|
1
|
|
|
# -*- coding: utf-8 -*- |
|
2
|
|
|
|
|
3
|
|
|
""" |
|
4
|
|
|
General description |
|
5
|
|
|
------------------- |
|
6
|
|
|
|
|
7
|
|
|
A basic example to show how to model a simple energy system with oemof.solph. |
|
8
|
|
|
and use the Results class to calculate the variable costs as well as the |
|
9
|
|
|
investment costs. |
|
10
|
|
|
|
|
11
|
|
|
The following energy system is modeled: |
|
12
|
|
|
|
|
13
|
|
|
.. code-block:: text |
|
14
|
|
|
|
|
15
|
|
|
input/output bgas bel |
|
16
|
|
|
| | | |
|
17
|
|
|
| | | |
|
18
|
|
|
wind(FixedSource) |------------------>| |
|
19
|
|
|
| | | |
|
20
|
|
|
pv(FixedSource) |------------------>| |
|
21
|
|
|
| | | |
|
22
|
|
|
rgas(Commodity) |--------->| | |
|
23
|
|
|
| | | |
|
24
|
|
|
demand(Sink) |<------------------| |
|
25
|
|
|
| | | |
|
26
|
|
|
| | | |
|
27
|
|
|
pp_gas(Converter) |<---------| | |
|
28
|
|
|
|------------------>| |
|
29
|
|
|
| | | |
|
30
|
|
|
storage(Storage) |<------------------| |
|
31
|
|
|
|------------------>| |
|
32
|
|
|
|
|
33
|
|
|
Code |
|
34
|
|
|
---- |
|
35
|
|
|
Download source code: :download:`economic_results.py </../examples/economic_results/economics_results_with_invest.py>` |
|
36
|
|
|
|
|
37
|
|
|
.. dropdown:: Click to display code |
|
38
|
|
|
|
|
39
|
|
|
.. literalinclude:: /../examples/economic_results/economics_results_with_invest.py |
|
40
|
|
|
:language: python |
|
41
|
|
|
:lines: 61- |
|
42
|
|
|
|
|
43
|
|
|
Data |
|
44
|
|
|
---- |
|
45
|
|
|
Download data: :download:`time_series.csv </../examples/economic_results/time_series.csv>` |
|
46
|
|
|
|
|
47
|
|
|
Installation requirements |
|
48
|
|
|
------------------------- |
|
49
|
|
|
This example requires oemof.solph (at least v0.6.0), install by: |
|
50
|
|
|
|
|
51
|
|
|
.. code:: bash |
|
52
|
|
|
|
|
53
|
|
|
pip install oemof.solph>=0.6 |
|
54
|
|
|
|
|
55
|
|
|
License |
|
56
|
|
|
------- |
|
57
|
|
|
`MIT license <https://github.com/oemof/oemof-solph/blob/dev/LICENSE>`_ |
|
58
|
|
|
""" |
|
59
|
|
|
########################################################################### |
|
60
|
|
|
# imports |
|
61
|
|
|
########################################################################### |
|
62
|
|
|
|
|
63
|
|
|
import logging |
|
64
|
|
|
import os |
|
65
|
|
|
|
|
66
|
|
|
import matplotlib.pyplot as plt |
|
67
|
|
|
import pandas as pd |
|
68
|
|
|
from oemof.tools import logger |
|
69
|
|
|
|
|
70
|
|
|
from oemof.solph import EnergySystem |
|
71
|
|
|
from oemof.solph import Investment |
|
72
|
|
|
from oemof.solph import Model |
|
73
|
|
|
from oemof.solph import Results |
|
74
|
|
|
from oemof.solph import buses |
|
75
|
|
|
from oemof.solph import components |
|
76
|
|
|
from oemof.solph import create_time_index |
|
77
|
|
|
from oemof.solph import flows |
|
78
|
|
|
|
|
79
|
|
|
|
|
80
|
|
|
def get_data_from_file_path(file_path: str) -> pd.DataFrame: |
|
81
|
|
|
try: |
|
82
|
|
|
data = pd.read_csv(file_path) |
|
83
|
|
|
except FileNotFoundError: |
|
84
|
|
|
dir = os.path.dirname(os.path.abspath(__file__)) |
|
85
|
|
|
data = pd.read_csv(dir + "/" + file_path) |
|
86
|
|
|
return data |
|
87
|
|
|
|
|
88
|
|
|
|
|
89
|
|
|
def main(optimize=True): |
|
90
|
|
|
|
|
91
|
|
|
# ************************************************************************* |
|
92
|
|
|
# ********** PART 1 - Define and optimise the energy system *************** |
|
93
|
|
|
# ************************************************************************* |
|
94
|
|
|
|
|
95
|
|
|
# Read data file |
|
96
|
|
|
file_name = "time_series.csv" |
|
97
|
|
|
data = get_data_from_file_path(file_name) |
|
98
|
|
|
|
|
99
|
|
|
solver = "cbc" # 'glpk', 'gurobi',.... |
|
100
|
|
|
number_of_time_steps = len(data) |
|
101
|
|
|
solver_verbose = False # show/hide solver output |
|
102
|
|
|
|
|
103
|
|
|
# initiate the logger (see the API docs for more information) |
|
104
|
|
|
logger.define_logging( |
|
105
|
|
|
logfile="oemof_example.log", |
|
106
|
|
|
screen_level=logging.INFO, |
|
107
|
|
|
file_level=logging.INFO, |
|
108
|
|
|
) |
|
109
|
|
|
|
|
110
|
|
|
logging.info("Initialize the energy system") |
|
111
|
|
|
date_time_index = create_time_index(2012, number=number_of_time_steps) |
|
112
|
|
|
|
|
113
|
|
|
# create the energysystem and assign the time index |
|
114
|
|
|
energysystem = EnergySystem( |
|
115
|
|
|
timeindex=date_time_index, infer_last_interval=False |
|
116
|
|
|
) |
|
117
|
|
|
|
|
118
|
|
|
########################################################################## |
|
119
|
|
|
# Create oemof objects |
|
120
|
|
|
########################################################################## |
|
121
|
|
|
|
|
122
|
|
|
logging.info("Create oemof objects") |
|
123
|
|
|
|
|
124
|
|
|
# The bus objects were assigned to variables which makes it easier to |
|
125
|
|
|
# connect components to these buses (see below). |
|
126
|
|
|
|
|
127
|
|
|
# create natural gas bus |
|
128
|
|
|
bus_gas = buses.Bus(label="natural_gas") |
|
129
|
|
|
|
|
130
|
|
|
# create electricity bus |
|
131
|
|
|
bus_electricity = buses.Bus(label="electricity") |
|
132
|
|
|
|
|
133
|
|
|
# adding the buses to the energy system |
|
134
|
|
|
energysystem.add(bus_gas, bus_electricity) |
|
135
|
|
|
|
|
136
|
|
|
# create excess component for the electricity bus to allow overproduction |
|
137
|
|
|
energysystem.add( |
|
138
|
|
|
components.Sink( |
|
139
|
|
|
label="excess_bus_electricity", |
|
140
|
|
|
inputs={bus_electricity: flows.Flow()}, |
|
141
|
|
|
) |
|
142
|
|
|
) |
|
143
|
|
|
|
|
144
|
|
|
# create source object representing the gas commodity |
|
145
|
|
|
energysystem.add( |
|
146
|
|
|
components.Source( |
|
147
|
|
|
label="rgas", |
|
148
|
|
|
outputs={bus_gas: flows.Flow()}, |
|
149
|
|
|
) |
|
150
|
|
|
) |
|
151
|
|
|
|
|
152
|
|
|
# create fixed source object representing wind power plants |
|
153
|
|
|
energysystem.add( |
|
154
|
|
|
components.Source( |
|
155
|
|
|
label="wind", |
|
156
|
|
|
outputs={ |
|
157
|
|
|
bus_electricity: flows.Flow( |
|
158
|
|
|
fix=data["wind"], nominal_capacity=1000000 |
|
159
|
|
|
) |
|
160
|
|
|
}, |
|
161
|
|
|
) |
|
162
|
|
|
) |
|
163
|
|
|
|
|
164
|
|
|
# create fixed source object representing pv power plants |
|
165
|
|
|
energysystem.add( |
|
166
|
|
|
components.Source( |
|
167
|
|
|
label="pv", |
|
168
|
|
|
outputs={ |
|
169
|
|
|
bus_electricity: flows.Flow( |
|
170
|
|
|
fix=data["pv"], nominal_capacity=582000 |
|
171
|
|
|
) |
|
172
|
|
|
}, |
|
173
|
|
|
) |
|
174
|
|
|
) |
|
175
|
|
|
|
|
176
|
|
|
# create simple sink object representing the electrical demand |
|
177
|
|
|
# nominal_capacity is set to 1 because demand_el is not a normalised series |
|
178
|
|
|
energysystem.add( |
|
179
|
|
|
components.Sink( |
|
180
|
|
|
label="demand", |
|
181
|
|
|
inputs={ |
|
182
|
|
|
bus_electricity: flows.Flow( |
|
183
|
|
|
fix=data["demand_el"], nominal_capacity=1 |
|
184
|
|
|
) |
|
185
|
|
|
}, |
|
186
|
|
|
) |
|
187
|
|
|
) |
|
188
|
|
|
|
|
189
|
|
|
# create simple converter object representing a gas power plant |
|
190
|
|
|
energysystem.add( |
|
191
|
|
|
components.Converter( |
|
192
|
|
|
label="pp_gas", |
|
193
|
|
|
inputs={bus_gas: flows.Flow()}, |
|
194
|
|
|
outputs={ |
|
195
|
|
|
bus_electricity: flows.Flow( |
|
196
|
|
|
nominal_capacity=Investment( |
|
197
|
|
|
ep_costs=300, nonconvex=True, offset=400, maximum=10e10 |
|
198
|
|
|
), |
|
199
|
|
|
variable_costs=50, |
|
200
|
|
|
) |
|
201
|
|
|
}, |
|
202
|
|
|
conversion_factors={bus_electricity: 0.58}, |
|
203
|
|
|
) |
|
204
|
|
|
) |
|
205
|
|
|
|
|
206
|
|
|
# create storage object representing a battery |
|
207
|
|
|
nominal_capacity = 10077997 |
|
208
|
|
|
nominal_capacity = Investment(ep_costs=80, maximum=nominal_capacity / 6) |
|
209
|
|
|
|
|
210
|
|
|
battery_storage = components.GenericStorage( |
|
211
|
|
|
nominal_capacity=nominal_capacity, |
|
212
|
|
|
label="battery_storage", |
|
213
|
|
|
inputs={bus_electricity: flows.Flow(nominal_capacity=10077997 / 6)}, |
|
214
|
|
|
outputs={ |
|
215
|
|
|
bus_electricity: flows.Flow( |
|
216
|
|
|
nominal_capacity=10077997 / 6, variable_costs=10 |
|
217
|
|
|
) |
|
218
|
|
|
}, |
|
219
|
|
|
loss_rate=0.00, |
|
220
|
|
|
initial_storage_level=None, |
|
221
|
|
|
inflow_conversion_factor=1, |
|
222
|
|
|
outflow_conversion_factor=0.8, |
|
223
|
|
|
) |
|
224
|
|
|
|
|
225
|
|
|
energysystem.add(battery_storage) |
|
226
|
|
|
|
|
227
|
|
|
########################################################################## |
|
228
|
|
|
# Optimise the energy system and plot the results |
|
229
|
|
|
########################################################################## |
|
230
|
|
|
|
|
231
|
|
|
if optimize is False: |
|
232
|
|
|
return energysystem |
|
233
|
|
|
|
|
234
|
|
|
logging.info("Optimise the energy system") |
|
235
|
|
|
|
|
236
|
|
|
# initialise the operational model |
|
237
|
|
|
energysystem_model = Model(energysystem) |
|
238
|
|
|
|
|
239
|
|
|
# if tee_switch is true solver messages will be displayed |
|
240
|
|
|
logging.info("Solve the optimization problem") |
|
241
|
|
|
energysystem_model.solve( |
|
242
|
|
|
solver=solver, solve_kwargs={"tee": solver_verbose} |
|
243
|
|
|
) |
|
244
|
|
|
|
|
245
|
|
|
logging.info("Store the energy system with the results.") |
|
246
|
|
|
|
|
247
|
|
|
# The processing module of the outputlib can be used to extract the results |
|
248
|
|
|
# from the model transfer them into a homogeneous structured dictionary. |
|
249
|
|
|
|
|
250
|
|
|
results = Results(energysystem_model) |
|
251
|
|
|
|
|
252
|
|
|
# ************************************************************************* |
|
253
|
|
|
# ********** PART 2 - Processing the results ****************************** |
|
254
|
|
|
# ************************************************************************* |
|
255
|
|
|
|
|
256
|
|
|
# These are the keys to access information from the Results() |
|
257
|
|
|
keys = results.keys() |
|
258
|
|
|
print("\n********* Keys to access information from Results() *********") |
|
259
|
|
|
for key in keys: |
|
260
|
|
|
print("Key: {}".format(key)) |
|
261
|
|
|
|
|
262
|
|
|
# Evaluating the economics of the solution |
|
263
|
|
|
|
|
264
|
|
|
print("\n********* Evaluating economics *********") |
|
265
|
|
|
|
|
266
|
|
|
# -------------- variable costs --------------------------- |
|
267
|
|
|
variable_costs = results.to_df("variable_costs") |
|
268
|
|
|
values = results.to_df("flow") |
|
269
|
|
|
|
|
270
|
|
|
var_costs_dict = {} |
|
271
|
|
|
for i, o in energysystem_model.FLOWS: |
|
272
|
|
|
var_costs_dict["({}, {})".format(i, o)] = energysystem_model.flows[ |
|
273
|
|
|
i, o |
|
274
|
|
|
].variable_costs |
|
275
|
|
|
|
|
276
|
|
|
df_var_costs = pd.DataFrame.from_dict(var_costs_dict) |
|
277
|
|
|
df_var_costs.index = create_time_index( |
|
278
|
|
|
2012, number=number_of_time_steps - 1 |
|
279
|
|
|
) |
|
280
|
|
|
|
|
281
|
|
|
start_date = "2012-04-07 00:00:00" |
|
282
|
|
|
end_date = "2012-04-21 23:00:00" |
|
283
|
|
|
|
|
284
|
|
|
# Create figure and subplots |
|
285
|
|
|
fig, axs = plt.subplots(3, 1, figsize=(10, 10), sharex=True) |
|
286
|
|
|
|
|
287
|
|
|
# First subplot for flow values |
|
288
|
|
|
values.loc[start_date:end_date, :].plot(ax=axs[0]) |
|
289
|
|
|
axs[0].set_title("Flow Values") |
|
290
|
|
|
axs[0].set_ylabel("Power in kW") |
|
291
|
|
|
|
|
292
|
|
|
# Second subplot for variable costs |
|
293
|
|
|
df_var_costs.loc[start_date:end_date, :].plot(ax=axs[1]) |
|
294
|
|
|
axs[1].set_title("Variable costs") |
|
295
|
|
|
axs[1].set_ylabel("specific variable costs in €/kWh") |
|
296
|
|
|
|
|
297
|
|
|
# Third subplot for variable opex |
|
298
|
|
|
variable_costs.loc[start_date:end_date, :].plot(ax=axs[2]) |
|
299
|
|
|
axs[2].set_title("Variable OPEX") |
|
300
|
|
|
axs[2].set_ylabel("variable costs in €") |
|
301
|
|
|
|
|
302
|
|
|
# plt.show() |
|
303
|
|
|
|
|
304
|
|
|
# -------------- Investment Costs --------------------------- |
|
305
|
|
|
|
|
306
|
|
|
invest = results.to_df("invest") |
|
307
|
|
|
print(invest) |
|
308
|
|
|
|
|
309
|
|
|
investment_costs = results.to_df("investment_costs") |
|
310
|
|
|
|
|
311
|
|
|
annual_costs_dict = {} |
|
312
|
|
|
for i, o in energysystem_model.FLOWS: |
|
313
|
|
|
if hasattr(energysystem_model.flows[i, o].investment, "ep_costs"): |
|
314
|
|
|
annual_costs_dict["({}, {})".format(i, o)] = { |
|
315
|
|
|
"ep_costs": ( |
|
316
|
|
|
energysystem_model.flows[i, o].investment.ep_costs[0] |
|
317
|
|
|
), |
|
318
|
|
|
"offset": ( |
|
319
|
|
|
energysystem_model.flows[i, o].investment.offset[0] |
|
320
|
|
|
), |
|
321
|
|
|
} |
|
322
|
|
|
for node in energysystem_model.nodes: |
|
323
|
|
|
if isinstance( |
|
324
|
|
|
node, |
|
325
|
|
|
components._generic_storage.GenericStorage, |
|
326
|
|
|
): |
|
327
|
|
|
annual_costs_dict[node.label] = { |
|
328
|
|
|
"ep_costs": (node.investment.ep_costs[0]), |
|
329
|
|
|
"offset": (node.investment.offset[0]), |
|
330
|
|
|
} |
|
331
|
|
|
|
|
332
|
|
|
df_annual_costs = pd.DataFrame.from_dict(annual_costs_dict) |
|
333
|
|
|
|
|
334
|
|
|
# Create figure and subplots |
|
335
|
|
|
fig2, axs2 = plt.subplots(1, 3, figsize=(10, 6)) |
|
336
|
|
|
|
|
337
|
|
|
# First subplot for invest decisions |
|
338
|
|
|
results.to_df("invest").plot(ax=axs2[0], kind="bar") |
|
339
|
|
|
axs2[0].set_title("Yearly Investment Installation") |
|
340
|
|
|
axs2[0].set_ylabel("installed capacity in kW") |
|
341
|
|
|
|
|
342
|
|
|
# Second subplot for ep_costs and offset |
|
343
|
|
|
df_annual_costs.plot(ax=axs2[1], kind="bar") |
|
344
|
|
|
axs2[1].set_title("ep_costs and offset") |
|
345
|
|
|
axs2[1].set_ylabel("specific investment costs in €/kWh and €") |
|
346
|
|
|
|
|
347
|
|
|
# Third subplot for yearly investment costs |
|
348
|
|
|
investment_costs.plot(ax=axs2[2], kind="bar") |
|
349
|
|
|
axs2[2].set_title("Yearly Investment Costs") |
|
350
|
|
|
axs2[2].set_ylabel("investment costs in €") |
|
351
|
|
|
|
|
352
|
|
|
plt.show() |
|
353
|
|
|
|
|
354
|
|
|
|
|
355
|
|
|
if __name__ == "__main__": |
|
356
|
|
|
main() |
|
357
|
|
|
|