1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
|
3
|
|
|
"""Creating sets, variables, constraints and parts of the objective function |
4
|
|
|
for Flow objects with nonconvex but without investment options. |
5
|
|
|
|
6
|
|
|
SPDX-FileCopyrightText: Uwe Krien <[email protected]> |
7
|
|
|
SPDX-FileCopyrightText: Simon Hilpert |
8
|
|
|
SPDX-FileCopyrightText: Cord Kaldemeyer |
9
|
|
|
SPDX-FileCopyrightText: Patrik Schönfeldt |
10
|
|
|
SPDX-FileCopyrightText: Birgit Schachler |
11
|
|
|
SPDX-FileCopyrightText: jnnr |
12
|
|
|
SPDX-FileCopyrightText: jmloenneberga |
13
|
|
|
SPDX-FileCopyrightText: Johannes Kochems |
14
|
|
|
|
15
|
|
|
SPDX-License-Identifier: MIT |
16
|
|
|
|
17
|
|
|
""" |
18
|
|
|
|
19
|
|
|
from pyomo.core import Binary |
20
|
|
|
from pyomo.core import BuildAction |
21
|
|
|
from pyomo.core import Constraint |
22
|
|
|
from pyomo.core import Expression |
23
|
|
|
from pyomo.core import NonNegativeReals |
24
|
|
|
from pyomo.core import Set |
25
|
|
|
from pyomo.core import Var |
26
|
|
|
from pyomo.core.base.block import ScalarBlock |
27
|
|
|
|
28
|
|
|
from oemof.solph._plumbing import valid_sequence |
29
|
|
|
|
30
|
|
|
|
31
|
|
|
class NonConvexFlowBlock(ScalarBlock): |
32
|
|
|
r""" |
33
|
|
|
.. automethod:: _create_constraints |
34
|
|
|
.. automethod:: _create_variables |
35
|
|
|
.. automethod:: _create_sets |
36
|
|
|
|
37
|
|
|
.. automethod:: _objective_expression |
38
|
|
|
|
39
|
|
|
Parameters are defined in :class:`Flow`. |
40
|
|
|
""" |
41
|
|
|
|
42
|
|
|
def __init__(self, *args, **kwargs): |
43
|
|
|
super().__init__(*args, **kwargs) |
44
|
|
|
|
45
|
|
|
def _create(self, group=None): |
46
|
|
|
"""Creates set, variables, constraints for all flow object with |
47
|
|
|
an attribute flow of type class:`.NonConvexFlowBlock`. |
48
|
|
|
|
49
|
|
|
Parameters |
50
|
|
|
---------- |
51
|
|
|
group : list |
52
|
|
|
List of oemof.solph.NonConvexFlowBlock objects for which |
53
|
|
|
the constraints are build. |
54
|
|
|
""" |
55
|
|
|
if group is None: |
56
|
|
|
return None |
57
|
|
|
|
58
|
|
|
self._create_sets(group) |
59
|
|
|
self._create_variables() |
60
|
|
|
self._create_constraints() |
61
|
|
|
|
62
|
|
|
def _create_sets(self, group): |
63
|
|
|
r""" |
64
|
|
|
**The following sets are created:** (-> see basic sets at |
65
|
|
|
:class:`.Model` ) |
66
|
|
|
|
67
|
|
|
NONCONVEX_FLOWS |
68
|
|
|
A set of flows with the attribute `nonconvex` of type |
69
|
|
|
:class:`.options.NonConvex`. |
70
|
|
|
|
71
|
|
|
|
72
|
|
|
.. automethod:: _sets_for_non_convex_flows |
73
|
|
|
""" |
74
|
|
|
self.NONCONVEX_FLOWS = Set(initialize=[(g[0], g[1]) for g in group]) |
75
|
|
|
|
76
|
|
|
self._sets_for_non_convex_flows(group) |
77
|
|
|
|
78
|
|
|
def _create_variables(self): |
79
|
|
|
r""" |
80
|
|
|
:math:`Y_{status}` (binary) `om.NonConvexFlowBlock.status`: |
81
|
|
|
Variable indicating if flow is >= 0 |
82
|
|
|
|
83
|
|
|
:math:`P_{max,status}` Status_nominal (continuous) |
84
|
|
|
Variable indicating if flow is >= 0 |
85
|
|
|
|
86
|
|
|
.. automethod:: _variables_for_non_convex_flows |
87
|
|
|
""" |
88
|
|
|
m = self.parent_block() |
89
|
|
|
self.status = Var(self.NONCONVEX_FLOWS, m.TIMESTEPS, within=Binary) |
90
|
|
|
for o, i in self.NONCONVEX_FLOWS: |
91
|
|
|
if m.flows[o, i].nonconvex.initial_status is not None: |
92
|
|
|
for t in range( |
93
|
|
|
0, m.flows[o, i].nonconvex.first_flexible_timestep |
94
|
|
|
): |
95
|
|
|
self.status[o, i, t] = m.flows[ |
96
|
|
|
o, i |
97
|
|
|
].nonconvex.initial_status |
98
|
|
|
self.status[o, i, t].fix() |
99
|
|
|
|
100
|
|
|
# `status_nominal` is a parameter which represents the |
101
|
|
|
# multiplication of a binary variable (`status`) |
102
|
|
|
# and a continuous variable (`invest` or `nominal_capacity`) |
103
|
|
|
self.status_nominal = Var( |
104
|
|
|
self.NONCONVEX_FLOWS, m.TIMESTEPS, within=NonNegativeReals |
105
|
|
|
) |
106
|
|
|
|
107
|
|
|
self._variables_for_non_convex_flows() |
108
|
|
|
|
109
|
|
|
def _create_constraints(self): |
110
|
|
|
""" |
111
|
|
|
The following constraints are created: |
112
|
|
|
|
113
|
|
|
.. automethod:: _status_nominal_constraint |
114
|
|
|
.. automethod:: _minimum_flow_constraint |
115
|
|
|
.. automethod:: _maximum_flow_constraint |
116
|
|
|
.. automethod:: _shared_constraints_for_non_convex_flows |
117
|
|
|
|
118
|
|
|
""" |
119
|
|
|
|
120
|
|
|
self.status_nominal_constraint = self._status_nominal_constraint() |
121
|
|
|
self.min = self._minimum_flow_constraint() |
122
|
|
|
self.max = self._maximum_flow_constraint() |
123
|
|
|
|
124
|
|
|
self._shared_constraints_for_non_convex_flows() |
125
|
|
|
|
126
|
|
|
def _objective_expression(self): |
127
|
|
|
r""" |
128
|
|
|
The following terms are to the cost function: |
129
|
|
|
|
130
|
|
|
.. automethod:: _startup_costs |
131
|
|
|
.. automethod:: _shutdown_costs |
132
|
|
|
.. automethod:: _activity_costs |
133
|
|
|
.. automethod:: _inactivity_costs |
134
|
|
|
""" |
135
|
|
|
if not hasattr(self, "NONCONVEX_FLOWS"): |
136
|
|
|
return 0 |
137
|
|
|
|
138
|
|
|
startup_costs = self._startup_costs() |
139
|
|
|
shutdown_costs = self._shutdown_costs() |
140
|
|
|
activity_costs = self._activity_costs() |
141
|
|
|
inactivity_costs = self._inactivity_costs() |
142
|
|
|
|
143
|
|
|
self.activity_costs = Expression(expr=activity_costs) |
144
|
|
|
self.inactivity_costs = Expression(expr=inactivity_costs) |
145
|
|
|
self.startup_costs = Expression(expr=startup_costs) |
146
|
|
|
self.shutdown_costs = Expression(expr=shutdown_costs) |
147
|
|
|
|
148
|
|
|
self.costs = Expression( |
149
|
|
|
expr=( |
150
|
|
|
startup_costs |
151
|
|
|
+ shutdown_costs |
152
|
|
|
+ activity_costs |
153
|
|
|
+ inactivity_costs |
154
|
|
|
) |
155
|
|
|
) |
156
|
|
|
|
157
|
|
|
return self.costs |
158
|
|
|
|
159
|
|
|
def _sets_for_non_convex_flows(self, group): |
160
|
|
|
r"""Creates all sets for non-convex flows. |
161
|
|
|
|
162
|
|
|
MIN_FLOWS |
163
|
|
|
A subset of set NONCONVEX_FLOWS with the attribute `min` |
164
|
|
|
being not None in the first timestep. |
165
|
|
|
ACTIVITYCOSTFLOWS |
166
|
|
|
A subset of set NONCONVEX_FLOWS with the attribute |
167
|
|
|
`activity_costs` being not None. |
168
|
|
|
INACTIVITYCOSTFLOWS |
169
|
|
|
A subset of set NONCONVEX_FLOWS with the attribute |
170
|
|
|
`inactivity_costs` being not None. |
171
|
|
|
STARTUPFLOWS |
172
|
|
|
A subset of set NONCONVEX_FLOWS with the attribute |
173
|
|
|
`maximum_startups` or `startup_costs` |
174
|
|
|
being not None. |
175
|
|
|
MAXSTARTUPFLOWS |
176
|
|
|
A subset of set STARTUPFLOWS with the attribute |
177
|
|
|
`maximum_startups` being not None. |
178
|
|
|
SHUTDOWNFLOWS |
179
|
|
|
A subset of set NONCONVEX_FLOWS with the attribute |
180
|
|
|
`maximum_shutdowns` or `shutdown_costs` |
181
|
|
|
being not None. |
182
|
|
|
MAXSHUTDOWNFLOWS |
183
|
|
|
A subset of set SHUTDOWNFLOWS with the attribute |
184
|
|
|
`maximum_shutdowns` being not None. |
185
|
|
|
MINUPTIMEFLOWS |
186
|
|
|
A subset of set NONCONVEX_FLOWS with the attribute |
187
|
|
|
`minimum_uptime` being > 0. |
188
|
|
|
MINDOWNTIMEFLOWS |
189
|
|
|
A subset of set NONCONVEX_FLOWS with the attribute |
190
|
|
|
`minimum_downtime` being > 0. |
191
|
|
|
POSITIVE_GRADIENT_FLOWS |
192
|
|
|
A subset of set NONCONVEX_FLOWS with the attribute |
193
|
|
|
`positive_gradient` being not None. |
194
|
|
|
NEGATIVE_GRADIENT_FLOWS |
195
|
|
|
A subset of set NONCONVEX_FLOWS with the attribute |
196
|
|
|
`negative_gradient` being not None. |
197
|
|
|
""" |
198
|
|
|
self.MIN_FLOWS = Set( |
199
|
|
|
initialize=[(g[0], g[1]) for g in group if g[2].min[0] is not None] |
200
|
|
|
) |
201
|
|
|
self.STARTUPFLOWS = Set( |
202
|
|
|
initialize=[ |
203
|
|
|
(g[0], g[1]) |
204
|
|
|
for g in group |
205
|
|
|
if g[2].nonconvex.startup_costs[0] is not None |
206
|
|
|
or g[2].nonconvex.maximum_startups is not None |
207
|
|
|
] |
208
|
|
|
) |
209
|
|
|
self.MAXSTARTUPFLOWS = Set( |
210
|
|
|
initialize=[ |
211
|
|
|
(g[0], g[1]) |
212
|
|
|
for g in group |
213
|
|
|
if g[2].nonconvex.maximum_startups is not None |
214
|
|
|
] |
215
|
|
|
) |
216
|
|
|
self.SHUTDOWNFLOWS = Set( |
217
|
|
|
initialize=[ |
218
|
|
|
(g[0], g[1]) |
219
|
|
|
for g in group |
220
|
|
|
if g[2].nonconvex.shutdown_costs[0] is not None |
221
|
|
|
or g[2].nonconvex.maximum_shutdowns is not None |
222
|
|
|
] |
223
|
|
|
) |
224
|
|
|
self.MAXSHUTDOWNFLOWS = Set( |
225
|
|
|
initialize=[ |
226
|
|
|
(g[0], g[1]) |
227
|
|
|
for g in group |
228
|
|
|
if g[2].nonconvex.maximum_shutdowns is not None |
229
|
|
|
] |
230
|
|
|
) |
231
|
|
|
self.MINUPTIMEFLOWS = Set( |
232
|
|
|
initialize=[ |
233
|
|
|
(g[0], g[1]) |
234
|
|
|
for g in group |
235
|
|
|
if g[2].nonconvex.minimum_uptime.max() > 0 |
236
|
|
|
] |
237
|
|
|
) |
238
|
|
|
self.MINDOWNTIMEFLOWS = Set( |
239
|
|
|
initialize=[ |
240
|
|
|
(g[0], g[1]) |
241
|
|
|
for g in group |
242
|
|
|
if g[2].nonconvex.minimum_downtime.max() > 0 |
243
|
|
|
] |
244
|
|
|
) |
245
|
|
|
self.NEGATIVE_GRADIENT_FLOWS = Set( |
246
|
|
|
initialize=[ |
247
|
|
|
(g[0], g[1]) |
248
|
|
|
for g in group |
249
|
|
|
if g[2].nonconvex.negative_gradient_limit[0] is not None |
250
|
|
|
] |
251
|
|
|
) |
252
|
|
|
self.POSITIVE_GRADIENT_FLOWS = Set( |
253
|
|
|
initialize=[ |
254
|
|
|
(g[0], g[1]) |
255
|
|
|
for g in group |
256
|
|
|
if g[2].nonconvex.positive_gradient_limit[0] is not None |
257
|
|
|
] |
258
|
|
|
) |
259
|
|
|
self.ACTIVITYCOSTFLOWS = Set( |
260
|
|
|
initialize=[ |
261
|
|
|
(g[0], g[1]) |
262
|
|
|
for g in group |
263
|
|
|
if g[2].nonconvex.activity_costs[0] is not None |
264
|
|
|
] |
265
|
|
|
) |
266
|
|
|
|
267
|
|
|
self.INACTIVITYCOSTFLOWS = Set( |
268
|
|
|
initialize=[ |
269
|
|
|
(g[0], g[1]) |
270
|
|
|
for g in group |
271
|
|
|
if g[2].nonconvex.inactivity_costs[0] is not None |
272
|
|
|
] |
273
|
|
|
) |
274
|
|
|
|
275
|
|
|
def _variables_for_non_convex_flows(self): |
276
|
|
|
r""" |
277
|
|
|
:math:`Y_{startup}` (binary) `NonConvexFlowBlock.startup`: |
278
|
|
|
Variable indicating startup of flow (component) indexed by |
279
|
|
|
STARTUPFLOWS |
280
|
|
|
|
281
|
|
|
:math:`Y_{shutdown}` (binary) `NonConvexFlowBlock.shutdown`: |
282
|
|
|
Variable indicating shutdown of flow (component) indexed by |
283
|
|
|
SHUTDOWNFLOWS |
284
|
|
|
|
285
|
|
|
:math:`\dot{P}_{up}` (continuous) |
286
|
|
|
`NonConvexFlowBlock.positive_gradient`: |
287
|
|
|
Variable indicating the positive gradient, i.e. the load increase |
288
|
|
|
between two consecutive timesteps, indexed by |
289
|
|
|
POSITIVE_GRADIENT_FLOWS |
290
|
|
|
|
291
|
|
|
:math:`\dot{P}_{down}` (continuous) |
292
|
|
|
`NonConvexFlowBlock.negative_gradient`: |
293
|
|
|
Variable indicating the negative gradient, i.e. the load decrease |
294
|
|
|
between two consecutive timesteps, indexed by |
295
|
|
|
NEGATIVE_GRADIENT_FLOWS |
296
|
|
|
""" |
297
|
|
|
m = self.parent_block() |
298
|
|
|
|
299
|
|
|
if self.STARTUPFLOWS: |
300
|
|
|
self.startup = Var(self.STARTUPFLOWS, m.TIMESTEPS, within=Binary) |
301
|
|
|
|
302
|
|
|
if self.SHUTDOWNFLOWS: |
303
|
|
|
self.shutdown = Var(self.SHUTDOWNFLOWS, m.TIMESTEPS, within=Binary) |
304
|
|
|
|
305
|
|
|
if self.POSITIVE_GRADIENT_FLOWS: |
306
|
|
|
self.positive_gradient = Var( |
307
|
|
|
self.POSITIVE_GRADIENT_FLOWS, |
308
|
|
|
m.TIMESTEPS, |
309
|
|
|
within=NonNegativeReals, |
310
|
|
|
) |
311
|
|
|
|
312
|
|
|
if self.NEGATIVE_GRADIENT_FLOWS: |
313
|
|
|
self.negative_gradient = Var( |
314
|
|
|
self.NEGATIVE_GRADIENT_FLOWS, |
315
|
|
|
m.TIMESTEPS, |
316
|
|
|
within=NonNegativeReals, |
317
|
|
|
) |
318
|
|
|
|
319
|
|
|
def _startup_costs(self): |
320
|
|
|
r""" |
321
|
|
|
.. math:: |
322
|
|
|
\sum_{i, o \in STARTUPFLOWS} \sum_t Y_{startup}(t) \ |
323
|
|
|
\cdot c_{startup} |
324
|
|
|
""" |
325
|
|
|
startup_costs = 0 |
326
|
|
|
|
327
|
|
|
if self.STARTUPFLOWS: |
328
|
|
|
m = self.parent_block() |
329
|
|
|
|
330
|
|
|
for i, o in self.STARTUPFLOWS: |
331
|
|
|
if valid_sequence( |
332
|
|
|
m.flows[i, o].nonconvex.startup_costs, len(m.TIMESTEPS) |
333
|
|
|
): |
334
|
|
|
startup_costs += sum( |
335
|
|
|
self.startup[i, o, t] |
336
|
|
|
* m.flows[i, o].nonconvex.startup_costs[t] |
337
|
|
|
for t in m.TIMESTEPS |
338
|
|
|
) |
339
|
|
|
|
340
|
|
|
self.startup_costs = Expression(expr=startup_costs) |
341
|
|
|
|
342
|
|
|
return startup_costs |
343
|
|
|
|
344
|
|
|
def _shutdown_costs(self): |
345
|
|
|
r""" |
346
|
|
|
.. math:: |
347
|
|
|
\sum_{SHUTDOWNFLOWS} \sum_t Y_{shutdown}(t) \ |
348
|
|
|
\cdot c_{shutdown} |
349
|
|
|
""" |
350
|
|
|
shutdown_costs = 0 |
351
|
|
|
|
352
|
|
|
if self.SHUTDOWNFLOWS: |
353
|
|
|
m = self.parent_block() |
354
|
|
|
|
355
|
|
|
for i, o in self.SHUTDOWNFLOWS: |
356
|
|
|
if valid_sequence( |
357
|
|
|
m.flows[i, o].nonconvex.shutdown_costs, |
358
|
|
|
len(m.TIMESTEPS), |
359
|
|
|
): |
360
|
|
|
shutdown_costs += sum( |
361
|
|
|
self.shutdown[i, o, t] |
362
|
|
|
* m.flows[i, o].nonconvex.shutdown_costs[t] |
363
|
|
|
* m.tsam_weighting[t] |
364
|
|
|
for t in m.TIMESTEPS |
365
|
|
|
) |
366
|
|
|
|
367
|
|
|
self.shutdown_costs = Expression(expr=shutdown_costs) |
368
|
|
|
|
369
|
|
|
return shutdown_costs |
370
|
|
|
|
371
|
|
View Code Duplication |
def _activity_costs(self): |
|
|
|
|
372
|
|
|
r""" |
373
|
|
|
.. math:: |
374
|
|
|
\sum_{ACTIVITYCOSTFLOWS} \sum_t Y_{status}(t) \ |
375
|
|
|
\cdot c_{activity} |
376
|
|
|
""" |
377
|
|
|
activity_costs = 0 |
378
|
|
|
|
379
|
|
|
if self.ACTIVITYCOSTFLOWS: |
380
|
|
|
m = self.parent_block() |
381
|
|
|
|
382
|
|
|
for i, o in self.ACTIVITYCOSTFLOWS: |
383
|
|
|
if valid_sequence( |
384
|
|
|
m.flows[i, o].nonconvex.activity_costs, |
385
|
|
|
len(m.TIMESTEPS), |
386
|
|
|
): |
387
|
|
|
activity_costs += sum( |
388
|
|
|
self.status[i, o, t] |
389
|
|
|
* m.flows[i, o].nonconvex.activity_costs[t] |
390
|
|
|
* m.tsam_weighting[t] |
391
|
|
|
for t in m.TIMESTEPS |
392
|
|
|
) |
393
|
|
|
|
394
|
|
|
self.activity_costs = Expression(expr=activity_costs) |
395
|
|
|
|
396
|
|
|
return activity_costs |
397
|
|
|
|
398
|
|
View Code Duplication |
def _inactivity_costs(self): |
|
|
|
|
399
|
|
|
r""" |
400
|
|
|
.. math:: |
401
|
|
|
\sum_{INACTIVITYCOSTFLOWS} \sum_t (1 - Y_{status}(t)) \ |
402
|
|
|
\cdot c_{inactivity} |
403
|
|
|
""" |
404
|
|
|
inactivity_costs = 0 |
405
|
|
|
|
406
|
|
|
if self.INACTIVITYCOSTFLOWS: |
407
|
|
|
m = self.parent_block() |
408
|
|
|
|
409
|
|
|
for i, o in self.INACTIVITYCOSTFLOWS: |
410
|
|
|
if valid_sequence( |
411
|
|
|
m.flows[i, o].nonconvex.inactivity_costs, |
412
|
|
|
len(m.TIMESTEPS), |
413
|
|
|
): |
414
|
|
|
inactivity_costs += sum( |
415
|
|
|
(1 - self.status[i, o, t]) |
416
|
|
|
* m.flows[i, o].nonconvex.inactivity_costs[t] |
417
|
|
|
* m.tsam_weighting[t] |
418
|
|
|
for t in m.TIMESTEPS |
419
|
|
|
) |
420
|
|
|
|
421
|
|
|
self.inactivity_costs = Expression(expr=inactivity_costs) |
422
|
|
|
|
423
|
|
|
return inactivity_costs |
424
|
|
|
|
425
|
|
|
def _min_downtime_constraint(self): |
426
|
|
|
r""" |
427
|
|
|
.. math:: |
428
|
|
|
(Y_{status}(t-1) - Y_{status}(t)) \ |
429
|
|
|
\cdot t_{down,minimum} \\ |
430
|
|
|
\leq t_{down,minimum} \ |
431
|
|
|
- \sum_{n=0}^{t_{down,minimum}-1} Y_{status}(t+n) \\ |
432
|
|
|
\forall t \in \textrm{TIMESTEPS} | \\ |
433
|
|
|
t \neq \{0..t_{down,minimum}\} \cup \ |
434
|
|
|
\{t\_max-t_{down,minimum}..t\_max\} , \\ |
435
|
|
|
\forall (i,o) \in \textrm{MINDOWNTIMEFLOWS}. |
436
|
|
|
\\ \\ |
437
|
|
|
Y_{status}(t) = Y_{status,0} \\ |
438
|
|
|
\forall t \in \textrm{TIMESTEPS} | \\ |
439
|
|
|
t = \{0..t_{down,minimum}\} \cup \ |
440
|
|
|
\{t\_max-t_{down,minimum}..t\_max\} , \\ |
441
|
|
|
\forall (i,o) \in \textrm{MINDOWNTIMEFLOWS}. |
442
|
|
|
""" |
443
|
|
|
m = self.parent_block() |
444
|
|
|
|
445
|
|
|
def min_downtime_rule(_, i, o, t): |
446
|
|
|
""" |
447
|
|
|
Rule definition for min-downtime constraints of non-convex flows. |
448
|
|
|
""" |
449
|
|
|
if ( |
450
|
|
|
m.flows[i, o].nonconvex.first_flexible_timestep |
451
|
|
|
< t |
452
|
|
|
< m.TIMESTEPS.at(-1) |
453
|
|
|
): |
454
|
|
|
# We have a 2D matrix of constraints, |
455
|
|
|
# so testing is easier then just calling the rule for valid t. |
456
|
|
|
|
457
|
|
|
expr = 0 |
458
|
|
|
expr += ( |
459
|
|
|
self.status[i, o, t - 1] - self.status[i, o, t] |
460
|
|
|
) * m.flows[i, o].nonconvex.minimum_downtime[t] |
461
|
|
|
expr += -m.flows[i, o].nonconvex.minimum_downtime[t] |
462
|
|
|
expr += sum( |
463
|
|
|
self.status[i, o, d] |
464
|
|
|
for d in range( |
465
|
|
|
t, |
466
|
|
|
min( |
467
|
|
|
t + m.flows[i, o].nonconvex.minimum_downtime[t], |
468
|
|
|
len(m.TIMESTEPS), |
469
|
|
|
), |
470
|
|
|
) |
471
|
|
|
) |
472
|
|
|
return expr <= 0 |
473
|
|
|
else: |
474
|
|
|
return Constraint.Skip |
475
|
|
|
|
476
|
|
|
return Constraint( |
477
|
|
|
self.MINDOWNTIMEFLOWS, m.TIMESTEPS, rule=min_downtime_rule |
478
|
|
|
) |
479
|
|
|
|
480
|
|
|
def _min_uptime_constraint(self): |
481
|
|
|
r""" |
482
|
|
|
.. math:: |
483
|
|
|
(Y_{status}(t)-Y_{status}(t-1)) \cdot t_{up,minimum} \\ |
484
|
|
|
\leq \sum_{n=0}^{t_{up,minimum}-1} Y_{status}(t+n) \\ |
485
|
|
|
\forall t \in \textrm{TIMESTEPS} | \\ |
486
|
|
|
t \neq \{0..t_{up,minimum}\} \cup \ |
487
|
|
|
\{t\_max-t_{up,minimum}..t\_max\} , \\ |
488
|
|
|
\forall (i,o) \in \textrm{MINUPTIMEFLOWS}. |
489
|
|
|
\\ \\ |
490
|
|
|
Y_{status}(t) = Y_{status,0} \\ |
491
|
|
|
\forall t \in \textrm{TIMESTEPS} | \\ |
492
|
|
|
t = \{0..t_{up,minimum}\} \cup \ |
493
|
|
|
\{t\_max-t_{up,minimum}..t\_max\} , \\ |
494
|
|
|
\forall (i,o) \in \textrm{MINUPTIMEFLOWS}. |
495
|
|
|
""" |
496
|
|
|
m = self.parent_block() |
497
|
|
|
|
498
|
|
|
def _min_uptime_rule(_, i, o, t): |
499
|
|
|
""" |
500
|
|
|
Rule definition for min-uptime constraints of non-convex flows. |
501
|
|
|
""" |
502
|
|
|
if ( |
503
|
|
|
m.flows[i, o].nonconvex.first_flexible_timestep |
504
|
|
|
< t |
505
|
|
|
< m.TIMESTEPS.at(-1) |
506
|
|
|
): |
507
|
|
|
# We have a 2D matrix of constraints, |
508
|
|
|
# so testing is easier then just calling the rule for valid t. |
509
|
|
|
expr = 0 |
510
|
|
|
expr += ( |
511
|
|
|
self.status[i, o, t] - self.status[i, o, t - 1] |
512
|
|
|
) * m.flows[i, o].nonconvex.minimum_uptime[t] |
513
|
|
|
expr += -sum( |
514
|
|
|
self.status[i, o, u] |
515
|
|
|
for u in range( |
516
|
|
|
t, |
517
|
|
|
min( |
518
|
|
|
t + m.flows[i, o].nonconvex.minimum_uptime[t], |
519
|
|
|
len(m.TIMESTEPS), |
520
|
|
|
), |
521
|
|
|
) |
522
|
|
|
) |
523
|
|
|
return expr <= 0 |
524
|
|
|
else: |
525
|
|
|
return Constraint.Skip |
526
|
|
|
|
527
|
|
|
return Constraint( |
528
|
|
|
self.MINUPTIMEFLOWS, m.TIMESTEPS, rule=_min_uptime_rule |
529
|
|
|
) |
530
|
|
|
|
531
|
|
|
def _shutdown_constraint(self): |
532
|
|
|
r""" |
533
|
|
|
.. math:: |
534
|
|
|
Y_{shutdown}(t) \geq Y_{status}(t-1) - Y_{status}(t) \\ |
535
|
|
|
\forall t \in \textrm{TIMESTEPS}, \\ |
536
|
|
|
\forall \textrm{SHUTDOWNFLOWS}. |
537
|
|
|
""" |
538
|
|
|
m = self.parent_block() |
539
|
|
|
|
540
|
|
|
def _shutdown_rule(_, i, o, t): |
541
|
|
|
"""Rule definition for shutdown constraints of non-convex flows.""" |
542
|
|
|
if t > m.TIMESTEPS.at(1): |
543
|
|
|
expr = ( |
544
|
|
|
self.shutdown[i, o, t] |
545
|
|
|
>= self.status[i, o, t - 1] - self.status[i, o, t] |
546
|
|
|
) |
547
|
|
|
else: |
548
|
|
|
expr = ( |
549
|
|
|
self.shutdown[i, o, t] |
550
|
|
|
>= m.flows[i, o].nonconvex.initial_status |
551
|
|
|
- self.status[i, o, t] |
552
|
|
|
) |
553
|
|
|
return expr |
554
|
|
|
|
555
|
|
|
return Constraint(self.SHUTDOWNFLOWS, m.TIMESTEPS, rule=_shutdown_rule) |
556
|
|
|
|
557
|
|
|
def _startup_constraint(self): |
558
|
|
|
r""" |
559
|
|
|
.. math:: |
560
|
|
|
Y_{startup}(t) \geq Y_{status}(t) - Y_{status}(t-1) \\ |
561
|
|
|
\forall t \in \textrm{TIMESTEPS}, \\ |
562
|
|
|
\forall \textrm{STARTUPFLOWS}. |
563
|
|
|
""" |
564
|
|
|
m = self.parent_block() |
565
|
|
|
|
566
|
|
|
def _startup_rule(_, i, o, t): |
567
|
|
|
"""Rule definition for startup constraint of nonconvex flows.""" |
568
|
|
|
if t > m.TIMESTEPS.at(1): |
569
|
|
|
expr = ( |
570
|
|
|
self.startup[i, o, t] |
571
|
|
|
>= self.status[i, o, t] - self.status[i, o, t - 1] |
572
|
|
|
) |
573
|
|
|
else: |
574
|
|
|
expr = ( |
575
|
|
|
self.startup[i, o, t] |
576
|
|
|
>= self.status[i, o, t] |
577
|
|
|
- m.flows[i, o].nonconvex.initial_status |
578
|
|
|
) |
579
|
|
|
return expr |
580
|
|
|
|
581
|
|
|
return Constraint(self.STARTUPFLOWS, m.TIMESTEPS, rule=_startup_rule) |
582
|
|
|
|
583
|
|
|
def _max_startup_constraint(self): |
584
|
|
|
r""" |
585
|
|
|
.. math:: |
586
|
|
|
\sum_{t \in \textrm{TIMESTEPS}} Y_{startup}(t) \leq \ |
587
|
|
|
N_{start}(i,o)\\ |
588
|
|
|
\forall (i,o) \in \textrm{MAXSTARTUPFLOWS}. |
589
|
|
|
""" |
590
|
|
|
m = self.parent_block() |
591
|
|
|
|
592
|
|
|
def _max_startup_rule(_, i, o): |
593
|
|
|
"""Rule definition for maximum number of start-ups.""" |
594
|
|
|
lhs = sum(self.startup[i, o, t] for t in m.TIMESTEPS) |
595
|
|
|
return lhs <= m.flows[i, o].nonconvex.maximum_startups |
596
|
|
|
|
597
|
|
|
return Constraint(self.MAXSTARTUPFLOWS, rule=_max_startup_rule) |
598
|
|
|
|
599
|
|
|
def _max_shutdown_constraint(self): |
600
|
|
|
r""" |
601
|
|
|
.. math:: |
602
|
|
|
\sum_{t \in \textrm{TIMESTEPS}} Y_{startup}(t) \leq \ |
603
|
|
|
N_{shutdown}(i,o)\\ |
604
|
|
|
\forall (i,o) \in \textrm{MAXSHUTDOWNFLOWS}. |
605
|
|
|
""" |
606
|
|
|
m = self.parent_block() |
607
|
|
|
|
608
|
|
|
def _max_shutdown_rule(_, i, o): |
609
|
|
|
"""Rule definition for maximum number of start-ups.""" |
610
|
|
|
lhs = sum(self.shutdown[i, o, t] for t in m.TIMESTEPS) |
611
|
|
|
return lhs <= m.flows[i, o].nonconvex.maximum_shutdowns |
612
|
|
|
|
613
|
|
|
return Constraint(self.MAXSHUTDOWNFLOWS, rule=_max_shutdown_rule) |
614
|
|
|
|
615
|
|
|
def _maximum_flow_constraint(self): |
616
|
|
|
r""" |
617
|
|
|
.. math:: |
618
|
|
|
P(t) \leq max(i, o, t) \cdot P_{nom} \ |
619
|
|
|
\cdot status(t), \\ |
620
|
|
|
\forall t \in \textrm{TIMESTEPS}, \\ |
621
|
|
|
\forall (i, o) \in \textrm{NONCONVEX_FLOWS}. |
622
|
|
|
""" |
623
|
|
|
m = self.parent_block() |
624
|
|
|
|
625
|
|
|
def _maximum_flow_rule(_, i, o, t): |
626
|
|
|
"""Rule definition for MILP maximum flow constraints.""" |
627
|
|
|
expr = ( |
628
|
|
|
self.status_nominal[i, o, t] * m.flows[i, o].max[t] |
629
|
|
|
>= m.flow[i, o, t] |
630
|
|
|
) |
631
|
|
|
return expr |
632
|
|
|
|
633
|
|
|
return Constraint(self.MIN_FLOWS, m.TIMESTEPS, rule=_maximum_flow_rule) |
634
|
|
|
|
635
|
|
|
def _minimum_flow_constraint(self): |
636
|
|
|
r""" |
637
|
|
|
.. math:: |
638
|
|
|
P(t) \geq min(i, o, t) \cdot P_{nom} \ |
639
|
|
|
\cdot Y_{status}(t), \\ |
640
|
|
|
\forall (i, o) \in \textrm{NONCONVEX_FLOWS}, \\ |
641
|
|
|
\forall t \in \textrm{TIMESTEPS}. |
642
|
|
|
""" |
643
|
|
|
m = self.parent_block() |
644
|
|
|
|
645
|
|
|
def _minimum_flow_rule(_, i, o, t): |
646
|
|
|
"""Rule definition for MILP minimum flow constraints.""" |
647
|
|
|
expr = ( |
648
|
|
|
self.status_nominal[i, o, t] * m.flows[i, o].min[t] |
649
|
|
|
<= m.flow[i, o, t] |
650
|
|
|
) |
651
|
|
|
return expr |
652
|
|
|
|
653
|
|
|
return Constraint(self.MIN_FLOWS, m.TIMESTEPS, rule=_minimum_flow_rule) |
654
|
|
|
|
655
|
|
|
def _status_nominal_constraint(self): |
656
|
|
|
r""" |
657
|
|
|
.. math:: |
658
|
|
|
P_{max,status}(t) = Y_{status}(t) \cdot P_{nom}, \\ |
659
|
|
|
\forall t \in \textrm{TIMESTEPS}. |
660
|
|
|
""" |
661
|
|
|
m = self.parent_block() |
662
|
|
|
|
663
|
|
|
def _status_nominal_rule(_, i, o, t): |
664
|
|
|
"""Rule definition for status_nominal""" |
665
|
|
|
expr = ( |
666
|
|
|
self.status_nominal[i, o, t] |
667
|
|
|
== self.status[i, o, t] * m.flows[i, o].nominal_capacity |
668
|
|
|
) |
669
|
|
|
return expr |
670
|
|
|
|
671
|
|
|
return Constraint( |
672
|
|
|
self.NONCONVEX_FLOWS, m.TIMESTEPS, rule=_status_nominal_rule |
673
|
|
|
) |
674
|
|
|
|
675
|
|
|
def _shared_constraints_for_non_convex_flows(self): |
676
|
|
|
r""" |
677
|
|
|
|
678
|
|
|
.. automethod:: _startup_constraint |
679
|
|
|
.. automethod:: _max_startup_constraint |
680
|
|
|
.. automethod:: _shutdown_constraint |
681
|
|
|
.. automethod:: _max_shutdown_constraint |
682
|
|
|
.. automethod:: _min_uptime_constraint |
683
|
|
|
.. automethod:: _min_downtime_constraint |
684
|
|
|
|
685
|
|
|
positive_gradient_constraint |
686
|
|
|
.. math:: |
687
|
|
|
|
688
|
|
|
P(t) \cdot Y_{status}(t) |
689
|
|
|
- P(t-1) \cdot Y_{status}(t-1) \leq \ |
690
|
|
|
\dot{P}_{up}(t), \\ |
691
|
|
|
\forall t \in \textrm{TIMESTEPS}. |
692
|
|
|
|
693
|
|
|
negative_gradient_constraint |
694
|
|
|
.. math:: |
695
|
|
|
P(t-1) \cdot Y_{status}(t-1) |
696
|
|
|
- P(t) \cdot Y_{status}(t) \leq \ |
697
|
|
|
\dot{P}_{down}(t), \\ |
698
|
|
|
\forall t \in \textrm{TIMESTEPS}. |
699
|
|
|
""" |
700
|
|
|
m = self.parent_block() |
701
|
|
|
|
702
|
|
|
self.startup_constr = self._startup_constraint() |
703
|
|
|
self.max_startup_constr = self._max_startup_constraint() |
704
|
|
|
self.shutdown_constr = self._shutdown_constraint() |
705
|
|
|
self.max_shutdown_constr = self._max_shutdown_constraint() |
706
|
|
|
self.min_uptime_constr = self._min_uptime_constraint() |
707
|
|
|
self.min_downtime_constr = self._min_downtime_constraint() |
708
|
|
|
|
709
|
|
|
def _positive_gradient_flow_constraint(_): |
710
|
|
|
r"""Rule definition for positive gradient constraint.""" |
711
|
|
|
for i, o in self.POSITIVE_GRADIENT_FLOWS: |
712
|
|
|
for index in range(1, len(m.TIMEINDEX) + 1): |
713
|
|
|
if m.TIMEINDEX[index][1] > 0: |
714
|
|
|
lhs = ( |
715
|
|
|
m.flow[ |
716
|
|
|
i, |
717
|
|
|
o, |
718
|
|
|
m.TIMESTEPS[index], |
719
|
|
|
] |
720
|
|
|
* self.status[i, o, m.TIMESTEPS[index]] |
721
|
|
|
- m.flow[i, o, m.TIMESTEPS[index - 1]] |
722
|
|
|
* self.status[i, o, m.TIMESTEPS[index - 1]] |
723
|
|
|
) |
724
|
|
|
rhs = self.positive_gradient[ |
725
|
|
|
i, o, m.TIMEINDEX[index][1] |
726
|
|
|
] |
727
|
|
|
self.positive_gradient_constr.add( |
728
|
|
|
( |
729
|
|
|
i, |
730
|
|
|
o, |
731
|
|
|
m.TIMESTEPS[index], |
732
|
|
|
), |
733
|
|
|
lhs <= rhs, |
734
|
|
|
) |
735
|
|
|
else: |
736
|
|
|
lhs = self.positive_gradient[i, o, 0] |
737
|
|
|
rhs = 0 |
738
|
|
|
self.positive_gradient_constr.add( |
739
|
|
|
( |
740
|
|
|
i, |
741
|
|
|
o, |
742
|
|
|
m.TIMESTEPS[index], |
743
|
|
|
), |
744
|
|
|
lhs == rhs, |
745
|
|
|
) |
746
|
|
|
|
747
|
|
|
self.positive_gradient_constr = Constraint( |
748
|
|
|
self.POSITIVE_GRADIENT_FLOWS, m.TIMESTEPS, noruleinit=True |
749
|
|
|
) |
750
|
|
|
self.positive_gradient_build = BuildAction( |
751
|
|
|
rule=_positive_gradient_flow_constraint |
752
|
|
|
) |
753
|
|
|
|
754
|
|
|
def _negative_gradient_flow_constraint(_): |
755
|
|
|
r"""Rule definition for negative gradient constraint.""" |
756
|
|
|
for i, o in self.NEGATIVE_GRADIENT_FLOWS: |
757
|
|
|
for index in range(1, len(m.TIMESTEPS) + 1): |
758
|
|
|
if m.TIMESTEPS[index] > 0: |
759
|
|
|
lhs = ( |
760
|
|
|
m.flow[ |
761
|
|
|
i, |
762
|
|
|
o, |
763
|
|
|
m.TIMESTEPS[index - 1], |
764
|
|
|
] |
765
|
|
|
* self.status[i, o, m.TIMESTEPS[index - 1]] |
766
|
|
|
- m.flow[ |
767
|
|
|
i, |
768
|
|
|
o, |
769
|
|
|
m.TIMESTEPS[index], |
770
|
|
|
] |
771
|
|
|
* self.status[i, o, m.TIMESTEPS[index]] |
772
|
|
|
) |
773
|
|
|
rhs = self.negative_gradient[i, o, m.TIMESTEPS[index]] |
774
|
|
|
self.negative_gradient_constr.add( |
775
|
|
|
( |
776
|
|
|
i, |
777
|
|
|
o, |
778
|
|
|
m.TIMESTEPS[index], |
779
|
|
|
), |
780
|
|
|
lhs <= rhs, |
781
|
|
|
) |
782
|
|
|
else: |
783
|
|
|
lhs = self.negative_gradient[i, o, 0] |
784
|
|
|
rhs = 0 |
785
|
|
|
self.negative_gradient_constr.add( |
786
|
|
|
( |
787
|
|
|
i, |
788
|
|
|
o, |
789
|
|
|
m.TIMESTEPS[index], |
790
|
|
|
), |
791
|
|
|
lhs == rhs, |
792
|
|
|
) |
793
|
|
|
|
794
|
|
|
self.negative_gradient_constr = Constraint( |
795
|
|
|
self.NEGATIVE_GRADIENT_FLOWS, m.TIMESTEPS, noruleinit=True |
796
|
|
|
) |
797
|
|
|
self.negative_gradient_build = BuildAction( |
798
|
|
|
rule=_negative_gradient_flow_constraint |
799
|
|
|
) |
800
|
|
|
|