|
1
|
|
|
# -*- coding: utf-8 - |
|
2
|
|
|
|
|
3
|
|
|
"""Tests the processing module of solph. |
|
4
|
|
|
|
|
5
|
|
|
This file is part of project oemof (github.com/oemof/oemof). It's copyrighted |
|
6
|
|
|
by the contributors recorded in the version control history of the file, |
|
7
|
|
|
available from its original location oemof/tests/test_processing.py |
|
8
|
|
|
|
|
9
|
|
|
SPDX-License-Identifier: MIT |
|
10
|
|
|
""" |
|
11
|
|
|
|
|
12
|
|
|
import pandas |
|
13
|
|
|
import pytest |
|
14
|
|
|
from pandas.testing import assert_frame_equal |
|
15
|
|
|
from pandas.testing import assert_series_equal |
|
16
|
|
|
|
|
17
|
|
|
from oemof.solph import EnergySystem |
|
18
|
|
|
from oemof.solph import Investment |
|
19
|
|
|
from oemof.solph import Model |
|
20
|
|
|
from oemof.solph import processing |
|
21
|
|
|
from oemof.solph import views |
|
22
|
|
|
from oemof.solph.buses import Bus |
|
23
|
|
|
from oemof.solph.components import Converter |
|
24
|
|
|
from oemof.solph.components import GenericStorage |
|
25
|
|
|
from oemof.solph.components import Sink |
|
26
|
|
|
from oemof.solph.flows import Flow |
|
27
|
|
|
|
|
28
|
|
|
|
|
29
|
|
|
class TestParameterResult: |
|
30
|
|
|
@classmethod |
|
31
|
|
|
def setup_class(cls): |
|
32
|
|
|
cls.period = 24 |
|
33
|
|
|
cls.es = EnergySystem( |
|
34
|
|
|
timeindex=pandas.date_range( |
|
35
|
|
|
"2016-01-01", |
|
36
|
|
|
periods=cls.period, |
|
37
|
|
|
freq="h", |
|
38
|
|
|
), |
|
39
|
|
|
infer_last_interval=True, |
|
40
|
|
|
) |
|
41
|
|
|
|
|
42
|
|
|
# BUSSES |
|
43
|
|
|
b_el1 = Bus(label="b_el1") |
|
44
|
|
|
b_el2 = Bus(label="b_el2") |
|
45
|
|
|
b_diesel = Bus(label="b_diesel", balanced=False) |
|
46
|
|
|
cls.es.add(b_el1, b_el2, b_diesel) |
|
47
|
|
|
|
|
48
|
|
|
# TEST DIESEL: |
|
49
|
|
|
dg = Converter( |
|
50
|
|
|
label="diesel", |
|
51
|
|
|
inputs={b_diesel: Flow(variable_costs=2)}, |
|
52
|
|
|
outputs={ |
|
53
|
|
|
b_el1: Flow( |
|
54
|
|
|
variable_costs=1, nominal_capacity=Investment(ep_costs=0.5) |
|
55
|
|
|
) |
|
56
|
|
|
}, |
|
57
|
|
|
conversion_factors={b_el1: 2}, |
|
58
|
|
|
) |
|
59
|
|
|
|
|
60
|
|
|
batt = GenericStorage( |
|
61
|
|
|
label="storage", |
|
62
|
|
|
inputs={ |
|
63
|
|
|
b_el1: Flow(variable_costs=3, nominal_capacity=Investment()) |
|
64
|
|
|
}, |
|
65
|
|
|
outputs={ |
|
66
|
|
|
b_el2: Flow(variable_costs=2.5, nominal_capacity=Investment()) |
|
67
|
|
|
}, |
|
68
|
|
|
loss_rate=0.00, |
|
69
|
|
|
initial_storage_level=0, |
|
70
|
|
|
invest_relation_input_capacity=1 / 6, |
|
71
|
|
|
invest_relation_output_capacity=1 / 6, |
|
72
|
|
|
inflow_conversion_factor=1, |
|
73
|
|
|
outflow_conversion_factor=0.8, |
|
74
|
|
|
nominal_capacity=Investment(ep_costs=0.4), |
|
75
|
|
|
) |
|
76
|
|
|
|
|
77
|
|
|
cls.demand_values = [0.0] + [100] * 23 |
|
78
|
|
|
demand = Sink( |
|
79
|
|
|
label="demand_el", |
|
80
|
|
|
inputs={ |
|
81
|
|
|
b_el2: Flow( |
|
82
|
|
|
nominal_capacity=1, |
|
83
|
|
|
fix=cls.demand_values, |
|
84
|
|
|
) |
|
85
|
|
|
}, |
|
86
|
|
|
) |
|
87
|
|
|
cls.es.add(dg, batt, demand) |
|
88
|
|
|
cls.om = Model(cls.es) |
|
89
|
|
|
cls.om.receive_duals() |
|
90
|
|
|
cls.om.solve() |
|
91
|
|
|
cls.mod = Model(cls.es) |
|
92
|
|
|
cls.mod.solve() |
|
93
|
|
|
|
|
94
|
|
|
def test_flows_with_none_exclusion(self): |
|
95
|
|
|
b_el2 = self.es.groups["b_el2"] |
|
96
|
|
|
demand = self.es.groups["demand_el"] |
|
97
|
|
|
param_results = processing.parameter_as_dict( |
|
98
|
|
|
self.es, exclude_none=True |
|
99
|
|
|
) |
|
100
|
|
|
assert_series_equal( |
|
101
|
|
|
param_results[(b_el2, demand)]["scalars"].sort_index(), |
|
102
|
|
|
pandas.Series( |
|
103
|
|
|
{ |
|
104
|
|
|
"bidirectional": False, |
|
105
|
|
|
"integer": False, |
|
106
|
|
|
"nominal_capacity": 1, |
|
107
|
|
|
"max": 1, |
|
108
|
|
|
"min": 0, |
|
109
|
|
|
"variable_costs": 0, |
|
110
|
|
|
"label": str(b_el2.outputs[demand].label), |
|
111
|
|
|
} |
|
112
|
|
|
).sort_index(), |
|
113
|
|
|
) |
|
114
|
|
|
assert_frame_equal( |
|
115
|
|
|
param_results[(b_el2, demand)]["sequences"], |
|
116
|
|
|
pandas.DataFrame({"fix": self.demand_values}), |
|
117
|
|
|
check_like=True, |
|
118
|
|
|
) |
|
119
|
|
|
|
|
120
|
|
|
def test_flows_without_none_exclusion(self): |
|
121
|
|
|
b_el2 = self.es.groups["b_el2"] |
|
122
|
|
|
demand = self.es.groups["demand_el"] |
|
123
|
|
|
param_results = processing.parameter_as_dict( |
|
124
|
|
|
self.es, exclude_none=False |
|
125
|
|
|
) |
|
126
|
|
|
default_attributes = { |
|
127
|
|
|
"age": None, |
|
128
|
|
|
"lifetime": None, |
|
129
|
|
|
"integer": False, |
|
130
|
|
|
"investment": None, |
|
131
|
|
|
"nominal_capacity": 1, |
|
132
|
|
|
"nonconvex": None, |
|
133
|
|
|
"bidirectional": False, |
|
134
|
|
|
"full_load_time_max": None, |
|
135
|
|
|
"full_load_time_min": None, |
|
136
|
|
|
"max": 1, |
|
137
|
|
|
"min": 0, |
|
138
|
|
|
"negative_gradient_limit": None, |
|
139
|
|
|
"positive_gradient_limit": None, |
|
140
|
|
|
"variable_costs": 0, |
|
141
|
|
|
"fixed_costs": None, |
|
142
|
|
|
"flow": None, |
|
143
|
|
|
"values": None, |
|
144
|
|
|
"label": str(b_el2.outputs[demand].label), |
|
145
|
|
|
} |
|
146
|
|
|
assert_series_equal( |
|
147
|
|
|
param_results[(b_el2, demand)]["scalars"].sort_index(), |
|
148
|
|
|
pandas.Series(default_attributes).sort_index(), |
|
149
|
|
|
) |
|
150
|
|
|
sequences_attributes = { |
|
151
|
|
|
"fix": self.demand_values, |
|
152
|
|
|
} |
|
153
|
|
|
|
|
154
|
|
|
assert_frame_equal( |
|
155
|
|
|
param_results[(b_el2, demand)]["sequences"], |
|
156
|
|
|
pandas.DataFrame(sequences_attributes), |
|
157
|
|
|
check_like=True, |
|
158
|
|
|
) |
|
159
|
|
|
|
|
160
|
|
View Code Duplication |
def test_nodes_with_none_exclusion(self): |
|
|
|
|
|
|
161
|
|
|
param_results = processing.parameter_as_dict( |
|
162
|
|
|
self.es, exclude_none=True |
|
163
|
|
|
) |
|
164
|
|
|
param_results = processing.convert_keys_to_strings(param_results) |
|
165
|
|
|
assert_series_equal( |
|
166
|
|
|
param_results[("storage", "None")]["scalars"], |
|
167
|
|
|
pandas.Series( |
|
168
|
|
|
{ |
|
169
|
|
|
"balanced": True, |
|
170
|
|
|
"depth": 0, |
|
171
|
|
|
"initial_storage_level": 0, |
|
172
|
|
|
"investment_age": 0, |
|
173
|
|
|
"investment_existing": 0, |
|
174
|
|
|
"investment_nonconvex": False, |
|
175
|
|
|
"investment_ep_costs": 0.4, |
|
176
|
|
|
"investment_maximum": float("inf"), |
|
177
|
|
|
"investment_minimum": 0, |
|
178
|
|
|
"investment_nonconvex": False, |
|
179
|
|
|
"investment_offset": 0, |
|
180
|
|
|
"label": "storage", |
|
181
|
|
|
"fixed_costs": 0, |
|
182
|
|
|
"fixed_losses_absolute": 0, |
|
183
|
|
|
"fixed_losses_relative": 0, |
|
184
|
|
|
"inflow_conversion_factor": 1, |
|
185
|
|
|
"invest_relation_input_capacity": 1 / 6, |
|
186
|
|
|
"invest_relation_output_capacity": 1 / 6, |
|
187
|
|
|
"loss_rate": 0, |
|
188
|
|
|
"max_storage_level": 1, |
|
189
|
|
|
"min_storage_level": 0, |
|
190
|
|
|
"outflow_conversion_factor": 0.8, |
|
191
|
|
|
} |
|
192
|
|
|
), |
|
193
|
|
|
) |
|
194
|
|
|
assert_frame_equal( |
|
195
|
|
|
param_results[("storage", "None")]["sequences"], pandas.DataFrame() |
|
196
|
|
|
) |
|
197
|
|
|
|
|
198
|
|
View Code Duplication |
def test_nodes_with_none_exclusion_old_name(self): |
|
|
|
|
|
|
199
|
|
|
param_results = processing.parameter_as_dict( |
|
200
|
|
|
self.es, exclude_none=True |
|
201
|
|
|
) |
|
202
|
|
|
param_results = processing.convert_keys_to_strings( |
|
203
|
|
|
param_results, keep_none_type=True |
|
204
|
|
|
) |
|
205
|
|
|
assert_series_equal( |
|
206
|
|
|
param_results[("storage", None)]["scalars"], |
|
207
|
|
|
pandas.Series( |
|
208
|
|
|
{ |
|
209
|
|
|
"balanced": True, |
|
210
|
|
|
"depth": 0, |
|
211
|
|
|
"initial_storage_level": 0, |
|
212
|
|
|
"investment_age": 0, |
|
213
|
|
|
"investment_existing": 0, |
|
214
|
|
|
"investment_nonconvex": False, |
|
215
|
|
|
"investment_ep_costs": 0.4, |
|
216
|
|
|
"investment_maximum": float("inf"), |
|
217
|
|
|
"investment_minimum": 0, |
|
218
|
|
|
"investment_nonconvex": False, |
|
219
|
|
|
"investment_offset": 0, |
|
220
|
|
|
"label": "storage", |
|
221
|
|
|
"fixed_costs": 0, |
|
222
|
|
|
"fixed_losses_absolute": 0, |
|
223
|
|
|
"fixed_losses_relative": 0, |
|
224
|
|
|
"inflow_conversion_factor": 1, |
|
225
|
|
|
"invest_relation_input_capacity": 1 / 6, |
|
226
|
|
|
"invest_relation_output_capacity": 1 / 6, |
|
227
|
|
|
"loss_rate": 0, |
|
228
|
|
|
"max_storage_level": 1, |
|
229
|
|
|
"min_storage_level": 0, |
|
230
|
|
|
"outflow_conversion_factor": 0.8, |
|
231
|
|
|
} |
|
232
|
|
|
), |
|
233
|
|
|
) |
|
234
|
|
|
assert_frame_equal( |
|
235
|
|
|
param_results[("storage", None)]["sequences"], pandas.DataFrame() |
|
236
|
|
|
) |
|
237
|
|
|
|
|
238
|
|
|
def test_nodes_without_none_exclusion(self): |
|
239
|
|
|
diesel = self.es.groups["diesel"] |
|
240
|
|
|
param_results = processing.parameter_as_dict( |
|
241
|
|
|
self.es, exclude_none=False |
|
242
|
|
|
) |
|
243
|
|
|
assert_series_equal( |
|
244
|
|
|
param_results[(diesel, None)]["scalars"], |
|
245
|
|
|
pandas.Series( |
|
246
|
|
|
{ |
|
247
|
|
|
"depth": 0, |
|
248
|
|
|
"label": "diesel", |
|
249
|
|
|
"parent": None, |
|
250
|
|
|
"conversion_factors_b_el1": 2, |
|
251
|
|
|
"conversion_factors_b_diesel": 1, |
|
252
|
|
|
} |
|
253
|
|
|
), |
|
254
|
|
|
) |
|
255
|
|
|
assert_frame_equal( |
|
256
|
|
|
param_results[(diesel, None)]["sequences"], pandas.DataFrame() |
|
257
|
|
|
) |
|
258
|
|
|
|
|
259
|
|
|
def test_nodes_with_excluded_attrs(self): |
|
260
|
|
|
diesel = self.es.groups["diesel"] |
|
261
|
|
|
param_results = processing.parameter_as_dict( |
|
262
|
|
|
self.es, exclude_attrs=["conversion_factors"] |
|
263
|
|
|
) |
|
264
|
|
|
assert_series_equal( |
|
265
|
|
|
param_results[(diesel, None)]["scalars"], |
|
266
|
|
|
pandas.Series( |
|
267
|
|
|
{ |
|
268
|
|
|
"depth": 0, |
|
269
|
|
|
"label": "diesel", |
|
270
|
|
|
} |
|
271
|
|
|
), |
|
272
|
|
|
) |
|
273
|
|
|
assert_frame_equal( |
|
274
|
|
|
param_results[(diesel, None)]["sequences"], pandas.DataFrame() |
|
275
|
|
|
) |
|
276
|
|
|
|
|
277
|
|
|
def test_parameter_with_node_view(self): |
|
278
|
|
|
param_results = processing.parameter_as_dict( |
|
279
|
|
|
self.es, exclude_none=True |
|
280
|
|
|
) |
|
281
|
|
|
bel1 = views.node(param_results, "b_el1") |
|
282
|
|
|
assert ( |
|
283
|
|
|
bel1["scalars"][[(("b_el1", "storage"), "variable_costs")]].values |
|
284
|
|
|
== 3 |
|
285
|
|
|
) |
|
286
|
|
|
|
|
287
|
|
|
bel1_m = views.node(param_results, "b_el1", multiindex=True) |
|
288
|
|
|
assert bel1_m["scalars"][("b_el1", "storage", "variable_costs")] == 3 |
|
289
|
|
|
|
|
290
|
|
|
def test_multiindex_sequences(self): |
|
291
|
|
|
results = processing.results(self.om) |
|
292
|
|
|
bel1 = views.node(results, "b_el1", multiindex=True) |
|
293
|
|
|
assert ( |
|
294
|
|
|
int(bel1["sequences"][("diesel", "b_el1", "flow")].sum()) == 2875 |
|
295
|
|
|
) |
|
296
|
|
|
|
|
297
|
|
|
def test_error_from_nan_values(self): |
|
298
|
|
|
trsf = self.es.groups["diesel"] |
|
299
|
|
|
bus = self.es.groups["b_el1"] |
|
300
|
|
|
self.mod.flow[trsf, bus, 5] = float("nan") |
|
301
|
|
|
with pytest.raises(ValueError): |
|
302
|
|
|
processing.results(self.mod) |
|
303
|
|
|
|
|
304
|
|
|
def test_duals(self): |
|
305
|
|
|
results = processing.results(self.om) |
|
306
|
|
|
bel = views.node(results, "b_el1", multiindex=True) |
|
307
|
|
|
assert int(bel["sequences"]["b_el1", "None", "duals"].sum()) == 48 |
|
308
|
|
|
|
|
309
|
|
|
def test_node_weight_by_type(self): |
|
310
|
|
|
results = processing.results(self.om) |
|
311
|
|
|
storage_content = views.node_weight_by_type( |
|
312
|
|
|
results, node_type=GenericStorage |
|
313
|
|
|
) |
|
314
|
|
|
assert ( |
|
315
|
|
|
storage_content.sum().iloc[0] == pytest.approx(1437.5, abs=0.1) |
|
316
|
|
|
).all() |
|
317
|
|
|
|
|
318
|
|
|
def test_output_by_type_view(self): |
|
319
|
|
|
results = processing.results(self.om) |
|
320
|
|
|
converter_output = views.node_output_by_type( |
|
321
|
|
|
results, node_type=Converter |
|
322
|
|
|
) |
|
323
|
|
|
compare = views.node(results, "diesel", multiindex=True)["sequences"][ |
|
324
|
|
|
("diesel", "b_el1", "flow") |
|
325
|
|
|
] |
|
326
|
|
|
assert converter_output.sum().iloc[0] == pytest.approx(compare.sum()) |
|
327
|
|
|
|
|
328
|
|
|
def test_input_by_type_view(self): |
|
329
|
|
|
results = processing.results(self.om) |
|
330
|
|
|
sink_input = views.node_input_by_type(results, node_type=Sink) |
|
331
|
|
|
compare = views.node(results, "demand_el", multiindex=True) |
|
332
|
|
|
assert sink_input.sum().iloc[0] == pytest.approx( |
|
333
|
|
|
compare["sequences"][("b_el2", "demand_el", "flow")].sum() |
|
334
|
|
|
) |
|
335
|
|
|
|
|
336
|
|
|
def test_net_storage_flow(self): |
|
337
|
|
|
results = processing.results(self.om) |
|
338
|
|
|
storage_flow = views.net_storage_flow( |
|
339
|
|
|
results, node_type=GenericStorage |
|
340
|
|
|
) |
|
341
|
|
|
|
|
342
|
|
|
compare = views.node(results, "storage", multiindex=True)["sequences"] |
|
343
|
|
|
|
|
344
|
|
|
assert ( |
|
345
|
|
|
( |
|
346
|
|
|
( |
|
347
|
|
|
compare[("storage", "b_el2", "flow")] |
|
348
|
|
|
- compare[("b_el1", "storage", "flow")] |
|
349
|
|
|
) |
|
350
|
|
|
.to_frame() |
|
351
|
|
|
.fillna(0) |
|
352
|
|
|
== storage_flow.values |
|
353
|
|
|
) |
|
354
|
|
|
.all() |
|
355
|
|
|
.iloc[0] |
|
356
|
|
|
) |
|
357
|
|
|
|
|
358
|
|
|
def test_output_by_type_view_empty(self): |
|
359
|
|
|
results = processing.results(self.om) |
|
360
|
|
|
view = views.node_output_by_type(results, node_type=Flow) |
|
361
|
|
|
assert view is None |
|
362
|
|
|
|
|
363
|
|
|
def test_input_by_type_view_empty(self): |
|
364
|
|
|
results = processing.results(self.om) |
|
365
|
|
|
view = views.node_input_by_type(results, node_type=Flow) |
|
366
|
|
|
assert view is None |
|
367
|
|
|
|
|
368
|
|
|
def test_net_storage_flow_empty(self): |
|
369
|
|
|
results = processing.results(self.om) |
|
370
|
|
|
view = views.net_storage_flow(results, node_type=Sink) |
|
371
|
|
|
assert view is None |
|
372
|
|
|
view2 = views.net_storage_flow(results, node_type=Flow) |
|
373
|
|
|
assert view2 is None |
|
374
|
|
|
|
|
375
|
|
|
def test_node_weight_by_type_empty(self): |
|
376
|
|
|
results = processing.results(self.om) |
|
377
|
|
|
view = views.node_weight_by_type(results, node_type=Flow) |
|
378
|
|
|
assert view is None |
|
379
|
|
|
|