1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
|
3
|
|
|
""" |
4
|
|
|
General description |
5
|
|
|
------------------- |
6
|
|
|
As the csv-reader was removed with version 0.2 this example shows how to create |
7
|
|
|
an excel-reader. The example is equivalent to the old csv-reader example. |
8
|
|
|
Following the example one can customise the excel reader to ones own needs. |
9
|
|
|
|
10
|
|
|
The pandas package supports the '.xls' and the '.xlsx' format but one can |
11
|
|
|
create read and adept the files with open source software such as libreoffice, |
12
|
|
|
openoffice, gnumeric, ... |
13
|
|
|
|
14
|
|
|
Code |
15
|
|
|
---- |
16
|
|
|
Download source code: :download:`dispatch.py </../examples/excel_reader/dispatch.py>` |
17
|
|
|
|
18
|
|
|
.. dropdown:: Click to display code |
19
|
|
|
|
20
|
|
|
.. literalinclude:: /../examples/excel_reader/dispatch.py |
21
|
|
|
:language: python |
22
|
|
|
:lines: 57-437 |
23
|
|
|
|
24
|
|
|
Data |
25
|
|
|
---- |
26
|
|
|
Download data: :download:`scenario.xlsx </../examples/excel_reader/scenario.xlsx>` |
27
|
|
|
|
28
|
|
|
Installation requirements |
29
|
|
|
------------------------- |
30
|
|
|
This example requires oemof.solph (v0.5.x), install by: |
31
|
|
|
|
32
|
|
|
.. code:: bash |
33
|
|
|
|
34
|
|
|
pip install oemof.solph[examples] |
35
|
|
|
pip install openpyxl |
36
|
|
|
|
37
|
|
|
|
38
|
|
|
If you want to plot the energy system's graph, you have to install pygraphviz |
39
|
|
|
using: |
40
|
|
|
|
41
|
|
|
.. code:: bash |
42
|
|
|
|
43
|
|
|
pip install pygraphviz |
44
|
|
|
|
45
|
|
|
For pygraphviz under Windows, some hints are available in the oemof Wiki: |
46
|
|
|
https://github.com/oemof/oemof/wiki/Windows---general |
47
|
|
|
|
48
|
|
|
License |
49
|
|
|
------- |
50
|
|
|
Uwe Krien <[email protected]> |
51
|
|
|
Jonathan Amme <[email protected]> |
52
|
|
|
|
53
|
|
|
`MIT license <https://github.com/oemof/oemof-solph/blob/dev/LICENSE>`_ |
54
|
|
|
|
55
|
|
|
""" |
56
|
|
|
|
57
|
|
|
import logging |
58
|
|
|
import os |
59
|
|
|
|
60
|
|
|
import networkx as nx |
61
|
|
|
import pandas as pd |
62
|
|
|
from matplotlib import pyplot as plt |
63
|
|
|
from oemof.network.graph import create_nx_graph |
64
|
|
|
from oemof.tools import logger |
65
|
|
|
|
66
|
|
|
from oemof import solph |
67
|
|
|
|
68
|
|
|
|
69
|
|
|
def nodes_from_excel(filename): |
70
|
|
|
"""Read node data from Excel sheet |
71
|
|
|
|
72
|
|
|
Parameters |
73
|
|
|
---------- |
74
|
|
|
filename : :obj:`str` |
75
|
|
|
Path to excel file |
76
|
|
|
|
77
|
|
|
Returns |
78
|
|
|
------- |
79
|
|
|
:obj:`dict` |
80
|
|
|
Imported nodes data |
81
|
|
|
""" |
82
|
|
|
|
83
|
|
|
# does Excel file exist? |
84
|
|
|
if not filename or not os.path.isfile(filename): |
85
|
|
|
raise FileNotFoundError( |
86
|
|
|
"Excel data file {} not found.".format(filename) |
87
|
|
|
) |
88
|
|
|
|
89
|
|
|
xls = pd.ExcelFile(filename) |
90
|
|
|
|
91
|
|
|
nodes_data = { |
92
|
|
|
"buses": xls.parse("buses"), |
93
|
|
|
"commodity_sources": xls.parse("commodity_sources"), |
94
|
|
|
"converters": xls.parse("converters"), |
95
|
|
|
"renewables": xls.parse("renewables"), |
96
|
|
|
"demand": xls.parse("demand"), |
97
|
|
|
"storages": xls.parse("storages"), |
98
|
|
|
"powerlines": xls.parse("powerlines"), |
99
|
|
|
"timeseries": xls.parse("time_series"), |
100
|
|
|
} |
101
|
|
|
|
102
|
|
|
# set datetime index |
103
|
|
|
nodes_data["timeseries"].set_index("timestamp", inplace=True) |
104
|
|
|
nodes_data["timeseries"].index = pd.to_datetime( |
105
|
|
|
nodes_data["timeseries"].index |
106
|
|
|
) |
107
|
|
|
|
108
|
|
|
print("Data from Excel file {} imported.".format(filename)) |
109
|
|
|
|
110
|
|
|
return nodes_data |
111
|
|
|
|
112
|
|
|
|
113
|
|
|
def create_nodes(nd=None): |
114
|
|
|
"""Create nodes (oemof objects) from node dict |
115
|
|
|
|
116
|
|
|
Parameters |
117
|
|
|
---------- |
118
|
|
|
nd : :obj:`dict` |
119
|
|
|
Nodes data |
120
|
|
|
|
121
|
|
|
Returns |
122
|
|
|
------- |
123
|
|
|
nodes : `obj`:dict of :class:`nodes <oemof.network.Node>` |
124
|
|
|
""" |
125
|
|
|
|
126
|
|
|
if not nd: |
127
|
|
|
raise ValueError("No nodes data provided.") |
128
|
|
|
|
129
|
|
|
nodes = [] |
130
|
|
|
|
131
|
|
|
# Create Bus objects from buses table |
132
|
|
|
busd = {} |
133
|
|
|
|
134
|
|
|
for i, b in nd["buses"].iterrows(): |
135
|
|
|
if b["active"]: |
136
|
|
|
bus = solph.Bus(label=b["label"]) |
137
|
|
|
nodes.append(bus) |
138
|
|
|
|
139
|
|
|
busd[b["label"]] = bus |
140
|
|
|
if b["excess"]: |
141
|
|
|
nodes.append( |
142
|
|
|
solph.components.Sink( |
143
|
|
|
label=b["label"] + "_excess", |
144
|
|
|
inputs={ |
145
|
|
|
busd[b["label"]]: solph.Flow( |
146
|
|
|
variable_costs=b["excess costs"] |
147
|
|
|
) |
148
|
|
|
}, |
149
|
|
|
) |
150
|
|
|
) |
151
|
|
|
if b["shortage"]: |
152
|
|
|
nodes.append( |
153
|
|
|
solph.components.Source( |
154
|
|
|
label=b["label"] + "_shortage", |
155
|
|
|
outputs={ |
156
|
|
|
busd[b["label"]]: solph.Flow( |
157
|
|
|
variable_costs=b["shortage costs"] |
158
|
|
|
) |
159
|
|
|
}, |
160
|
|
|
) |
161
|
|
|
) |
162
|
|
|
|
163
|
|
|
# Create Source objects from table 'commodity sources' |
164
|
|
|
for i, cs in nd["commodity_sources"].iterrows(): |
165
|
|
|
if cs["active"]: |
166
|
|
|
nodes.append( |
167
|
|
|
solph.components.Source( |
168
|
|
|
label=cs["label"], |
169
|
|
|
outputs={ |
170
|
|
|
busd[cs["to"]]: solph.Flow( |
171
|
|
|
variable_costs=cs["variable costs"] |
172
|
|
|
) |
173
|
|
|
}, |
174
|
|
|
) |
175
|
|
|
) |
176
|
|
|
|
177
|
|
|
# Create Source objects with fixed time series from 'renewables' table |
178
|
|
|
for i, re in nd["renewables"].iterrows(): |
179
|
|
|
if re["active"]: |
180
|
|
|
# set static outflow values |
181
|
|
|
outflow_args = {"nominal_capacity": re["capacity"]} |
182
|
|
|
# get time series for node and parameter |
183
|
|
|
for col in nd["timeseries"].columns.values: |
184
|
|
|
if col.split(".")[0] == re["label"]: |
185
|
|
|
outflow_args[col.split(".")[1]] = nd["timeseries"][col] |
186
|
|
|
|
187
|
|
|
# create |
188
|
|
|
nodes.append( |
189
|
|
|
solph.components.Source( |
190
|
|
|
label=re["label"], |
191
|
|
|
outputs={busd[re["to"]]: solph.Flow(**outflow_args)}, |
192
|
|
|
) |
193
|
|
|
) |
194
|
|
|
|
195
|
|
|
# Create Sink objects with fixed time series from 'demand' table |
196
|
|
|
for i, de in nd["demand"].iterrows(): |
197
|
|
|
if de["active"]: |
198
|
|
|
# set static inflow values |
199
|
|
|
inflow_args = {"nominal_capacity": de["nominal value"]} |
200
|
|
|
# get time series for node and parameter |
201
|
|
|
for col in nd["timeseries"].columns.values: |
202
|
|
|
if col.split(".")[0] == de["label"]: |
203
|
|
|
inflow_args[col.split(".")[1]] = nd["timeseries"][col] |
204
|
|
|
|
205
|
|
|
# create |
206
|
|
|
nodes.append( |
207
|
|
|
solph.components.Sink( |
208
|
|
|
label=de["label"], |
209
|
|
|
inputs={busd[de["from"]]: solph.Flow(**inflow_args)}, |
210
|
|
|
) |
211
|
|
|
) |
212
|
|
|
|
213
|
|
|
# Create Converter objects from 'converters' table |
214
|
|
|
for i, t in nd["converters"].iterrows(): |
215
|
|
|
if t["active"]: |
216
|
|
|
# set static inflow values |
217
|
|
|
inflow_args = {"variable_costs": t["variable input costs"]} |
218
|
|
|
# get time series for inflow of converter |
219
|
|
|
for col in nd["timeseries"].columns.values: |
220
|
|
|
if col.split(".")[0] == t["label"]: |
221
|
|
|
inflow_args[col.split(".")[1]] = nd["timeseries"][col] |
222
|
|
|
# create |
223
|
|
|
nodes.append( |
224
|
|
|
solph.components.Converter( |
225
|
|
|
label=t["label"], |
226
|
|
|
inputs={busd[t["from"]]: solph.Flow(**inflow_args)}, |
227
|
|
|
outputs={ |
228
|
|
|
busd[t["to"]]: solph.Flow( |
229
|
|
|
nominal_capacity=t["capacity"] |
230
|
|
|
) |
231
|
|
|
}, |
232
|
|
|
conversion_factors={busd[t["to"]]: t["efficiency"]}, |
233
|
|
|
) |
234
|
|
|
) |
235
|
|
|
|
236
|
|
|
for i, s in nd["storages"].iterrows(): |
237
|
|
|
if s["active"]: |
238
|
|
|
nodes.append( |
239
|
|
|
solph.components.GenericStorage( |
240
|
|
|
label=s["label"], |
241
|
|
|
inputs={ |
242
|
|
|
busd[s["bus"]]: solph.Flow( |
243
|
|
|
nominal_capacity=s["capacity inflow"], |
244
|
|
|
variable_costs=s["variable input costs"], |
245
|
|
|
) |
246
|
|
|
}, |
247
|
|
|
outputs={ |
248
|
|
|
busd[s["bus"]]: solph.Flow( |
249
|
|
|
nominal_capacity=s["capacity outflow"], |
250
|
|
|
variable_costs=s["variable output costs"], |
251
|
|
|
) |
252
|
|
|
}, |
253
|
|
|
nominal_capacity=s["nominal capacity"], |
254
|
|
|
loss_rate=s["capacity loss"], |
255
|
|
|
initial_storage_level=s["initial capacity"], |
256
|
|
|
max_storage_level=s["capacity max"], |
257
|
|
|
min_storage_level=s["capacity min"], |
258
|
|
|
inflow_conversion_factor=s["efficiency inflow"], |
259
|
|
|
outflow_conversion_factor=s["efficiency outflow"], |
260
|
|
|
) |
261
|
|
|
) |
262
|
|
|
|
263
|
|
|
for i, p in nd["powerlines"].iterrows(): |
264
|
|
|
if p["active"]: |
265
|
|
|
bus1 = busd[p["bus_1"]] |
266
|
|
|
bus2 = busd[p["bus_2"]] |
267
|
|
|
nodes.append( |
268
|
|
|
solph.components.Converter( |
269
|
|
|
label="powerline" + "_" + p["bus_1"] + "_" + p["bus_2"], |
270
|
|
|
inputs={bus1: solph.Flow()}, |
271
|
|
|
outputs={bus2: solph.Flow()}, |
272
|
|
|
conversion_factors={bus2: p["efficiency"]}, |
273
|
|
|
) |
274
|
|
|
) |
275
|
|
|
nodes.append( |
276
|
|
|
solph.components.Converter( |
277
|
|
|
label="powerline" + "_" + p["bus_2"] + "_" + p["bus_1"], |
278
|
|
|
inputs={bus2: solph.Flow()}, |
279
|
|
|
outputs={bus1: solph.Flow()}, |
280
|
|
|
conversion_factors={bus1: p["efficiency"]}, |
281
|
|
|
) |
282
|
|
|
) |
283
|
|
|
|
284
|
|
|
return nodes |
285
|
|
|
|
286
|
|
|
|
287
|
|
|
def draw_graph( |
288
|
|
|
grph, |
289
|
|
|
edge_labels=True, |
290
|
|
|
node_color="#AFAFAF", |
291
|
|
|
edge_color="#CFCFCF", |
292
|
|
|
plot=True, |
293
|
|
|
node_size=2000, |
294
|
|
|
with_labels=True, |
295
|
|
|
arrows=True, |
296
|
|
|
layout="neato", |
297
|
|
|
): |
298
|
|
|
""" |
299
|
|
|
Parameters |
300
|
|
|
---------- |
301
|
|
|
grph : networkxGraph |
302
|
|
|
A graph to draw. |
303
|
|
|
edge_labels : boolean |
304
|
|
|
Use nominal capacities of flow as edge label |
305
|
|
|
node_color : dict or string |
306
|
|
|
Hex color code oder matplotlib color for each node. If string, all |
307
|
|
|
colors are the same. |
308
|
|
|
|
309
|
|
|
edge_color : string |
310
|
|
|
Hex color code oder matplotlib color for edge color. |
311
|
|
|
|
312
|
|
|
plot : boolean |
313
|
|
|
Show matplotlib plot. |
314
|
|
|
|
315
|
|
|
node_size : integer |
316
|
|
|
Size of nodes. |
317
|
|
|
|
318
|
|
|
with_labels : boolean |
319
|
|
|
Draw node labels. |
320
|
|
|
|
321
|
|
|
arrows : boolean |
322
|
|
|
Draw arrows on directed edges. Works only if an optimization_model has |
323
|
|
|
been passed. |
324
|
|
|
layout : string |
325
|
|
|
networkx graph layout, one of: neato, dot, twopi, circo, fdp, sfdp. |
326
|
|
|
""" |
327
|
|
|
if isinstance(node_color, dict): |
328
|
|
|
node_color = [node_color.get(g, "#AFAFAF") for g in grph.nodes()] |
329
|
|
|
|
330
|
|
|
# set drawing options |
331
|
|
|
options = { |
332
|
|
|
"with_labels": with_labels, |
333
|
|
|
"node_color": node_color, |
334
|
|
|
"edge_color": edge_color, |
335
|
|
|
"node_size": node_size, |
336
|
|
|
"arrows": arrows, |
337
|
|
|
} |
338
|
|
|
|
339
|
|
|
# try to use pygraphviz for graph layout |
340
|
|
|
try: |
341
|
|
|
import pygraphviz |
342
|
|
|
|
343
|
|
|
pos = nx.drawing.nx_agraph.graphviz_layout(grph, prog=layout) |
344
|
|
|
except ImportError: |
345
|
|
|
logging.error("Module pygraphviz not found, I won't plot the graph.") |
346
|
|
|
return |
347
|
|
|
|
348
|
|
|
# draw graph |
349
|
|
|
nx.draw(grph, pos=pos, **options) |
350
|
|
|
|
351
|
|
|
# add edge labels for all edges |
352
|
|
|
if edge_labels is True and plt: |
353
|
|
|
labels = nx.get_edge_attributes(grph, "weight") |
354
|
|
|
nx.draw_networkx_edge_labels(grph, pos=pos, edge_labels=labels) |
355
|
|
|
|
356
|
|
|
# show output |
357
|
|
|
if plot is True: |
358
|
|
|
plt.show() |
359
|
|
|
|
360
|
|
|
|
361
|
|
|
def main(optimize=True): |
362
|
|
|
logger.define_logging() |
363
|
|
|
datetime_index = pd.date_range( |
364
|
|
|
"2016-01-01 00:00:00", "2016-01-01 23:00:00", freq="60min" |
365
|
|
|
) |
366
|
|
|
|
367
|
|
|
# model creation and solving |
368
|
|
|
logging.info("Starting optimization") |
369
|
|
|
|
370
|
|
|
# initialisation of the energy system |
371
|
|
|
esys = solph.EnergySystem( |
372
|
|
|
timeindex=datetime_index, infer_last_interval=False |
373
|
|
|
) |
374
|
|
|
|
375
|
|
|
# read node data from Excel sheet |
376
|
|
|
excel_nodes = nodes_from_excel( |
377
|
|
|
os.path.join( |
378
|
|
|
os.path.dirname(os.path.abspath(__file__)), |
379
|
|
|
"scenario.xlsx", |
380
|
|
|
) |
381
|
|
|
) |
382
|
|
|
|
383
|
|
|
# create nodes from Excel sheet data |
384
|
|
|
my_nodes = create_nodes(nd=excel_nodes) |
385
|
|
|
|
386
|
|
|
# add nodes and flows to energy system |
387
|
|
|
esys.add(*my_nodes) |
388
|
|
|
|
389
|
|
|
print("*********************************************************") |
390
|
|
|
print("The following objects have been created from excel sheet:") |
391
|
|
|
for n in esys.nodes: |
392
|
|
|
oobj = ( |
393
|
|
|
str(type(n)).replace("<class 'oemof.solph.", "").replace("'>", "") |
394
|
|
|
) |
395
|
|
|
print(oobj + ":", n.label) |
396
|
|
|
print("*********************************************************") |
397
|
|
|
|
398
|
|
|
if optimize is False: |
399
|
|
|
return esys |
400
|
|
|
|
401
|
|
|
# creation of a least cost model from the energy system |
402
|
|
|
om = solph.Model(esys) |
403
|
|
|
om.receive_duals() |
404
|
|
|
|
405
|
|
|
# solving the linear problem using the given solver |
406
|
|
|
om.solve(solver="cbc") |
407
|
|
|
|
408
|
|
|
# create graph of esys |
409
|
|
|
# You can use argument filename='/home/somebody/my_graph.graphml' |
410
|
|
|
# to dump your graph to disc. You can open it using e.g. yEd or gephi |
411
|
|
|
graph = create_nx_graph(esys) |
412
|
|
|
|
413
|
|
|
# plot esys graph |
414
|
|
|
draw_graph( |
415
|
|
|
grph=graph, |
416
|
|
|
plot=True, |
417
|
|
|
layout="neato", |
418
|
|
|
node_size=1000, |
419
|
|
|
node_color={"R1_bus_el": "#cd3333", "R2_bus_el": "#cd3333"}, |
420
|
|
|
) |
421
|
|
|
|
422
|
|
|
# print and plot some results |
423
|
|
|
results = solph.processing.results(om) |
424
|
|
|
|
425
|
|
|
region2 = solph.views.node(results, "R2_bus_el") |
426
|
|
|
region1 = solph.views.node(results, "R1_bus_el") |
427
|
|
|
|
428
|
|
|
print(region2["sequences"].sum()) |
429
|
|
|
print(region1["sequences"].sum()) |
430
|
|
|
|
431
|
|
|
fig, ax = plt.subplots(figsize=(10, 5)) |
432
|
|
|
region1["sequences"].plot(ax=ax) |
433
|
|
|
ax.legend( |
434
|
|
|
loc="upper center", prop={"size": 8}, bbox_to_anchor=(0.5, 1.4), ncol=3 |
435
|
|
|
) |
436
|
|
|
fig.subplots_adjust(top=0.7) |
437
|
|
|
plt.show() |
438
|
|
|
logging.info("Done!") |
439
|
|
|
|
440
|
|
|
|
441
|
|
|
if __name__ == "__main__": |
442
|
|
|
main() |
443
|
|
|
|