuple[2]) |
695
|
|
|
] = data |
696
|
|
|
return storages, storage_keys |
697
|
|
|
|
698
|
|
|
|
699
|
|
|
def _get_multiplexer_flows_and_keys(flow_dict): |
700
|
|
|
"""Detect multiplexer flows in flow dict""" |
701
|
|
|
multiplexer = {} |
702
|
|
|
multiplexer_keys = [] |
703
|
|
|
for oemof_tuple, data in flow_dict.items(): |
704
|
|
|
if oemof_tuple[1] is not None and not isinstance(oemof_tuple[1], int): |
705
|
|
|
continue |
706
|
|
|
if "multiplexer_active" in data["variable_name"].values[0]: |
707
|
|
|
multiplexer.setdefault(oemof_tuple[0], {}) |
708
|
|
|
multiplexer_keys.append(oemof_tuple) |
709
|
|
|
multiplexer[oemof_tuple[0]][ |
710
|
|
|
(oemof_tuple[1], oemof_tuple[2]) |
711
|
|
|
] = data |
712
|
|
|
return multiplexer, multiplexer_keys |
713
|
|
|
|
714
|
|
|
|
715
|
|
|
def _disaggregate_tsa_timeindex(period_index, tsa_parameters): |
716
|
|
|
"""Disaggregate aggregated period timeindex by using TSA parameters""" |
717
|
|
|
return pd.date_range( |
718
|
|
|
start=period_index[0], |
719
|
|
|
periods=tsa_parameters["timesteps_per_period"] |
720
|
|
|
* len(tsa_parameters["order"]), |
721
|
|
|
freq=period_index.freq, |
722
|
|
|
) |
723
|
|
|
|
724
|
|
|
|
725
|
|
|
def convert_keys_to_strings(result, keep_none_type=False): |
726
|
|
|
""" |
727
|
|
|
Convert the dictionary keys to strings. |
728
|
|
|
|
729
|
|
|
All (tuple) keys of the result object e.g. results[(pp1, bus1)] are |
730
|
|
|
converted into strings that represent the object labels |
731
|
|
|
e.g. results[('pp1','bus1')]. |
732
|
|
|
""" |
733
|
|
|
if keep_none_type: |
734
|
|
|
converted = { |
735
|
|
|
( |
736
|
|
|
tuple([str(e) if e is not None else None for e in k]) |
737
|
|
|
if isinstance(k, tuple) |
738
|
|
|
else str(k) if k is not None else None |
739
|
|
|
): v |
740
|
|
|
for k, v in result.items() |
741
|
|
|
} |
742
|
|
|
else: |
743
|
|
|
converted = { |
744
|
|
|
tuple(map(str, k)) if isinstance(k, tuple) else str(k): v |
745
|
|
|
for k, v in result.items() |
746
|
|
|
} |
747
|
|
|
return converted |
748
|
|
|
|
749
|
|
|
|
750
|
|
|
def meta_results(om, undefined=False): |
751
|
|
|
""" |
752
|
|
|
Fetch some metadata from the Solver. Feel free to add more keys. |
753
|
|
|
|
754
|
|
|
Valid keys of the resulting dictionary are: 'objective', 'problem', |
755
|
|
|
'solver'. |
756
|
|
|
|
757
|
|
|
om : oemof.solph.Model |
758
|
|
|
A solved Model. |
759
|
|
|
undefined : bool |
760
|
|
|
By default (False) only defined keys can be found in the dictionary. |
761
|
|
|
Set to True to get also the undefined keys. |
762
|
|
|
|
763
|
|
|
Returns |
764
|
|
|
------- |
765
|
|
|
dict |
766
|
|
|
""" |
767
|
|
|
meta_res = {"objective": om.objective()} |
768
|
|
|
|
769
|
|
|
for k1 in ["Problem", "Solver"]: |
770
|
|
|
k1 = k1.lower() |
771
|
|
|
meta_res[k1] = {} |
772
|
|
|
for k2, v2 in om.es.results[k1][0].items(): |
773
|
|
|
try: |
774
|
|
|
if str(om.es.results[k1][0][k2]) == "<undefined>": |
775
|
|
|
if undefined: |
776
|
|
|
meta_res[k1][k2] = str(om.es.results[k1][0][k2]) |
777
|
|
|
else: |
778
|
|
|
meta_res[k1][k2] = om.es.results[k1][0][k2] |
779
|
|
|
except TypeError: |
780
|
|
|
if undefined: |
781
|
|
|
msg = "Cannot fetch meta results of type {0}" |
782
|
|
|
meta_res[k1][k2] = msg.format( |
783
|
|
|
type(om.es.results[k1][0][k2]) |
784
|
|
|
) |
785
|
|
|
|
786
|
|
|
return meta_res |
787
|
|
|
|
788
|
|
|
|
789
|
|
|
def __separate_attrs( |
790
|
|
|
system, exclude_attrs, get_flows=False, exclude_none=True |
791
|
|
|
): |
792
|
|
|
""" |
793
|
|
|
Create a dictionary with flow scalars and series. |
794
|
|
|
|
795
|
|
|
The dictionary is structured with flows as tuples and nested dictionaries |
796
|
|
|
holding the scalars and series e.g. |
797
|
|
|
{(node1, node2): {'scalars': {'attr1': scalar, 'attr2': 'text'}, |
798
|
|
|
'sequences': {'attr1': iterable, 'attr2': iterable}}} |
799
|
|
|
|
800
|
|
|
system: |
801
|
|
|
A solved oemof.solph.Model or oemof.solph.Energysystem |
802
|
|
|
exclude_attrs: List[str] |
803
|
|
|
List of additional attributes which shall be excluded from |
804
|
|
|
parameter dict |
805
|
|
|
get_flows: bool |
806
|
|
|
Whether to include flow values or not |
807
|
|
|
exclude_none: bool |
808
|
|
|
If set, scalars and sequences containing None values are excluded |
809
|
|
|
|
810
|
|
|
Returns |
811
|
|
|
------- |
812
|
|
|
dict |
813
|
|
|
""" |
814
|
|
|
|
815
|
|
|
def detect_scalars_and_sequences(com): |
816
|
|
|
scalars = {} |
817
|
|
|
sequences = {} |
818
|
|
|
|
819
|
|
|
default_exclusions = [ |
820
|
|
|
"__", |
821
|
|
|
"_", |
822
|
|
|
"registry", |
823
|
|
|
"inputs", |
824
|
|
|
"outputs", |
825
|
|
|
"Label", |
826
|
|
|
"input", |
827
|
|
|
"output", |
828
|
|
|
"constraint_group", |
829
|
|
|
] |
830
|
|
|
# Must be tuple in order to work with `str.startswith()`: |
831
|
|
|
exclusions = tuple(default_exclusions + exclude_attrs) |
832
|
|
|
attrs = [ |
833
|
|
|
i |
834
|
|
|
for i in dir(com) |
835
|
|
|
if not (i.startswith(exclusions) or callable(getattr(com, i))) |
836
|
|
|
] |
837
|
|
|
|
838
|
|
|
for a in attrs: |
839
|
|
|
attr_value = getattr(com, a) |
840
|
|
|
|
841
|
|
|
# Iterate trough investment and add scalars and sequences with |
842
|
|
|
# "investment" prefix to component data: |
843
|
|
|
if attr_value.__class__.__name__ == "Investment": |
844
|
|
|
invest_data = detect_scalars_and_sequences(attr_value) |
845
|
|
|
scalars.update( |
846
|
|
|
{ |
847
|
|
|
"investment_" + str(k): v |
848
|
|
|
for k, v in invest_data["scalars"].items() |
849
|
|
|
} |
850
|
|
|
) |
851
|
|
|
sequences.update( |
852
|
|
|
{ |
853
|
|
|
"investment_" + str(k): v |
854
|
|
|
for k, v in invest_data["sequences"].items() |
855
|
|
|
} |
856
|
|
|
) |
857
|
|
|
continue |
858
|
|
|
|
859
|
|
|
if isinstance(attr_value, str): |
860
|
|
|
scalars[a] = attr_value |
861
|
|
|
continue |
862
|
|
|
|
863
|
|
|
# If the label is a tuple it is iterable, therefore it should be |
864
|
|
|
# converted to a string. Otherwise, it will be a sequence. |
865
|
|
|
if a == "label": |
866
|
|
|
attr_value = str(attr_value) |
867
|
|
|
|
868
|
|
|
if isinstance(attr_value, abc.Iterable): |
869
|
|
|
sequences[a] = attr_value |
870
|
|
|
elif isinstance(attr_value, _FakeSequence): |
871
|
|
|
scalars[a] = attr_value.value |
872
|
|
|
else: |
873
|
|
|
scalars[a] = attr_value |
874
|
|
|
|
875
|
|
|
sequences = flatten(sequences) |
876
|
|
|
|
877
|
|
|
com_data = { |
878
|
|
|
"scalars": scalars, |
879
|
|
|
"sequences": sequences, |
880
|
|
|
} |
881
|
|
|
move_undetected_scalars(com_data) |
882
|
|
|
if exclude_none: |
883
|
|
|
remove_nones(com_data) |
884
|
|
|
|
885
|
|
|
com_data = { |
886
|
|
|
"scalars": pd.Series(com_data["scalars"]), |
887
|
|
|
"sequences": pd.DataFrame(com_data["sequences"]), |
888
|
|
|
} |
889
|
|
|
return com_data |
890
|
|
|
|
891
|
|
|
def move_undetected_scalars(com): |
892
|
|
|
for ckey, value in list(com["sequences"].items()): |
893
|
|
|
if isinstance(value, (str, numbers.Number)): |
894
|
|
|
com["scalars"][ckey] = value |
895
|
|
|
del com["sequences"][ckey] |
896
|
|
|
elif isinstance(value, _FakeSequence): |
897
|
|
|
com["scalars"][ckey] = value.value |
898
|
|
|
del com["sequences"][ckey] |
899
|
|
|
elif len(value) == 0: |
900
|
|
|
del com["sequences"][ckey] |
901
|
|
|
|
902
|
|
|
def remove_nones(com): |
903
|
|
|
for ckey, value in list(com["scalars"].items()): |
904
|
|
|
if value is None: |
905
|
|
|
del com["scalars"][ckey] |
906
|
|
|
for ckey, value in list(com["sequences"].items()): |
907
|
|
|
if len(value) == 0 or value[0] is None: |
908
|
|
|
del com["sequences"][ckey] |
909
|
|
|
|
910
|
|
|
# Check if system is es or om: |
911
|
|
|
if system.__class__.__name__ == "EnergySystem": |
912
|
|
|
components = system.flows() if get_flows else system.nodes |
913
|
|
|
else: |
914
|
|
|
components = system.flows if get_flows else system.es.nodes |
915
|
|
|
|
916
|
|
|
data = {} |
917
|
|
|
for com_key in components: |
918
|
|
|
component = components[com_key] if get_flows else com_key |
919
|
|
|
component_data = detect_scalars_and_sequences(component) |
920
|
|
|
comkey = com_key if get_flows else (com_key, None) |
921
|
|
|
data[comkey] = component_data |
922
|
|
|
return data |
923
|
|
|
|
924
|
|
|
|
925
|
|
|
def parameter_as_dict(system, exclude_none=True, exclude_attrs=None): |
926
|
|
|
""" |
927
|
|
|
Create a result dictionary containing node parameters. |
928
|
|
|
|
929
|
|
|
Results are written into a dictionary of pandas objects where |
930
|
|
|
a Series holds all scalar values and a dataframe all sequences for nodes |
931
|
|
|
and flows. |
932
|
|
|
The dictionary is keyed by flows (n, n) and nodes (n, None), e.g. |
933
|
|
|
`parameter[(n, n)]['sequences']` or `parameter[(n, n)]['scalars']`. |
934
|
|
|
|
935
|
|
|
Parameters |
936
|
|
|
---------- |
937
|
|
|
system: energy_system.EnergySystem |
938
|
|
|
A populated energy system. |
939
|
|
|
exclude_none: bool |
940
|
|
|
If True, all scalars and sequences containing None values are excluded |
941
|
|
|
exclude_attrs: Optional[List[str]] |
942
|
|
|
Optional list of additional attributes which shall be excluded from |
943
|
|
|
parameter dict |
944
|
|
|
|
945
|
|
|
Returns |
946
|
|
|
------- |
947
|
|
|
dict: Parameters for all nodes and flows |
948
|
|
|
""" |
949
|
|
|
|
950
|
|
|
if exclude_attrs is None: |
951
|
|
|
exclude_attrs = [] |
952
|
|
|
|
953
|
|
|
flow_data = __separate_attrs( |
954
|
|
|
system, exclude_attrs, get_flows=True, exclude_none=exclude_none |
955
|
|
|
) |
956
|
|
|
node_data = __separate_attrs( |
957
|
|
|
system, exclude_attrs, get_flows=False, exclude_none=exclude_none |
958
|
|
|
) |
959
|
|
|
|
960
|
|
|
flow_data.update(node_data) |
961
|
|
|
return flow_data |
962
|
|
|
|