| Total Complexity | 42 |
| Total Lines | 510 |
| Duplicated Lines | 3.53 % |
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like solph.flows._simple_flow_block often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | # -*- coding: utf-8 -*- |
||
| 2 | |||
| 3 | """Creating sets, variables, constraints and parts of the objective function |
||
| 4 | for Flow objects with neither nonconvex nor investment options. |
||
| 5 | |||
| 6 | SPDX-FileCopyrightText: Uwe Krien <[email protected]> |
||
| 7 | SPDX-FileCopyrightText: Simon Hilpert |
||
| 8 | SPDX-FileCopyrightText: Cord Kaldemeyer |
||
| 9 | SPDX-FileCopyrightText: Stephan Günther |
||
| 10 | SPDX-FileCopyrightText: Birgit Schachler |
||
| 11 | SPDX-FileCopyrightText: jnnr |
||
| 12 | SPDX-FileCopyrightText: jmloenneberga |
||
| 13 | SPDX-FileCopyrightText: Pierre-François Duc |
||
| 14 | SPDX-FileCopyrightText: Saeed Sayadi |
||
| 15 | SPDX-FileCopyrightText: Johannes Kochems |
||
| 16 | |||
| 17 | SPDX-License-Identifier: MIT |
||
| 18 | |||
| 19 | """ |
||
| 20 | from pyomo.core import BuildAction |
||
| 21 | from pyomo.core import Constraint |
||
| 22 | from pyomo.core import Expression |
||
| 23 | from pyomo.core import NonNegativeIntegers |
||
| 24 | from pyomo.core import NonNegativeReals |
||
| 25 | from pyomo.core import Set |
||
| 26 | from pyomo.core import Var |
||
| 27 | from pyomo.core.base.block import ScalarBlock |
||
| 28 | |||
| 29 | from oemof.solph._plumbing import valid_sequence |
||
| 30 | |||
| 31 | |||
| 32 | class SimpleFlowBlock(ScalarBlock): |
||
| 33 | r"""Flow block with definitions for standard flows. |
||
| 34 | |||
| 35 | See :class:`~oemof.solph.flows._flow.Flow` class for all parameters of the |
||
| 36 | *Flow*. |
||
| 37 | |||
| 38 | .. automethod:: _create_constraints |
||
| 39 | .. automethod:: _create_variables |
||
| 40 | .. automethod:: _create_sets |
||
| 41 | |||
| 42 | .. automethod:: _objective_expression |
||
| 43 | |||
| 44 | Note |
||
| 45 | ---- |
||
| 46 | See the :class:`~oemof.solph.flows._flow.Flow` class for the definition of |
||
| 47 | all parameters from the "List of Parameters above. |
||
| 48 | |||
| 49 | """ # noqa: E501 |
||
| 50 | |||
| 51 | def __init__(self, *args, **kwargs): |
||
| 52 | super().__init__(*args, **kwargs) |
||
| 53 | |||
| 54 | def _create(self, group=None): |
||
| 55 | r"""Creates sets, variables and constraints for all standard flows. |
||
| 56 | |||
| 57 | Parameters |
||
| 58 | ---------- |
||
| 59 | group : list |
||
| 60 | List containing tuples containing flow (f) objects and the |
||
| 61 | associated source (s) and target (t) |
||
| 62 | of flow e.g. groups=[(s1, t1, f1), (s2, t2, f2),..] |
||
| 63 | """ |
||
| 64 | if group is None: |
||
| 65 | return None |
||
| 66 | |||
| 67 | self._create_sets(group) |
||
| 68 | self._create_variables(group) |
||
| 69 | self._create_constraints() |
||
| 70 | |||
| 71 | def _create_sets(self, group): |
||
| 72 | """ |
||
| 73 | Creates all sets for standard flows. |
||
| 74 | """ |
||
| 75 | self.FULL_LOAD_TIME_MAX_FLOWS = Set( |
||
| 76 | initialize=[ |
||
| 77 | (g[0], g[1]) |
||
| 78 | for g in group |
||
| 79 | if g[2].full_load_time_max is not None |
||
| 80 | and g[2].nominal_capacity is not None |
||
| 81 | ] |
||
| 82 | ) |
||
| 83 | |||
| 84 | self.FULL_LOAD_TIME_MIN_FLOWS = Set( |
||
| 85 | initialize=[ |
||
| 86 | (g[0], g[1]) |
||
| 87 | for g in group |
||
| 88 | if g[2].full_load_time_min is not None |
||
| 89 | and g[2].nominal_capacity is not None |
||
| 90 | ] |
||
| 91 | ) |
||
| 92 | |||
| 93 | self.NEGATIVE_GRADIENT_FLOWS = Set( |
||
| 94 | initialize=[ |
||
| 95 | (g[0], g[1]) |
||
| 96 | for g in group |
||
| 97 | if g[2].negative_gradient_limit[0] is not None |
||
| 98 | ] |
||
| 99 | ) |
||
| 100 | |||
| 101 | self.POSITIVE_GRADIENT_FLOWS = Set( |
||
| 102 | initialize=[ |
||
| 103 | (g[0], g[1]) |
||
| 104 | for g in group |
||
| 105 | if g[2].positive_gradient_limit[0] is not None |
||
| 106 | ] |
||
| 107 | ) |
||
| 108 | |||
| 109 | self.INTEGER_FLOWS = Set( |
||
| 110 | initialize=[(g[0], g[1]) for g in group if g[2].integer] |
||
| 111 | ) |
||
| 112 | |||
| 113 | self.LIFETIME_FLOWS = Set( |
||
| 114 | initialize=[ |
||
| 115 | (g[0], g[1]) |
||
| 116 | for g in group |
||
| 117 | if g[2].lifetime is not None and g[2].age is None |
||
| 118 | ] |
||
| 119 | ) |
||
| 120 | |||
| 121 | self.LIFETIME_AGE_FLOWS = Set( |
||
| 122 | initialize=[ |
||
| 123 | (g[0], g[1]) |
||
| 124 | for g in group |
||
| 125 | if g[2].lifetime is not None and g[2].age is not None |
||
| 126 | ] |
||
| 127 | ) |
||
| 128 | |||
| 129 | def _create_variables(self, group): |
||
| 130 | r"""Creates all variables for standard flows. |
||
| 131 | |||
| 132 | All *Flow* objects are indexed by a starting and ending node |
||
| 133 | :math:`(i, o)`, which is omitted in the following for the sake of |
||
| 134 | convenience. The creation of some variables depend on the values of |
||
| 135 | *Flow* attributes. The following variables are created: |
||
| 136 | |||
| 137 | * :math:`P(p, t)` |
||
| 138 | Actual flow value (created in :class:`~oemof.solph._models.Model`). |
||
| 139 | The variable is bound to: |
||
| 140 | :math:`f_\mathrm{min}(t) \cdot P_\mathrm{nom} |
||
| 141 | \le P(p, t) |
||
| 142 | \le f_\mathrm{max}(t) \cdot P_\mathrm{nom}`. |
||
| 143 | |||
| 144 | If `Flow.fix` is not None the variable is bound to |
||
| 145 | :math:`P(p, t) = f_\mathrm{fix}(t) \cdot P_\mathrm{nom}`. |
||
| 146 | |||
| 147 | * :math:`ve_n` (`Flow.negative_gradient` is not `None`) |
||
| 148 | Difference of a flow in consecutive timesteps if flow is reduced. |
||
| 149 | The variable is bound to: :math:`0 \ge ve_n \ge ve_n^{max}`. |
||
| 150 | |||
| 151 | * :math:`ve_p` (`Flow.positive_gradient` is not `None`) |
||
| 152 | Difference of a flow in consecutive timesteps if flow is increased. |
||
| 153 | The variable is bound to: :math:`0 \ge ve_p \ge ve_p^{max}`. |
||
| 154 | |||
| 155 | The following variable is build for Flows with the attribute |
||
| 156 | `integer_flows` being not None. |
||
| 157 | |||
| 158 | * :math:`i` (`Flow.integer` is `True`) |
||
| 159 | All flow values are integers. Variable is bound to non-negative |
||
| 160 | integers. |
||
| 161 | """ |
||
| 162 | m = self.parent_block() |
||
| 163 | |||
| 164 | self.positive_gradient = Var( |
||
| 165 | self.POSITIVE_GRADIENT_FLOWS, m.TIMESTEPS, within=NonNegativeReals |
||
| 166 | ) |
||
| 167 | |||
| 168 | self.negative_gradient = Var( |
||
| 169 | self.NEGATIVE_GRADIENT_FLOWS, m.TIMESTEPS, within=NonNegativeReals |
||
| 170 | ) |
||
| 171 | |||
| 172 | self.integer_flow = Var( |
||
| 173 | self.INTEGER_FLOWS, m.TIMESTEPS, within=NonNegativeIntegers |
||
| 174 | ) |
||
| 175 | # set upper bound of gradient variable |
||
| 176 | for i, o, f in group: |
||
| 177 | if valid_sequence( |
||
| 178 | m.flows[i, o].positive_gradient_limit, len(m.TIMESTEPS) |
||
| 179 | ): |
||
| 180 | for t in m.TIMESTEPS: |
||
| 181 | self.positive_gradient[i, o, t].setub( |
||
| 182 | f.positive_gradient_limit[t] * f.nominal_capacity |
||
| 183 | ) |
||
| 184 | if valid_sequence( |
||
| 185 | m.flows[i, o].negative_gradient_limit, len(m.TIMESTEPS) |
||
| 186 | ): |
||
| 187 | for t in m.TIMESTEPS: |
||
| 188 | self.negative_gradient[i, o, t].setub( |
||
| 189 | f.negative_gradient_limit[t] * f.nominal_capacity |
||
| 190 | ) |
||
| 191 | |||
| 192 | def _create_constraints(self): |
||
| 193 | r"""Creates all constraints for standard flows. |
||
| 194 | |||
| 195 | The following constraints are created, if the appropriate attribute of |
||
| 196 | the *Flow* (see :class:`~oemof.solph.flows._flow.Flow`) object is set: |
||
| 197 | |||
| 198 | * `Flow.full_load_time_max` is not `None` (full_load_time_max_constr): |
||
| 199 | .. math:: |
||
| 200 | \sum_t P(t) \cdot \tau \leq F_{max} \cdot P_{nom} |
||
| 201 | |||
| 202 | * `Flow.full_load_time_min` is not `None` (full_load_time_min_constr): |
||
| 203 | .. math:: |
||
| 204 | \sum_t P(t) \cdot \tau \geq F_{min} \cdot P_{nom} |
||
| 205 | |||
| 206 | * `Flow.negative_gradient` is not `None` (negative_gradient_constr): |
||
| 207 | .. math:: |
||
| 208 | P(t-1) - P(t) \geq ve_n(t) |
||
| 209 | |||
| 210 | * `Flow.positive_gradient` is not `None` (positive_gradient_constr): |
||
| 211 | .. math:: |
||
| 212 | P(t) - P(t-1) \geq ve_p(t) |
||
| 213 | |||
| 214 | * `Flow.integer` is `True` |
||
| 215 | .. math:: |
||
| 216 | P(t) = i(t) |
||
| 217 | """ |
||
| 218 | m = self.parent_block() |
||
| 219 | |||
| 220 | def _flow_full_load_time_max_rule(model): |
||
| 221 | """Rule definition for build action of max. sum flow constraint.""" |
||
| 222 | for inp, out in self.FULL_LOAD_TIME_MAX_FLOWS: |
||
| 223 | lhs = sum( |
||
| 224 | m.flow[inp, out, ts] |
||
| 225 | * m.timeincrement[ts] |
||
| 226 | * m.tsam_weighting[ts] |
||
| 227 | for ts in m.TIMESTEPS |
||
| 228 | ) |
||
| 229 | rhs = ( |
||
| 230 | m.flows[inp, out].full_load_time_max |
||
| 231 | * m.flows[inp, out].nominal_capacity |
||
| 232 | ) |
||
| 233 | self.full_load_time_max_constr.add((inp, out), lhs <= rhs) |
||
| 234 | |||
| 235 | self.full_load_time_max_constr = Constraint( |
||
| 236 | self.FULL_LOAD_TIME_MAX_FLOWS, noruleinit=True |
||
| 237 | ) |
||
| 238 | self.full_load_time_max_build = BuildAction( |
||
| 239 | rule=_flow_full_load_time_max_rule |
||
| 240 | ) |
||
| 241 | |||
| 242 | def _flow_full_load_time_min_rule(_): |
||
| 243 | """Rule definition for build action of min. sum flow constraint.""" |
||
| 244 | for inp, out in self.FULL_LOAD_TIME_MIN_FLOWS: |
||
| 245 | lhs = sum( |
||
| 246 | m.flow[inp, out, ts] |
||
| 247 | * m.timeincrement[ts] |
||
| 248 | * m.tsam_weighting[ts] |
||
| 249 | for ts in m.TIMESTEPS |
||
| 250 | ) |
||
| 251 | rhs = ( |
||
| 252 | m.flows[inp, out].full_load_time_min |
||
| 253 | * m.flows[inp, out].nominal_capacity |
||
| 254 | ) |
||
| 255 | self.full_load_time_min_constr.add((inp, out), lhs >= rhs) |
||
| 256 | |||
| 257 | self.full_load_time_min_constr = Constraint( |
||
| 258 | self.FULL_LOAD_TIME_MIN_FLOWS, noruleinit=True |
||
| 259 | ) |
||
| 260 | self.full_load_time_min_build = BuildAction( |
||
| 261 | rule=_flow_full_load_time_min_rule |
||
| 262 | ) |
||
| 263 | |||
| 264 | def _positive_gradient_flow_rule(_): |
||
| 265 | """Rule definition for positive gradient constraint.""" |
||
| 266 | for inp, out in self.POSITIVE_GRADIENT_FLOWS: |
||
| 267 | for index in range(1, len(m.TIMESTEPS) + 1): |
||
| 268 | if m.TIMESTEPS.at(index) > 0: |
||
| 269 | lhs = ( |
||
| 270 | m.flow[ |
||
| 271 | inp, |
||
| 272 | out, |
||
| 273 | m.TIMESTEPS.at(index), |
||
| 274 | ] |
||
| 275 | - m.flow[ |
||
| 276 | inp, |
||
| 277 | out, |
||
| 278 | m.TIMESTEPS.at(index - 1), |
||
| 279 | ] |
||
| 280 | ) |
||
| 281 | rhs = self.positive_gradient[ |
||
| 282 | inp, out, m.TIMESTEPS.at(index) |
||
| 283 | ] |
||
| 284 | self.positive_gradient_constr.add( |
||
| 285 | (inp, out, m.TIMESTEPS.at(index)), |
||
| 286 | lhs <= rhs, |
||
| 287 | ) |
||
| 288 | else: |
||
| 289 | lhs = self.positive_gradient[inp, out, 0] |
||
| 290 | rhs = 0 |
||
| 291 | self.positive_gradient_constr.add( |
||
| 292 | (inp, out, m.TIMESTEPS.at(index)), |
||
| 293 | lhs == rhs, |
||
| 294 | ) |
||
| 295 | |||
| 296 | self.positive_gradient_constr = Constraint( |
||
| 297 | self.POSITIVE_GRADIENT_FLOWS, m.TIMESTEPS, noruleinit=True |
||
| 298 | ) |
||
| 299 | self.positive_gradient_build = BuildAction( |
||
| 300 | rule=_positive_gradient_flow_rule |
||
| 301 | ) |
||
| 302 | |||
| 303 | def _negative_gradient_flow_rule(model): |
||
| 304 | """Rule definition for negative gradient constraint.""" |
||
| 305 | for inp, out in self.NEGATIVE_GRADIENT_FLOWS: |
||
| 306 | for index in range(1, len(m.TIMESTEPS) + 1): |
||
| 307 | if m.TIMESTEPS.at(index) > 0: |
||
| 308 | lhs = ( |
||
| 309 | m.flow[inp, out, m.TIMESTEPS.at(index - 1)] |
||
| 310 | - m.flow[inp, out, m.TIMESTEPS.at(index)] |
||
| 311 | ) |
||
| 312 | rhs = self.negative_gradient[ |
||
| 313 | inp, out, m.TIMESTEPS.at(index) |
||
| 314 | ] |
||
| 315 | self.negative_gradient_constr.add( |
||
| 316 | (inp, out, m.TIMESTEPS.at(index)), |
||
| 317 | lhs <= rhs, |
||
| 318 | ) |
||
| 319 | else: |
||
| 320 | lhs = self.negative_gradient[inp, out, 0] |
||
| 321 | rhs = 0 |
||
| 322 | self.negative_gradient_constr.add( |
||
| 323 | (inp, out, m.TIMESTEPS.at(index)), |
||
| 324 | lhs == rhs, |
||
| 325 | ) |
||
| 326 | |||
| 327 | self.negative_gradient_constr = Constraint( |
||
| 328 | self.NEGATIVE_GRADIENT_FLOWS, m.TIMESTEPS, noruleinit=True |
||
| 329 | ) |
||
| 330 | self.negative_gradient_build = BuildAction( |
||
| 331 | rule=_negative_gradient_flow_rule |
||
| 332 | ) |
||
| 333 | |||
| 334 | def _integer_flow_rule(_, ii, oi, ti): |
||
| 335 | """Force flow variable to NonNegativeInteger values.""" |
||
| 336 | return self.integer_flow[ii, oi, ti] == m.flow[ii, oi, ti] |
||
| 337 | |||
| 338 | self.integer_flow_constr = Constraint( |
||
| 339 | self.INTEGER_FLOWS, m.TIMESTEPS, rule=_integer_flow_rule |
||
| 340 | ) |
||
| 341 | |||
| 342 | if m.es.periods is not None: |
||
| 343 | |||
| 344 | def _lifetime_output_rule(_): |
||
| 345 | """Force flow value to zero when lifetime is reached""" |
||
| 346 | for inp, out in self.LIFETIME_FLOWS: |
||
| 347 | for p, ts in m.TIMEINDEX: |
||
| 348 | if m.flows[inp, out].lifetime <= m.es.periods_years[p]: |
||
| 349 | lhs = m.flow[inp, out, ts] |
||
| 350 | rhs = 0 |
||
| 351 | self.lifetime_output.add( |
||
| 352 | (inp, out, p, ts), (lhs == rhs) |
||
| 353 | ) |
||
| 354 | |||
| 355 | self.lifetime_output = Constraint( |
||
| 356 | self.LIFETIME_FLOWS, m.TIMEINDEX, noruleinit=True |
||
| 357 | ) |
||
| 358 | self.lifetime_output_build = BuildAction( |
||
| 359 | rule=_lifetime_output_rule |
||
| 360 | ) |
||
| 361 | |||
| 362 | def _lifetime_age_output_rule(block): |
||
| 363 | """Force flow value to zero when lifetime is reached |
||
| 364 | considering initial age |
||
| 365 | """ |
||
| 366 | for inp, out in self.LIFETIME_AGE_FLOWS: |
||
| 367 | for p, ts in m.TIMEINDEX: |
||
| 368 | if ( |
||
| 369 | m.flows[inp, out].lifetime - m.flows[inp, out].age |
||
| 370 | <= m.es.periods_years[p] |
||
| 371 | ): |
||
| 372 | lhs = m.flow[inp, out, ts] |
||
| 373 | rhs = 0 |
||
| 374 | self.lifetime_age_output.add( |
||
| 375 | (inp, out, p, ts), (lhs == rhs) |
||
| 376 | ) |
||
| 377 | |||
| 378 | self.lifetime_age_output = Constraint( |
||
| 379 | self.LIFETIME_AGE_FLOWS, m.TIMEINDEX, noruleinit=True |
||
| 380 | ) |
||
| 381 | self.lifetime_age_output_build = BuildAction( |
||
| 382 | rule=_lifetime_age_output_rule |
||
| 383 | ) |
||
| 384 | |||
| 385 | def _objective_expression(self): |
||
| 386 | r"""Objective expression for all standard flows with fixed costs |
||
| 387 | and variable costs. |
||
| 388 | |||
| 389 | Depending on the attributes of the `Flow` object the following parts of |
||
| 390 | the objective function are created for a standard model: |
||
| 391 | |||
| 392 | * `Flow.variable_costs` is not `None`: |
||
| 393 | .. math:: |
||
| 394 | \sum_{(i,o)} \sum_t P(t) \cdot w(t) \cdot c_{var}(i, o, t) |
||
| 395 | |||
| 396 | where :math:`w(t)` is the objective weighting. |
||
| 397 | |||
| 398 | In a multi-period model, in contrast, the following parts of |
||
| 399 | the objective function are created: |
||
| 400 | |||
| 401 | * `Flow.variable_costs` is not `None`: |
||
| 402 | .. math:: |
||
| 403 | \sum_{(i,o)} \sum_{p, t} P(p, t) \cdot w(t) |
||
| 404 | \cdot c_{var}(i, o, t) |
||
| 405 | |||
| 406 | * `Flow.fixed_costs` is not `None` and flow has no lifetime limit |
||
| 407 | .. math:: |
||
| 408 | \sum_{(i,o)} \displaystyle \sum_{pp=0}^{year_{max}} |
||
| 409 | P_{nominal} \cdot c_{fixed}(i, o, pp) \cdot DF^{-pp} |
||
| 410 | |||
| 411 | * `Flow.fixed_costs` is not `None` and flow has a lifetime limit, |
||
| 412 | but not an initial age |
||
| 413 | .. math:: |
||
| 414 | \sum_{(i,o)} \displaystyle \sum_{pp=0}^{limit_{exo}} |
||
| 415 | P_{nominal} \cdot c_{fixed}(i, o, pp) \cdot DF^{-pp} |
||
| 416 | |||
| 417 | * `Flow.fixed_costs` is not `None` and flow has a lifetime limit, |
||
| 418 | and an initial age |
||
| 419 | .. math:: |
||
| 420 | \sum_{(i,o)} \displaystyle \sum_{pp=0}^{limit_{exo}} P_{nominal} |
||
| 421 | \cdot c_{fixed}(i, o, pp) \cdot DF^{-pp} |
||
| 422 | |||
| 423 | Hereby |
||
| 424 | |||
| 425 | * :math:`DF(p) = (1 + dr)` is the discount factor for period :math:`p` |
||
| 426 | and :math:`dr` is the discount rate. |
||
| 427 | * :math:`n` is the unit lifetime and :math:`a` is the initial age. |
||
| 428 | * :math:`year_{max}` denotes the last year of the optimization |
||
| 429 | horizon, i.e. at the end of the last period. |
||
| 430 | * :math:`limit_{exo}=min\{year_{max}, n - a\}` is used as an |
||
| 431 | upper bound to ensure fixed costs for existing capacities to occur |
||
| 432 | within the optimization horizon. :math:`a` is the initial age |
||
| 433 | of an asset (or 0 if not specified). |
||
| 434 | """ |
||
| 435 | m = self.parent_block() |
||
| 436 | |||
| 437 | variable_costs = 0 |
||
| 438 | fixed_costs = 0 |
||
| 439 | |||
| 440 | if m.es.periods is None: |
||
| 441 | for i, o in m.FLOWS: |
||
| 442 | if valid_sequence( |
||
| 443 | m.flows[i, o].variable_costs, len(m.TIMESTEPS) |
||
| 444 | ): |
||
| 445 | for t in m.TIMESTEPS: |
||
| 446 | variable_costs += ( |
||
| 447 | m.flow[i, o, t] |
||
| 448 | * m.objective_weighting[t] |
||
| 449 | * m.tsam_weighting[t] |
||
| 450 | * m.flows[i, o].variable_costs[t] |
||
| 451 | ) |
||
| 452 | |||
| 453 | else: |
||
| 454 | for i, o in m.FLOWS: |
||
| 455 | if valid_sequence( |
||
| 456 | m.flows[i, o].variable_costs, len(m.TIMESTEPS) |
||
| 457 | ): |
||
| 458 | for p, t in m.TIMEINDEX: |
||
| 459 | variable_costs += ( |
||
| 460 | m.flow[i, o, t] |
||
| 461 | * m.objective_weighting[t] |
||
| 462 | * m.tsam_weighting[t] |
||
| 463 | * m.flows[i, o].variable_costs[t] |
||
| 464 | * ((1 + m.discount_rate) ** -m.es.periods_years[p]) |
||
| 465 | ) |
||
| 466 | |||
| 467 | # Fixed costs for units with no lifetime limit |
||
| 468 | if ( |
||
| 469 | m.flows[i, o].fixed_costs[0] is not None |
||
| 470 | and m.flows[i, o].nominal_capacity is not None |
||
| 471 | and (i, o) not in self.LIFETIME_FLOWS |
||
| 472 | and (i, o) not in self.LIFETIME_AGE_FLOWS |
||
| 473 | ): |
||
| 474 | fixed_costs += sum( |
||
| 475 | m.flows[i, o].nominal_capacity |
||
| 476 | * m.flows[i, o].fixed_costs[pp] |
||
| 477 | for pp in range(m.es.end_year_of_optimization) |
||
| 478 | ) |
||
| 479 | |||
| 480 | # Fixed costs for units with limited lifetime |
||
| 481 | for i, o in self.LIFETIME_FLOWS: |
||
| 482 | View Code Duplication | if valid_sequence(m.flows[i, o].fixed_costs, len(m.TIMESTEPS)): |
|
|
|
|||
| 483 | range_limit = min( |
||
| 484 | m.es.end_year_of_optimization, |
||
| 485 | m.flows[i, o].lifetime, |
||
| 486 | ) |
||
| 487 | fixed_costs += sum( |
||
| 488 | m.flows[i, o].nominal_capacity |
||
| 489 | * m.flows[i, o].fixed_costs[pp] |
||
| 490 | for pp in range(range_limit) |
||
| 491 | ) |
||
| 492 | |||
| 493 | for i, o in self.LIFETIME_AGE_FLOWS: |
||
| 494 | View Code Duplication | if valid_sequence(m.flows[i, o].fixed_costs, len(m.TIMESTEPS)): |
|
| 495 | range_limit = min( |
||
| 496 | m.es.end_year_of_optimization, |
||
| 497 | m.flows[i, o].lifetime - m.flows[i, o].age, |
||
| 498 | ) |
||
| 499 | fixed_costs += sum( |
||
| 500 | m.flows[i, o].nominal_capacity |
||
| 501 | * m.flows[i, o].fixed_costs[pp] |
||
| 502 | for pp in range(range_limit) |
||
| 503 | ) |
||
| 504 | |||
| 505 | self.variable_costs = Expression(expr=variable_costs) |
||
| 506 | self.fixed_costs = Expression(expr=fixed_costs) |
||
| 507 | self.costs = Expression(expr=variable_costs + fixed_costs) |
||
| 508 | |||
| 509 | return self.costs |
||
| 510 |