Total Complexity | 42 |
Total Lines | 510 |
Duplicated Lines | 3.53 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like solph.flows._simple_flow_block often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | # -*- coding: utf-8 -*- |
||
2 | |||
3 | """Creating sets, variables, constraints and parts of the objective function |
||
4 | for Flow objects with neither nonconvex nor investment options. |
||
5 | |||
6 | SPDX-FileCopyrightText: Uwe Krien <[email protected]> |
||
7 | SPDX-FileCopyrightText: Simon Hilpert |
||
8 | SPDX-FileCopyrightText: Cord Kaldemeyer |
||
9 | SPDX-FileCopyrightText: Stephan Günther |
||
10 | SPDX-FileCopyrightText: Birgit Schachler |
||
11 | SPDX-FileCopyrightText: jnnr |
||
12 | SPDX-FileCopyrightText: jmloenneberga |
||
13 | SPDX-FileCopyrightText: Pierre-François Duc |
||
14 | SPDX-FileCopyrightText: Saeed Sayadi |
||
15 | SPDX-FileCopyrightText: Johannes Kochems |
||
16 | |||
17 | SPDX-License-Identifier: MIT |
||
18 | |||
19 | """ |
||
20 | from pyomo.core import BuildAction |
||
21 | from pyomo.core import Constraint |
||
22 | from pyomo.core import Expression |
||
23 | from pyomo.core import NonNegativeIntegers |
||
24 | from pyomo.core import NonNegativeReals |
||
25 | from pyomo.core import Set |
||
26 | from pyomo.core import Var |
||
27 | from pyomo.core.base.block import ScalarBlock |
||
28 | |||
29 | from oemof.solph._plumbing import valid_sequence |
||
30 | |||
31 | |||
32 | class SimpleFlowBlock(ScalarBlock): |
||
33 | r"""Flow block with definitions for standard flows. |
||
34 | |||
35 | See :class:`~oemof.solph.flows._flow.Flow` class for all parameters of the |
||
36 | *Flow*. |
||
37 | |||
38 | .. automethod:: _create_constraints |
||
39 | .. automethod:: _create_variables |
||
40 | .. automethod:: _create_sets |
||
41 | |||
42 | .. automethod:: _objective_expression |
||
43 | |||
44 | Note |
||
45 | ---- |
||
46 | See the :class:`~oemof.solph.flows._flow.Flow` class for the definition of |
||
47 | all parameters from the "List of Parameters above. |
||
48 | |||
49 | """ # noqa: E501 |
||
50 | |||
51 | def __init__(self, *args, **kwargs): |
||
52 | super().__init__(*args, **kwargs) |
||
53 | |||
54 | def _create(self, group=None): |
||
55 | r"""Creates sets, variables and constraints for all standard flows. |
||
56 | |||
57 | Parameters |
||
58 | ---------- |
||
59 | group : list |
||
60 | List containing tuples containing flow (f) objects and the |
||
61 | associated source (s) and target (t) |
||
62 | of flow e.g. groups=[(s1, t1, f1), (s2, t2, f2),..] |
||
63 | """ |
||
64 | if group is None: |
||
65 | return None |
||
66 | |||
67 | self._create_sets(group) |
||
68 | self._create_variables(group) |
||
69 | self._create_constraints() |
||
70 | |||
71 | def _create_sets(self, group): |
||
72 | """ |
||
73 | Creates all sets for standard flows. |
||
74 | """ |
||
75 | self.FULL_LOAD_TIME_MAX_FLOWS = Set( |
||
76 | initialize=[ |
||
77 | (g[0], g[1]) |
||
78 | for g in group |
||
79 | if g[2].full_load_time_max is not None |
||
80 | and g[2].nominal_capacity is not None |
||
81 | ] |
||
82 | ) |
||
83 | |||
84 | self.FULL_LOAD_TIME_MIN_FLOWS = Set( |
||
85 | initialize=[ |
||
86 | (g[0], g[1]) |
||
87 | for g in group |
||
88 | if g[2].full_load_time_min is not None |
||
89 | and g[2].nominal_capacity is not None |
||
90 | ] |
||
91 | ) |
||
92 | |||
93 | self.NEGATIVE_GRADIENT_FLOWS = Set( |
||
94 | initialize=[ |
||
95 | (g[0], g[1]) |
||
96 | for g in group |
||
97 | if g[2].negative_gradient_limit[0] is not None |
||
98 | ] |
||
99 | ) |
||
100 | |||
101 | self.POSITIVE_GRADIENT_FLOWS = Set( |
||
102 | initialize=[ |
||
103 | (g[0], g[1]) |
||
104 | for g in group |
||
105 | if g[2].positive_gradient_limit[0] is not None |
||
106 | ] |
||
107 | ) |
||
108 | |||
109 | self.INTEGER_FLOWS = Set( |
||
110 | initialize=[(g[0], g[1]) for g in group if g[2].integer] |
||
111 | ) |
||
112 | |||
113 | self.LIFETIME_FLOWS = Set( |
||
114 | initialize=[ |
||
115 | (g[0], g[1]) |
||
116 | for g in group |
||
117 | if g[2].lifetime is not None and g[2].age is None |
||
118 | ] |
||
119 | ) |
||
120 | |||
121 | self.LIFETIME_AGE_FLOWS = Set( |
||
122 | initialize=[ |
||
123 | (g[0], g[1]) |
||
124 | for g in group |
||
125 | if g[2].lifetime is not None and g[2].age is not None |
||
126 | ] |
||
127 | ) |
||
128 | |||
129 | def _create_variables(self, group): |
||
130 | r"""Creates all variables for standard flows. |
||
131 | |||
132 | All *Flow* objects are indexed by a starting and ending node |
||
133 | :math:`(i, o)`, which is omitted in the following for the sake of |
||
134 | convenience. The creation of some variables depend on the values of |
||
135 | *Flow* attributes. The following variables are created: |
||
136 | |||
137 | * :math:`P(p, t)` |
||
138 | Actual flow value (created in :class:`~oemof.solph._models.Model`). |
||
139 | The variable is bound to: |
||
140 | :math:`f_\mathrm{min}(t) \cdot P_\mathrm{nom} |
||
141 | \le P(p, t) |
||
142 | \le f_\mathrm{max}(t) \cdot P_\mathrm{nom}`. |
||
143 | |||
144 | If `Flow.fix` is not None the variable is bound to |
||
145 | :math:`P(p, t) = f_\mathrm{fix}(t) \cdot P_\mathrm{nom}`. |
||
146 | |||
147 | * :math:`ve_n` (`Flow.negative_gradient` is not `None`) |
||
148 | Difference of a flow in consecutive timesteps if flow is reduced. |
||
149 | The variable is bound to: :math:`0 \ge ve_n \ge ve_n^{max}`. |
||
150 | |||
151 | * :math:`ve_p` (`Flow.positive_gradient` is not `None`) |
||
152 | Difference of a flow in consecutive timesteps if flow is increased. |
||
153 | The variable is bound to: :math:`0 \ge ve_p \ge ve_p^{max}`. |
||
154 | |||
155 | The following variable is build for Flows with the attribute |
||
156 | `integer_flows` being not None. |
||
157 | |||
158 | * :math:`i` (`Flow.integer` is `True`) |
||
159 | All flow values are integers. Variable is bound to non-negative |
||
160 | integers. |
||
161 | """ |
||
162 | m = self.parent_block() |
||
163 | |||
164 | self.positive_gradient = Var( |
||
165 | self.POSITIVE_GRADIENT_FLOWS, m.TIMESTEPS, within=NonNegativeReals |
||
166 | ) |
||
167 | |||
168 | self.negative_gradient = Var( |
||
169 | self.NEGATIVE_GRADIENT_FLOWS, m.TIMESTEPS, within=NonNegativeReals |
||
170 | ) |
||
171 | |||
172 | self.integer_flow = Var( |
||
173 | self.INTEGER_FLOWS, m.TIMESTEPS, within=NonNegativeIntegers |
||
174 | ) |
||
175 | # set upper bound of gradient variable |
||
176 | for i, o, f in group: |
||
177 | if valid_sequence( |
||
178 | m.flows[i, o].positive_gradient_limit, len(m.TIMESTEPS) |
||
179 | ): |
||
180 | for t in m.TIMESTEPS: |
||
181 | self.positive_gradient[i, o, t].setub( |
||
182 | f.positive_gradient_limit[t] * f.nominal_capacity |
||
183 | ) |
||
184 | if valid_sequence( |
||
185 | m.flows[i, o].negative_gradient_limit, len(m.TIMESTEPS) |
||
186 | ): |
||
187 | for t in m.TIMESTEPS: |
||
188 | self.negative_gradient[i, o, t].setub( |
||
189 | f.negative_gradient_limit[t] * f.nominal_capacity |
||
190 | ) |
||
191 | |||
192 | def _create_constraints(self): |
||
193 | r"""Creates all constraints for standard flows. |
||
194 | |||
195 | The following constraints are created, if the appropriate attribute of |
||
196 | the *Flow* (see :class:`~oemof.solph.flows._flow.Flow`) object is set: |
||
197 | |||
198 | * `Flow.full_load_time_max` is not `None` (full_load_time_max_constr): |
||
199 | .. math:: |
||
200 | \sum_t P(t) \cdot \tau \leq F_{max} \cdot P_{nom} |
||
201 | |||
202 | * `Flow.full_load_time_min` is not `None` (full_load_time_min_constr): |
||
203 | .. math:: |
||
204 | \sum_t P(t) \cdot \tau \geq F_{min} \cdot P_{nom} |
||
205 | |||
206 | * `Flow.negative_gradient` is not `None` (negative_gradient_constr): |
||
207 | .. math:: |
||
208 | P(t-1) - P(t) \geq ve_n(t) |
||
209 | |||
210 | * `Flow.positive_gradient` is not `None` (positive_gradient_constr): |
||
211 | .. math:: |
||
212 | P(t) - P(t-1) \geq ve_p(t) |
||
213 | |||
214 | * `Flow.integer` is `True` |
||
215 | .. math:: |
||
216 | P(t) = i(t) |
||
217 | """ |
||
218 | m = self.parent_block() |
||
219 | |||
220 | def _flow_full_load_time_max_rule(model): |
||
221 | """Rule definition for build action of max. sum flow constraint.""" |
||
222 | for inp, out in self.FULL_LOAD_TIME_MAX_FLOWS: |
||
223 | lhs = sum( |
||
224 | m.flow[inp, out, ts] |
||
225 | * m.timeincrement[ts] |
||
226 | * m.tsam_weighting[ts] |
||
227 | for ts in m.TIMESTEPS |
||
228 | ) |
||
229 | rhs = ( |
||
230 | m.flows[inp, out].full_load_time_max |
||
231 | * m.flows[inp, out].nominal_capacity |
||
232 | ) |
||
233 | self.full_load_time_max_constr.add((inp, out), lhs <= rhs) |
||
234 | |||
235 | self.full_load_time_max_constr = Constraint( |
||
236 | self.FULL_LOAD_TIME_MAX_FLOWS, noruleinit=True |
||
237 | ) |
||
238 | self.full_load_time_max_build = BuildAction( |
||
239 | rule=_flow_full_load_time_max_rule |
||
240 | ) |
||
241 | |||
242 | def _flow_full_load_time_min_rule(_): |
||
243 | """Rule definition for build action of min. sum flow constraint.""" |
||
244 | for inp, out in self.FULL_LOAD_TIME_MIN_FLOWS: |
||
245 | lhs = sum( |
||
246 | m.flow[inp, out, ts] |
||
247 | * m.timeincrement[ts] |
||
248 | * m.tsam_weighting[ts] |
||
249 | for ts in m.TIMESTEPS |
||
250 | ) |
||
251 | rhs = ( |
||
252 | m.flows[inp, out].full_load_time_min |
||
253 | * m.flows[inp, out].nominal_capacity |
||
254 | ) |
||
255 | self.full_load_time_min_constr.add((inp, out), lhs >= rhs) |
||
256 | |||
257 | self.full_load_time_min_constr = Constraint( |
||
258 | self.FULL_LOAD_TIME_MIN_FLOWS, noruleinit=True |
||
259 | ) |
||
260 | self.full_load_time_min_build = BuildAction( |
||
261 | rule=_flow_full_load_time_min_rule |
||
262 | ) |
||
263 | |||
264 | def _positive_gradient_flow_rule(_): |
||
265 | """Rule definition for positive gradient constraint.""" |
||
266 | for inp, out in self.POSITIVE_GRADIENT_FLOWS: |
||
267 | for index in range(1, len(m.TIMESTEPS) + 1): |
||
268 | if m.TIMESTEPS.at(index) > 0: |
||
269 | lhs = ( |
||
270 | m.flow[ |
||
271 | inp, |
||
272 | out, |
||
273 | m.TIMESTEPS.at(index), |
||
274 | ] |
||
275 | - m.flow[ |
||
276 | inp, |
||
277 | out, |
||
278 | m.TIMESTEPS.at(index - 1), |
||
279 | ] |
||
280 | ) |
||
281 | rhs = self.positive_gradient[ |
||
282 | inp, out, m.TIMESTEPS.at(index) |
||
283 | ] |
||
284 | self.positive_gradient_constr.add( |
||
285 | (inp, out, m.TIMESTEPS.at(index)), |
||
286 | lhs <= rhs, |
||
287 | ) |
||
288 | else: |
||
289 | lhs = self.positive_gradient[inp, out, 0] |
||
290 | rhs = 0 |
||
291 | self.positive_gradient_constr.add( |
||
292 | (inp, out, m.TIMESTEPS.at(index)), |
||
293 | lhs == rhs, |
||
294 | ) |
||
295 | |||
296 | self.positive_gradient_constr = Constraint( |
||
297 | self.POSITIVE_GRADIENT_FLOWS, m.TIMESTEPS, noruleinit=True |
||
298 | ) |
||
299 | self.positive_gradient_build = BuildAction( |
||
300 | rule=_positive_gradient_flow_rule |
||
301 | ) |
||
302 | |||
303 | def _negative_gradient_flow_rule(model): |
||
304 | """Rule definition for negative gradient constraint.""" |
||
305 | for inp, out in self.NEGATIVE_GRADIENT_FLOWS: |
||
306 | for index in range(1, len(m.TIMESTEPS) + 1): |
||
307 | if m.TIMESTEPS.at(index) > 0: |
||
308 | lhs = ( |
||
309 | m.flow[inp, out, m.TIMESTEPS.at(index - 1)] |
||
310 | - m.flow[inp, out, m.TIMESTEPS.at(index)] |
||
311 | ) |
||
312 | rhs = self.negative_gradient[ |
||
313 | inp, out, m.TIMESTEPS.at(index) |
||
314 | ] |
||
315 | self.negative_gradient_constr.add( |
||
316 | (inp, out, m.TIMESTEPS.at(index)), |
||
317 | lhs <= rhs, |
||
318 | ) |
||
319 | else: |
||
320 | lhs = self.negative_gradient[inp, out, 0] |
||
321 | rhs = 0 |
||
322 | self.negative_gradient_constr.add( |
||
323 | (inp, out, m.TIMESTEPS.at(index)), |
||
324 | lhs == rhs, |
||
325 | ) |
||
326 | |||
327 | self.negative_gradient_constr = Constraint( |
||
328 | self.NEGATIVE_GRADIENT_FLOWS, m.TIMESTEPS, noruleinit=True |
||
329 | ) |
||
330 | self.negative_gradient_build = BuildAction( |
||
331 | rule=_negative_gradient_flow_rule |
||
332 | ) |
||
333 | |||
334 | def _integer_flow_rule(_, ii, oi, ti): |
||
335 | """Force flow variable to NonNegativeInteger values.""" |
||
336 | return self.integer_flow[ii, oi, ti] == m.flow[ii, oi, ti] |
||
337 | |||
338 | self.integer_flow_constr = Constraint( |
||
339 | self.INTEGER_FLOWS, m.TIMESTEPS, rule=_integer_flow_rule |
||
340 | ) |
||
341 | |||
342 | if m.es.periods is not None: |
||
343 | |||
344 | def _lifetime_output_rule(_): |
||
345 | """Force flow value to zero when lifetime is reached""" |
||
346 | for inp, out in self.LIFETIME_FLOWS: |
||
347 | for p, ts in m.TIMEINDEX: |
||
348 | if m.flows[inp, out].lifetime <= m.es.periods_years[p]: |
||
349 | lhs = m.flow[inp, out, ts] |
||
350 | rhs = 0 |
||
351 | self.lifetime_output.add( |
||
352 | (inp, out, p, ts), (lhs == rhs) |
||
353 | ) |
||
354 | |||
355 | self.lifetime_output = Constraint( |
||
356 | self.LIFETIME_FLOWS, m.TIMEINDEX, noruleinit=True |
||
357 | ) |
||
358 | self.lifetime_output_build = BuildAction( |
||
359 | rule=_lifetime_output_rule |
||
360 | ) |
||
361 | |||
362 | def _lifetime_age_output_rule(block): |
||
363 | """Force flow value to zero when lifetime is reached |
||
364 | considering initial age |
||
365 | """ |
||
366 | for inp, out in self.LIFETIME_AGE_FLOWS: |
||
367 | for p, ts in m.TIMEINDEX: |
||
368 | if ( |
||
369 | m.flows[inp, out].lifetime - m.flows[inp, out].age |
||
370 | <= m.es.periods_years[p] |
||
371 | ): |
||
372 | lhs = m.flow[inp, out, ts] |
||
373 | rhs = 0 |
||
374 | self.lifetime_age_output.add( |
||
375 | (inp, out, p, ts), (lhs == rhs) |
||
376 | ) |
||
377 | |||
378 | self.lifetime_age_output = Constraint( |
||
379 | self.LIFETIME_AGE_FLOWS, m.TIMEINDEX, noruleinit=True |
||
380 | ) |
||
381 | self.lifetime_age_output_build = BuildAction( |
||
382 | rule=_lifetime_age_output_rule |
||
383 | ) |
||
384 | |||
385 | def _objective_expression(self): |
||
386 | r"""Objective expression for all standard flows with fixed costs |
||
387 | and variable costs. |
||
388 | |||
389 | Depending on the attributes of the `Flow` object the following parts of |
||
390 | the objective function are created for a standard model: |
||
391 | |||
392 | * `Flow.variable_costs` is not `None`: |
||
393 | .. math:: |
||
394 | \sum_{(i,o)} \sum_t P(t) \cdot w(t) \cdot c_{var}(i, o, t) |
||
395 | |||
396 | where :math:`w(t)` is the objective weighting. |
||
397 | |||
398 | In a multi-period model, in contrast, the following parts of |
||
399 | the objective function are created: |
||
400 | |||
401 | * `Flow.variable_costs` is not `None`: |
||
402 | .. math:: |
||
403 | \sum_{(i,o)} \sum_{p, t} P(p, t) \cdot w(t) |
||
404 | \cdot c_{var}(i, o, t) |
||
405 | |||
406 | * `Flow.fixed_costs` is not `None` and flow has no lifetime limit |
||
407 | .. math:: |
||
408 | \sum_{(i,o)} \displaystyle \sum_{pp=0}^{year_{max}} |
||
409 | P_{nominal} \cdot c_{fixed}(i, o, pp) \cdot DF^{-pp} |
||
410 | |||
411 | * `Flow.fixed_costs` is not `None` and flow has a lifetime limit, |
||
412 | but not an initial age |
||
413 | .. math:: |
||
414 | \sum_{(i,o)} \displaystyle \sum_{pp=0}^{limit_{exo}} |
||
415 | P_{nominal} \cdot c_{fixed}(i, o, pp) \cdot DF^{-pp} |
||
416 | |||
417 | * `Flow.fixed_costs` is not `None` and flow has a lifetime limit, |
||
418 | and an initial age |
||
419 | .. math:: |
||
420 | \sum_{(i,o)} \displaystyle \sum_{pp=0}^{limit_{exo}} P_{nominal} |
||
421 | \cdot c_{fixed}(i, o, pp) \cdot DF^{-pp} |
||
422 | |||
423 | Hereby |
||
424 | |||
425 | * :math:`DF(p) = (1 + dr)` is the discount factor for period :math:`p` |
||
426 | and :math:`dr` is the discount rate. |
||
427 | * :math:`n` is the unit lifetime and :math:`a` is the initial age. |
||
428 | * :math:`year_{max}` denotes the last year of the optimization |
||
429 | horizon, i.e. at the end of the last period. |
||
430 | * :math:`limit_{exo}=min\{year_{max}, n - a\}` is used as an |
||
431 | upper bound to ensure fixed costs for existing capacities to occur |
||
432 | within the optimization horizon. :math:`a` is the initial age |
||
433 | of an asset (or 0 if not specified). |
||
434 | """ |
||
435 | m = self.parent_block() |
||
436 | |||
437 | variable_costs = 0 |
||
438 | fixed_costs = 0 |
||
439 | |||
440 | if m.es.periods is None: |
||
441 | for i, o in m.FLOWS: |
||
442 | if valid_sequence( |
||
443 | m.flows[i, o].variable_costs, len(m.TIMESTEPS) |
||
444 | ): |
||
445 | for t in m.TIMESTEPS: |
||
446 | variable_costs += ( |
||
447 | m.flow[i, o, t] |
||
448 | * m.objective_weighting[t] |
||
449 | * m.tsam_weighting[t] |
||
450 | * m.flows[i, o].variable_costs[t] |
||
451 | ) |
||
452 | |||
453 | else: |
||
454 | for i, o in m.FLOWS: |
||
455 | if valid_sequence( |
||
456 | m.flows[i, o].variable_costs, len(m.TIMESTEPS) |
||
457 | ): |
||
458 | for p, t in m.TIMEINDEX: |
||
459 | variable_costs += ( |
||
460 | m.flow[i, o, t] |
||
461 | * m.objective_weighting[t] |
||
462 | * m.tsam_weighting[t] |
||
463 | * m.flows[i, o].variable_costs[t] |
||
464 | * ((1 + m.discount_rate) ** -m.es.periods_years[p]) |
||
465 | ) |
||
466 | |||
467 | # Fixed costs for units with no lifetime limit |
||
468 | if ( |
||
469 | m.flows[i, o].fixed_costs[0] is not None |
||
470 | and m.flows[i, o].nominal_capacity is not None |
||
471 | and (i, o) not in self.LIFETIME_FLOWS |
||
472 | and (i, o) not in self.LIFETIME_AGE_FLOWS |
||
473 | ): |
||
474 | fixed_costs += sum( |
||
475 | m.flows[i, o].nominal_capacity |
||
476 | * m.flows[i, o].fixed_costs[pp] |
||
477 | for pp in range(m.es.end_year_of_optimization) |
||
478 | ) |
||
479 | |||
480 | # Fixed costs for units with limited lifetime |
||
481 | for i, o in self.LIFETIME_FLOWS: |
||
482 | View Code Duplication | if valid_sequence(m.flows[i, o].fixed_costs, len(m.TIMESTEPS)): |
|
|
|||
483 | range_limit = min( |
||
484 | m.es.end_year_of_optimization, |
||
485 | m.flows[i, o].lifetime, |
||
486 | ) |
||
487 | fixed_costs += sum( |
||
488 | m.flows[i, o].nominal_capacity |
||
489 | * m.flows[i, o].fixed_costs[pp] |
||
490 | for pp in range(range_limit) |
||
491 | ) |
||
492 | |||
493 | for i, o in self.LIFETIME_AGE_FLOWS: |
||
494 | View Code Duplication | if valid_sequence(m.flows[i, o].fixed_costs, len(m.TIMESTEPS)): |
|
495 | range_limit = min( |
||
496 | m.es.end_year_of_optimization, |
||
497 | m.flows[i, o].lifetime - m.flows[i, o].age, |
||
498 | ) |
||
499 | fixed_costs += sum( |
||
500 | m.flows[i, o].nominal_capacity |
||
501 | * m.flows[i, o].fixed_costs[pp] |
||
502 | for pp in range(range_limit) |
||
503 | ) |
||
504 | |||
505 | self.variable_costs = Expression(expr=variable_costs) |
||
506 | self.fixed_costs = Expression(expr=fixed_costs) |
||
507 | self.costs = Expression(expr=variable_costs + fixed_costs) |
||
508 | |||
509 | return self.costs |
||
510 |