1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
|
3
|
|
|
""" |
4
|
|
|
General description |
5
|
|
|
------------------- |
6
|
|
|
|
7
|
|
|
A basic example to show how to get the dual variables from the system. Try |
8
|
|
|
to understand the plot. |
9
|
|
|
|
10
|
|
|
Code |
11
|
|
|
---- |
12
|
|
|
Download source code: :download:`dual_variable_example.py </../examples/dual_variable_example/dual_variable_example.py>` |
13
|
|
|
|
14
|
|
|
.. dropdown:: Click to display code |
15
|
|
|
|
16
|
|
|
.. literalinclude:: /../examples/dual_variable_example/dual_variable_example.py |
17
|
|
|
:language: python |
18
|
|
|
:lines: 34-297 |
19
|
|
|
|
20
|
|
|
|
21
|
|
|
Installation requirements |
22
|
|
|
------------------------- |
23
|
|
|
|
24
|
|
|
This example requires the version v0.5.x of oemof.solph: |
25
|
|
|
|
26
|
|
|
.. code:: bash |
27
|
|
|
|
28
|
|
|
pip install 'oemof.solph[examples]>=0.5,<0.6' |
29
|
|
|
|
30
|
|
|
SPDX-FileCopyrightText: Uwe Krien <[email protected]> |
31
|
|
|
|
32
|
|
|
SPDX-License-Identifier: MIT |
33
|
|
|
""" |
34
|
|
|
########################################################################### |
35
|
|
|
# imports |
36
|
|
|
########################################################################### |
37
|
|
|
|
38
|
|
|
import pandas as pd |
39
|
|
|
from matplotlib import pyplot as plt |
40
|
|
|
from oemof.tools import logger |
41
|
|
|
|
42
|
|
|
from oemof.solph import EnergySystem |
43
|
|
|
from oemof.solph import Model |
44
|
|
|
from oemof.solph import buses |
45
|
|
|
from oemof.solph import components as cmp |
46
|
|
|
from oemof.solph import flows |
47
|
|
|
from oemof.solph import processing |
48
|
|
|
|
49
|
|
|
|
50
|
|
|
def main(optimize=True): |
51
|
|
|
# ************************************************************************* |
52
|
|
|
# ********** PART 1 - Define and optimise the energy system *************** |
53
|
|
|
# ************************************************************************* |
54
|
|
|
|
55
|
|
|
solver = "cbc" # 'glpk', 'gurobi',.... |
56
|
|
|
number_of_time_steps = 48 |
57
|
|
|
solver_verbose = False # show/hide solver output |
58
|
|
|
|
59
|
|
|
# initiate the logger (see the API docs for more information) |
60
|
|
|
logger.define_logging() |
61
|
|
|
|
62
|
|
|
date_time_index = pd.date_range( |
63
|
|
|
"1/1/2012", periods=number_of_time_steps, freq="h" |
64
|
|
|
) |
65
|
|
|
|
66
|
|
|
energysystem = EnergySystem( |
67
|
|
|
timeindex=date_time_index, infer_last_interval=True |
68
|
|
|
) |
69
|
|
|
|
70
|
|
|
demand = [ |
71
|
|
|
209, |
72
|
|
|
207, |
73
|
|
|
200, |
74
|
|
|
191, |
75
|
|
|
185, |
76
|
|
|
180, |
77
|
|
|
172, |
78
|
|
|
170, |
79
|
|
|
171, |
80
|
|
|
179, |
81
|
|
|
189, |
82
|
|
|
201, |
83
|
|
|
208, |
84
|
|
|
207, |
85
|
|
|
205, |
86
|
|
|
206, |
87
|
|
|
217, |
88
|
|
|
232, |
89
|
|
|
237, |
90
|
|
|
232, |
91
|
|
|
224, |
92
|
|
|
219, |
93
|
|
|
223, |
94
|
|
|
213, |
95
|
|
|
201, |
96
|
|
|
192, |
97
|
|
|
187, |
98
|
|
|
184, |
99
|
|
|
184, |
100
|
|
|
182, |
101
|
|
|
180, |
102
|
|
|
191, |
103
|
|
|
207, |
104
|
|
|
222, |
105
|
|
|
231, |
106
|
|
|
238, |
107
|
|
|
241, |
108
|
|
|
237, |
109
|
|
|
234, |
110
|
|
|
235, |
111
|
|
|
242, |
112
|
|
|
264, |
113
|
|
|
265, |
114
|
|
|
260, |
115
|
|
|
245, |
116
|
|
|
238, |
117
|
|
|
241, |
118
|
|
|
231, |
119
|
|
|
] |
120
|
|
|
pv = [ |
121
|
|
|
0.18, |
122
|
|
|
0.11, |
123
|
|
|
0.05, |
124
|
|
|
0.05, |
125
|
|
|
0.0, |
126
|
|
|
0.0, |
127
|
|
|
0.0, |
128
|
|
|
0.0, |
129
|
|
|
0.0, |
130
|
|
|
0.0, |
131
|
|
|
0.0, |
132
|
|
|
0.0, |
133
|
|
|
0.0, |
134
|
|
|
0.05, |
135
|
|
|
0.07, |
136
|
|
|
0.11, |
137
|
|
|
0.13, |
138
|
|
|
0.15, |
139
|
|
|
0.22, |
140
|
|
|
0.28, |
141
|
|
|
0.33, |
142
|
|
|
0.25, |
143
|
|
|
0.17, |
144
|
|
|
0.09, |
145
|
|
|
0.09, |
146
|
|
|
0.07, |
147
|
|
|
0.05, |
148
|
|
|
0.05, |
149
|
|
|
0.0, |
150
|
|
|
0.0, |
151
|
|
|
0.0, |
152
|
|
|
0.0, |
153
|
|
|
0.0, |
154
|
|
|
0.0, |
155
|
|
|
0.0, |
156
|
|
|
0.0, |
157
|
|
|
0.0, |
158
|
|
|
0.09, |
159
|
|
|
0.21, |
160
|
|
|
0.33, |
161
|
|
|
0.44, |
162
|
|
|
0.54, |
163
|
|
|
0.61, |
164
|
|
|
0.65, |
165
|
|
|
0.67, |
166
|
|
|
0.64, |
167
|
|
|
0.59, |
168
|
|
|
0.52, |
169
|
|
|
] |
170
|
|
|
|
171
|
|
|
########################################################################## |
172
|
|
|
# Create oemof object |
173
|
|
|
########################################################################## |
174
|
|
|
|
175
|
|
|
# create natural gas bus |
176
|
|
|
bus_gas = buses.Bus(label="natural_gas") |
177
|
|
|
|
178
|
|
|
# create electricity bus |
179
|
|
|
bus_elec = buses.Bus(label="electricity") |
180
|
|
|
|
181
|
|
|
# adding the buses to the energy system |
182
|
|
|
energysystem.add(bus_gas, bus_elec) |
183
|
|
|
|
184
|
|
|
# create excess component for the electricity bus to allow overproduction |
185
|
|
|
energysystem.add( |
186
|
|
|
cmp.Sink(label="excess_bel", inputs={bus_elec: flows.Flow()}) |
187
|
|
|
) |
188
|
|
|
|
189
|
|
|
# create source object representing the gas commodity (annual limit) |
190
|
|
|
energysystem.add( |
191
|
|
|
cmp.Source( |
192
|
|
|
label="rgas", |
193
|
|
|
outputs={bus_gas: flows.Flow(variable_costs=38)}, |
194
|
|
|
) |
195
|
|
|
) |
196
|
|
|
|
197
|
|
|
# create fixed source object representing pv power plants |
198
|
|
|
energysystem.add( |
199
|
|
|
cmp.Source( |
200
|
|
|
label="pv", |
201
|
|
|
outputs={bus_elec: flows.Flow(fix=pv, nominal_capacity=700)}, |
202
|
|
|
) |
203
|
|
|
) |
204
|
|
|
|
205
|
|
|
# create simple sink object representing the electrical demand |
206
|
|
|
energysystem.add( |
207
|
|
|
cmp.Sink( |
208
|
|
|
label="demand", |
209
|
|
|
inputs={bus_elec: flows.Flow(fix=demand, nominal_capacity=1)}, |
210
|
|
|
) |
211
|
|
|
) |
212
|
|
|
|
213
|
|
|
# create simple converter object representing a gas power plant |
214
|
|
|
energysystem.add( |
215
|
|
|
cmp.Converter( |
216
|
|
|
label="pp_gas", |
217
|
|
|
inputs={bus_gas: flows.Flow()}, |
218
|
|
|
outputs={bus_elec: flows.Flow(nominal_capacity=400)}, |
219
|
|
|
conversion_factors={bus_elec: 0.5}, |
220
|
|
|
) |
221
|
|
|
) |
222
|
|
|
|
223
|
|
|
# create storage object representing a battery |
224
|
|
|
cap = 400 |
225
|
|
|
storage = cmp.GenericStorage( |
226
|
|
|
nominal_capacity=cap, |
227
|
|
|
label="storage", |
228
|
|
|
inputs={bus_elec: flows.Flow(nominal_capacity=cap / 6)}, |
229
|
|
|
outputs={ |
230
|
|
|
bus_elec: flows.Flow( |
231
|
|
|
nominal_capacity=cap / 6, variable_costs=0.001 |
232
|
|
|
) |
233
|
|
|
}, |
234
|
|
|
loss_rate=0.00, |
235
|
|
|
initial_storage_level=0, |
236
|
|
|
inflow_conversion_factor=1, |
237
|
|
|
outflow_conversion_factor=0.8, |
238
|
|
|
) |
239
|
|
|
|
240
|
|
|
energysystem.add(storage) |
241
|
|
|
|
242
|
|
|
########################################################################## |
243
|
|
|
# Optimise the energy system |
244
|
|
|
########################################################################## |
245
|
|
|
|
246
|
|
|
if optimize is False: |
247
|
|
|
return energysystem |
248
|
|
|
|
249
|
|
|
# initialise the operational model |
250
|
|
|
model = Model(energysystem) |
251
|
|
|
|
252
|
|
|
model.receive_duals() |
253
|
|
|
|
254
|
|
|
# if tee_switch is true solver messages will be displayed |
255
|
|
|
model.solve(solver=solver, solve_kwargs={"tee": solver_verbose}) |
256
|
|
|
|
257
|
|
|
# add results to the energy system to make it possible to store them. |
258
|
|
|
results = processing.results(model) |
259
|
|
|
|
260
|
|
|
flows_to_bus = pd.DataFrame( |
261
|
|
|
{ |
262
|
|
|
str(k[0].label): v["sequences"]["flow"] |
263
|
|
|
for k, v in results.items() |
264
|
|
|
if k[1] is not None and k[1] == bus_elec |
265
|
|
|
} |
266
|
|
|
) |
267
|
|
|
flows_from_bus = pd.DataFrame( |
268
|
|
|
{ |
269
|
|
|
str(k[1].label): v["sequences"]["flow"] |
270
|
|
|
for k, v in results.items() |
271
|
|
|
if k[1] is not None and k[0] == bus_elec |
272
|
|
|
} |
273
|
|
|
) |
274
|
|
|
|
275
|
|
|
storage = pd.DataFrame( |
276
|
|
|
{ |
277
|
|
|
str(k[0].label): v["sequences"]["storage_content"] |
278
|
|
|
for k, v in results.items() |
279
|
|
|
if k[1] is None and k[0] == storage |
280
|
|
|
} |
281
|
|
|
) |
282
|
|
|
|
283
|
|
|
duals = pd.DataFrame( |
284
|
|
|
{ |
285
|
|
|
str(k[0].label): v["sequences"]["duals"] |
286
|
|
|
for k, v in results.items() |
287
|
|
|
if k[1] is None and isinstance(k[0], buses.Bus) |
288
|
|
|
} |
289
|
|
|
) |
290
|
|
|
|
291
|
|
|
my_flows = pd.concat( |
292
|
|
|
[flows_to_bus, flows_from_bus, storage, duals], |
293
|
|
|
keys=["to_bus", "from_bus", "content", "duals"], |
294
|
|
|
axis=1, |
295
|
|
|
) |
296
|
|
|
|
297
|
|
|
my_flows.plot() |
298
|
|
|
plt.show() |
299
|
|
|
|
300
|
|
|
|
301
|
|
|
if __name__ == "__main__": |
302
|
|
|
main() |
303
|
|
|
|