1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
|
3
|
|
|
"""Modules for providing convenient views for solph results. |
4
|
|
|
|
5
|
|
|
See examples for to learn about the possible usage of the provided functions. |
6
|
|
|
|
7
|
|
|
SPDX-FileCopyrightText: Uwe Krien <[email protected]> |
8
|
|
|
SPDX-FileCopyrightText: Simon Hilpert |
9
|
|
|
SPDX-FileCopyrightText: Cord Kaldemeyer |
10
|
|
|
SPDX-FileCopyrightText: Stephan Günther |
11
|
|
|
SPDX-FileCopyrightText: henhuy |
12
|
|
|
SPDX-FileCopyrightText: Johannes Kochems |
13
|
|
|
|
14
|
|
|
SPDX-License-Identifier: MIT |
15
|
|
|
|
16
|
|
|
""" |
17
|
|
|
import logging |
18
|
|
|
from collections import OrderedDict |
19
|
|
|
from enum import Enum |
20
|
|
|
|
21
|
|
|
import pandas as pd |
22
|
|
|
|
23
|
|
|
from oemof.solph.processing import convert_keys_to_strings |
24
|
|
|
|
25
|
|
|
NONE_REPLACEMENT_STR = "_NONE_" |
26
|
|
|
|
27
|
|
|
|
28
|
|
|
def node(results, node, multiindex=False, keep_none_type=False): |
29
|
|
|
""" |
30
|
|
|
Obtain results for a single node e.g. a Bus or Component. |
31
|
|
|
|
32
|
|
|
Either a node or its label string can be passed. |
33
|
|
|
Results are written into a dictionary which is keyed by 'scalars' |
34
|
|
|
(resp. 'periods_scalars' for a multi-period model) and |
35
|
|
|
'sequences' holding respective data in a pandas Series (resp. DataFrame) |
36
|
|
|
and DataFrame. |
37
|
|
|
""" |
38
|
|
|
|
39
|
|
|
def replace_none(col_list, reverse=False): |
40
|
|
|
replacement = ( |
41
|
|
|
(None, NONE_REPLACEMENT_STR) |
42
|
|
|
if reverse |
43
|
|
|
else (NONE_REPLACEMENT_STR, None) |
44
|
|
|
) |
45
|
|
|
changed_col_list = [ |
46
|
|
|
( |
47
|
|
|
( |
48
|
|
|
replacement[0] if n1 is replacement[1] else n1, |
49
|
|
|
replacement[0] if n2 is replacement[1] else n2, |
50
|
|
|
), |
51
|
|
|
f, |
52
|
|
|
) |
53
|
|
|
for (n1, n2), f in col_list |
54
|
|
|
] |
55
|
|
|
return changed_col_list |
56
|
|
|
|
57
|
|
|
# convert to keys if only a string is passed |
58
|
|
|
if type(node) is str: |
59
|
|
|
results = convert_keys_to_strings(results, keep_none_type) |
60
|
|
|
|
61
|
|
|
filtered = {} |
62
|
|
|
|
63
|
|
|
# create a series with tuples as index labels for scalars |
64
|
|
|
scalars_col = "scalars" |
65
|
|
|
# Check for multi-period model (different naming) |
66
|
|
|
if "period_scalars" in list(list(results.values())[0].keys()): |
67
|
|
|
scalars_col = "period_scalars" |
68
|
|
|
|
69
|
|
|
scalars = { |
70
|
|
|
k: v[scalars_col] |
71
|
|
|
for k, v in results.items() |
72
|
|
|
if node in k and not v[scalars_col].empty |
73
|
|
|
} |
74
|
|
|
if scalars: |
75
|
|
|
# aggregate data |
76
|
|
|
filtered[scalars_col] = pd.concat(scalars.values(), axis=0) |
77
|
|
|
# assign index values |
78
|
|
|
idx = { |
79
|
|
|
k: [c for c in v[scalars_col].index] |
80
|
|
|
for k, v in results.items() |
81
|
|
|
if node in k and not v[scalars_col].empty |
82
|
|
|
} |
83
|
|
|
idx = [tuple((k, m) for m in v) for k, v in idx.items()] |
84
|
|
|
idx = [i for sublist in idx for i in sublist] |
85
|
|
|
filtered[scalars_col].index = idx |
86
|
|
|
|
87
|
|
|
# Sort index |
88
|
|
|
# (if Nones are present, they have to be replaced while sorting) |
89
|
|
|
if keep_none_type: |
90
|
|
|
filtered[scalars_col].index = replace_none( |
91
|
|
|
filtered[scalars_col].index.tolist() |
92
|
|
|
) |
93
|
|
|
filtered[scalars_col].sort_index(axis=0, inplace=True) |
94
|
|
|
if keep_none_type: |
95
|
|
|
filtered[scalars_col].index = replace_none( |
96
|
|
|
filtered[scalars_col].index.tolist(), True |
97
|
|
|
) |
98
|
|
|
|
99
|
|
|
if multiindex: |
100
|
|
|
idx = pd.MultiIndex.from_tuples( |
101
|
|
|
[ |
102
|
|
|
tuple([row[0][0], row[0][1], row[1]]) |
103
|
|
|
for row in filtered[scalars_col].index |
104
|
|
|
] |
105
|
|
|
) |
106
|
|
|
idx.set_names(["from", "to", "type"], inplace=True) |
107
|
|
|
filtered[scalars_col].index = idx |
108
|
|
|
|
109
|
|
|
# create a dataframe with tuples as column labels for sequences |
110
|
|
|
sequences = { |
111
|
|
|
k: v["sequences"] |
112
|
|
|
for k, v in results.items() |
113
|
|
|
if node in k and not v["sequences"].empty |
114
|
|
|
} |
115
|
|
|
if sequences: |
116
|
|
|
# aggregate data |
117
|
|
|
filtered["sequences"] = pd.concat(sequences.values(), axis=1) |
118
|
|
|
# assign column names |
119
|
|
|
cols = { |
120
|
|
|
k: [c for c in v["sequences"].columns] |
121
|
|
|
for k, v in results.items() |
122
|
|
|
if node in k and not v["sequences"].empty |
123
|
|
|
} |
124
|
|
|
cols = [tuple((k, m) for m in v) for k, v in cols.items()] |
125
|
|
|
cols = [c for sublist in cols for c in sublist] |
126
|
|
|
filtered["sequences"].columns = replace_none(cols) |
127
|
|
|
filtered["sequences"].sort_index(axis=1, inplace=True) |
128
|
|
|
filtered["sequences"].columns = replace_none( |
129
|
|
|
filtered["sequences"].columns, True |
130
|
|
|
) |
131
|
|
|
|
132
|
|
|
if multiindex: |
133
|
|
|
idx = pd.MultiIndex.from_tuples( |
134
|
|
|
[ |
135
|
|
|
tuple([col[0][0], col[0][1], col[1]]) |
136
|
|
|
for col in filtered["sequences"].columns |
137
|
|
|
] |
138
|
|
|
) |
139
|
|
|
idx.set_names(["from", "to", "type"], inplace=True) |
140
|
|
|
filtered["sequences"].columns = idx |
141
|
|
|
|
142
|
|
|
return filtered |
143
|
|
|
|
144
|
|
|
|
145
|
|
|
class NodeOption(str, Enum): |
146
|
|
|
All = "all" |
147
|
|
|
HasOutputs = "has_outputs" |
148
|
|
|
HasInputs = "has_inputs" |
149
|
|
|
HasOnlyOutputs = "has_only_outputs" |
150
|
|
|
HasOnlyInputs = "has_only_inputs" |
151
|
|
|
|
152
|
|
|
|
153
|
|
|
def filter_nodes(results, option=NodeOption.All, exclude_busses=False): |
154
|
|
|
"""Get set of nodes from results-dict for given node option. |
155
|
|
|
|
156
|
|
|
This function filters nodes from results for special needs. At the moment, |
157
|
|
|
the following options are available: |
158
|
|
|
|
159
|
|
|
* :attr:`NodeOption.All`: `'all'`: Returns all nodes |
160
|
|
|
* :attr:`NodeOption.HasOutputs`: `'has_outputs'`: |
161
|
|
|
Returns nodes with an output flow (eg. Converter, Source) |
162
|
|
|
* :attr:`NodeOption.HasInputs`: `'has_inputs'`: |
163
|
|
|
Returns nodes with an input flow (eg. Converter, Sink) |
164
|
|
|
* :attr:`NodeOption.HasOnlyOutputs`: `'has_only_outputs'`: |
165
|
|
|
Returns nodes having only output flows (eg. Source) |
166
|
|
|
* :attr:`NodeOption.HasOnlyInputs`: `'has_only_inputs'`: |
167
|
|
|
Returns nodes having only input flows (eg. Sink) |
168
|
|
|
|
169
|
|
|
Additionally, busses can be excluded by setting `exclude_busses` to |
170
|
|
|
`True`. |
171
|
|
|
|
172
|
|
|
Parameters |
173
|
|
|
---------- |
174
|
|
|
results: dict |
175
|
|
|
option: NodeOption |
176
|
|
|
exclude_busses: bool |
177
|
|
|
If set, all bus nodes are excluded from the resulting node set. |
178
|
|
|
|
179
|
|
|
Returns |
180
|
|
|
------- |
181
|
|
|
:obj:`set` |
182
|
|
|
A set of Nodes. |
183
|
|
|
""" |
184
|
|
|
node_from, node_to = map(lambda x: set(x) - {None}, zip(*results)) |
185
|
|
|
if option == NodeOption.All: |
186
|
|
|
nodes = node_from.union(node_to) |
187
|
|
|
elif option == NodeOption.HasOutputs: |
188
|
|
|
nodes = node_from |
189
|
|
|
elif option == NodeOption.HasInputs: |
190
|
|
|
nodes = node_to |
191
|
|
|
elif option == NodeOption.HasOnlyOutputs: |
192
|
|
|
nodes = node_from - node_to |
193
|
|
|
elif option == NodeOption.HasOnlyInputs: |
194
|
|
|
nodes = node_to - node_from |
195
|
|
|
else: |
196
|
|
|
raise ValueError('Invalid node option "' + str(option) + '"') |
197
|
|
|
|
198
|
|
|
if exclude_busses: |
199
|
|
|
return {n for n in nodes if not n.__class__.__name__ == "Bus"} |
200
|
|
|
else: |
201
|
|
|
return nodes |
202
|
|
|
|
203
|
|
|
|
204
|
|
|
def get_node_by_name(results, *names): |
205
|
|
|
""" |
206
|
|
|
Searches results for nodes |
207
|
|
|
|
208
|
|
|
Names are looked up in nodes from results and either returned single node |
209
|
|
|
(in case only one name is given) or as list of nodes. If name is not found, |
210
|
|
|
None is returned. |
211
|
|
|
""" |
212
|
|
|
nodes = filter_nodes(results) |
213
|
|
|
if len(names) == 1: |
214
|
|
|
return next(filter(lambda x: str(x) == names[0], nodes), None) |
215
|
|
|
else: |
216
|
|
|
node_names = {str(n): n for n in nodes} |
217
|
|
|
return [node_names.get(n, None) for n in names] |
218
|
|
|
|
219
|
|
|
|
220
|
|
View Code Duplication |
def node_weight_by_type(results, node_type): |
|
|
|
|
221
|
|
|
""" |
222
|
|
|
Extracts node weights (if exist) of all components of the specified |
223
|
|
|
`node_type`. |
224
|
|
|
|
225
|
|
|
Node weight are endogenous optimzation variables associated with the node |
226
|
|
|
and not the edge between two node, foxample the variable representing the |
227
|
|
|
storage level. |
228
|
|
|
|
229
|
|
|
Parameters |
230
|
|
|
---------- |
231
|
|
|
results: dict |
232
|
|
|
A result dictionary from a solved oemof.solph.Model object |
233
|
|
|
node_type: oemof.solph class |
234
|
|
|
Specifies the type for which node weights should be collected, |
235
|
|
|
e.g. solph.components.GenericStorage |
236
|
|
|
|
237
|
|
|
Example |
238
|
|
|
-------- |
239
|
|
|
:: |
240
|
|
|
|
241
|
|
|
from oemof.solph import views |
242
|
|
|
|
243
|
|
|
# solve oemof model 'm' |
244
|
|
|
# Then collect node weights |
245
|
|
|
views.node_weight_by_type( |
246
|
|
|
m.results(), |
247
|
|
|
node_type=solph.components.GenericStorage |
248
|
|
|
) |
249
|
|
|
""" |
250
|
|
|
|
251
|
|
|
group = { |
252
|
|
|
k: v["sequences"] |
253
|
|
|
for k, v in results.items() |
254
|
|
|
if isinstance(k[0], node_type) and k[1] is None |
255
|
|
|
} |
256
|
|
|
if not group: |
257
|
|
|
logging.error( |
258
|
|
|
"No node weights for nodes of type `{}`".format(node_type) |
259
|
|
|
) |
260
|
|
|
return None |
261
|
|
|
else: |
262
|
|
|
df = convert_to_multiindex( |
263
|
|
|
group, index_names=["node", "to", "weight_type"], droplevel=[1] |
264
|
|
|
) |
265
|
|
|
return df |
266
|
|
|
|
267
|
|
|
|
268
|
|
View Code Duplication |
def node_input_by_type(results, node_type, droplevel=None): |
|
|
|
|
269
|
|
|
"""Gets all inputs for all nodes of the type `node_type` and returns |
270
|
|
|
a dataframe. |
271
|
|
|
|
272
|
|
|
Parameters |
273
|
|
|
---------- |
274
|
|
|
results: dict |
275
|
|
|
A result dictionary from a solved oemof.solph.Model object |
276
|
|
|
node_type: oemof.solph class |
277
|
|
|
Specifies the type of the node for that inputs are selected, |
278
|
|
|
e.g. solph.components.Sink |
279
|
|
|
droplevel: list |
280
|
|
|
|
281
|
|
|
Examples |
282
|
|
|
----- |
283
|
|
|
:: |
284
|
|
|
|
285
|
|
|
from oemof import solph |
286
|
|
|
from oemof.solph import views |
287
|
|
|
|
288
|
|
|
# solve oemof solph model 'm' |
289
|
|
|
# Then collect node weights |
290
|
|
|
views.node_input_by_type( |
291
|
|
|
m.results(), |
292
|
|
|
node_type=solph.components.Sink |
293
|
|
|
) |
294
|
|
|
""" |
295
|
|
|
if droplevel is None: |
296
|
|
|
droplevel = [] |
297
|
|
|
|
298
|
|
|
group = { |
299
|
|
|
k: v["sequences"] |
300
|
|
|
for k, v in results.items() |
301
|
|
|
if isinstance(k[1], node_type) and k[0] is not None |
302
|
|
|
} |
303
|
|
|
|
304
|
|
|
if not group: |
305
|
|
|
logging.info("No nodes of type `{}`".format(node_type)) |
306
|
|
|
return None |
307
|
|
|
else: |
308
|
|
|
df = convert_to_multiindex(group, droplevel=droplevel) |
309
|
|
|
return df |
310
|
|
|
|
311
|
|
|
|
312
|
|
View Code Duplication |
def node_output_by_type(results, node_type, droplevel=None): |
|
|
|
|
313
|
|
|
"""Gets all outputs for all nodes of the type `node_type` and returns |
314
|
|
|
a dataframe. |
315
|
|
|
|
316
|
|
|
Parameters |
317
|
|
|
---------- |
318
|
|
|
results: dict |
319
|
|
|
A result dictionary from a solved oemof.solph.Model object |
320
|
|
|
node_type: oemof.solph class |
321
|
|
|
Specifies the type of the node for that outputs are selected, |
322
|
|
|
e.g. solph.components.Converter |
323
|
|
|
droplevel: list |
324
|
|
|
|
325
|
|
|
Examples |
326
|
|
|
-------- |
327
|
|
|
:: |
328
|
|
|
|
329
|
|
|
import oemof.solph as solph |
330
|
|
|
from oemof.solph import views |
331
|
|
|
|
332
|
|
|
# solve oemof solph model 'm' |
333
|
|
|
# Then collect node weights |
334
|
|
|
views.node_output_by_type( |
335
|
|
|
m.results(), |
336
|
|
|
node_type=solph.components.Converter |
337
|
|
|
) |
338
|
|
|
""" |
339
|
|
|
if droplevel is None: |
340
|
|
|
droplevel = [] |
341
|
|
|
group = { |
342
|
|
|
k: v["sequences"] |
343
|
|
|
for k, v in results.items() |
344
|
|
|
if isinstance(k[0], node_type) and k[1] is not None |
345
|
|
|
} |
346
|
|
|
|
347
|
|
|
if not group: |
348
|
|
|
logging.info("No nodes of type `{}`".format(node_type)) |
349
|
|
|
return None |
350
|
|
|
else: |
351
|
|
|
df = convert_to_multiindex(group, droplevel=droplevel) |
352
|
|
|
return df |
353
|
|
|
|
354
|
|
|
|
355
|
|
|
def net_storage_flow(results, node_type): |
356
|
|
|
"""Calculates the net storage flow for storage models that have one |
357
|
|
|
input edge and one output edge both with flows within the domain of |
358
|
|
|
non-negative reals. |
359
|
|
|
|
360
|
|
|
Parameters |
361
|
|
|
---------- |
362
|
|
|
results: dict |
363
|
|
|
A result dictionary from a solved oemof.solph.Model object |
364
|
|
|
node_type: oemof.solph class |
365
|
|
|
Specifies the type for which (storage) type net flows are calculated, |
366
|
|
|
e.g. solph.components.GenericStorage |
367
|
|
|
|
368
|
|
|
Returns |
369
|
|
|
------- |
370
|
|
|
pandas.DataFrame object with multiindex colums. Names of levels of columns |
371
|
|
|
are: from, to, net_flow. |
372
|
|
|
|
373
|
|
|
Examples |
374
|
|
|
-------- |
375
|
|
|
:: |
376
|
|
|
|
377
|
|
|
import oemof.solph as solph |
378
|
|
|
from oemof.solph import views |
379
|
|
|
|
380
|
|
|
# solve oemof solph model 'm' |
381
|
|
|
# Then collect node weights |
382
|
|
|
views.net_storage_flow( |
383
|
|
|
m.results(), |
384
|
|
|
node_type=solph.components.GenericStorage |
385
|
|
|
) |
386
|
|
|
""" |
387
|
|
|
|
388
|
|
|
group = { |
389
|
|
|
k: v["sequences"] |
390
|
|
|
for k, v in results.items() |
391
|
|
|
if isinstance(k[0], node_type) or isinstance(k[1], node_type) |
392
|
|
|
} |
393
|
|
|
|
394
|
|
|
if not group: |
395
|
|
|
logging.info("No nodes of type `{}`".format(node_type)) |
396
|
|
|
return None |
397
|
|
|
|
398
|
|
|
df = convert_to_multiindex(group) |
399
|
|
|
|
400
|
|
|
if "storage_content" not in df.columns.get_level_values(2).unique(): |
401
|
|
|
return None |
402
|
|
|
|
403
|
|
|
x = df.xs("storage_content", axis=1, level=2).columns.values |
404
|
|
|
labels = [s for s, t in x] |
405
|
|
|
|
406
|
|
|
dataframes = [] |
407
|
|
|
|
408
|
|
|
for lb in labels: |
409
|
|
|
subset = ( |
410
|
|
|
df.T.groupby( |
411
|
|
|
lambda x1: ( |
412
|
|
|
lambda fr, to, ty: ( |
413
|
|
|
"output" |
414
|
|
|
if (fr == lb and ty == "flow") |
415
|
|
|
else ( |
416
|
|
|
"input" |
417
|
|
|
if (to == lb and ty == "flow") |
418
|
|
|
else ( |
419
|
|
|
"level" |
420
|
|
|
if (fr == lb and ty != "flow") |
421
|
|
|
else None |
422
|
|
|
) |
423
|
|
|
) |
424
|
|
|
) |
425
|
|
|
)(*x1) |
426
|
|
|
) |
427
|
|
|
.sum() |
428
|
|
|
.T |
429
|
|
|
) |
430
|
|
|
|
431
|
|
|
subset["net_flow"] = subset["output"] - subset["input"] |
432
|
|
|
|
433
|
|
|
subset.columns = pd.MultiIndex.from_product( |
434
|
|
|
[[lb], [o for o in lb.outputs], subset.columns] |
435
|
|
|
) |
436
|
|
|
|
437
|
|
|
dataframes.append( |
438
|
|
|
subset.loc[:, (slice(None), slice(None), "net_flow")] |
439
|
|
|
) |
440
|
|
|
|
441
|
|
|
return pd.concat(dataframes, axis=1) |
442
|
|
|
|
443
|
|
|
|
444
|
|
|
def convert_to_multiindex(group, index_names=None, droplevel=None): |
445
|
|
|
"""Convert dict to pandas DataFrame with multiindex |
446
|
|
|
|
447
|
|
|
Parameters |
448
|
|
|
---------- |
449
|
|
|
group: dict |
450
|
|
|
Sequences of the oemof.solph.Model.results dictionary |
451
|
|
|
index_names: arraylike |
452
|
|
|
Array with names of the MultiIndex |
453
|
|
|
droplevel: arraylike |
454
|
|
|
List containing levels to be dropped from the dataframe |
455
|
|
|
""" |
456
|
|
|
if index_names is None: |
457
|
|
|
index_names = ["from", "to", "type"] |
458
|
|
|
if droplevel is None: |
459
|
|
|
droplevel = [] |
460
|
|
|
|
461
|
|
|
sorted_group = OrderedDict((k, group[k]) for k in sorted(group)) |
462
|
|
|
df = pd.concat(sorted_group.values(), axis=1) |
463
|
|
|
|
464
|
|
|
cols = OrderedDict((k, v.columns) for k, v in sorted_group.items()) |
465
|
|
|
cols = [tuple((k, m) for m in v) for k, v in cols.items()] |
466
|
|
|
cols = [c for sublist in cols for c in sublist] |
467
|
|
|
idx = pd.MultiIndex.from_tuples( |
468
|
|
|
[tuple([col[0][0], col[0][1], col[1]]) for col in cols] |
469
|
|
|
) |
470
|
|
|
idx.set_names(index_names, inplace=True) |
471
|
|
|
df.columns = idx |
472
|
|
|
df.columns = df.columns.droplevel(droplevel) |
473
|
|
|
|
474
|
|
|
return df |
475
|
|
|
|