1
|
|
|
# -*- coding: utf-8 - |
2
|
|
|
|
3
|
|
|
""" |
4
|
|
|
GenericStorage and associated individual constraints (blocks) and groupings. |
5
|
|
|
|
6
|
|
|
SPDX-FileCopyrightText: Uwe Krien <[email protected]> |
7
|
|
|
SPDX-FileCopyrightText: Simon Hilpert |
8
|
|
|
SPDX-FileCopyrightText: Cord Kaldemeyer |
9
|
|
|
SPDX-FileCopyrightText: Patrik Schönfeldt |
10
|
|
|
SPDX-FileCopyrightText: FranziPl |
11
|
|
|
SPDX-FileCopyrightText: jnnr |
12
|
|
|
SPDX-FileCopyrightText: Stephan Günther |
13
|
|
|
SPDX-FileCopyrightText: FabianTU |
14
|
|
|
SPDX-FileCopyrightText: Johannes Röder |
15
|
|
|
SPDX-FileCopyrightText: Ekaterina Zolotarevskaia |
16
|
|
|
SPDX-FileCopyrightText: Johannes Kochems |
17
|
|
|
SPDX-FileCopyrightText: Johannes Giehl |
18
|
|
|
SPDX-FileCopyrightText: Raul Ciria Aylagas |
19
|
|
|
|
20
|
|
|
SPDX-License-Identifier: MIT |
21
|
|
|
|
22
|
|
|
""" |
23
|
|
|
import math |
24
|
|
|
import numbers |
25
|
|
|
from warnings import warn |
26
|
|
|
|
27
|
|
|
import numpy as np |
28
|
|
|
from oemof.network import Node |
29
|
|
|
from oemof.tools import debugging |
30
|
|
|
from oemof.tools import economics |
31
|
|
|
from pyomo.core.base.block import ScalarBlock |
32
|
|
|
from pyomo.environ import Binary |
33
|
|
|
from pyomo.environ import BuildAction |
34
|
|
|
from pyomo.environ import Constraint |
35
|
|
|
from pyomo.environ import Expression |
36
|
|
|
from pyomo.environ import NonNegativeReals |
37
|
|
|
from pyomo.environ import Set |
38
|
|
|
from pyomo.environ import Var |
39
|
|
|
|
40
|
|
|
from oemof.solph._helpers import check_node_object_for_missing_attribute |
41
|
|
|
from oemof.solph._options import Investment |
42
|
|
|
from oemof.solph._plumbing import sequence |
43
|
|
|
from oemof.solph._plumbing import valid_sequence |
44
|
|
|
|
45
|
|
|
|
46
|
|
|
class GenericStorage(Node): |
47
|
|
|
r""" |
48
|
|
|
Component `GenericStorage` to model with basic characteristics of storages. |
49
|
|
|
|
50
|
|
|
The GenericStorage is designed for one input and one output. |
51
|
|
|
|
52
|
|
|
Parameters |
53
|
|
|
---------- |
54
|
|
|
nominal_capacity : numeric, :math:`E_{nom}` or |
55
|
|
|
:class:`oemof.solph.options.Investment` object |
56
|
|
|
Absolute nominal capacity of the storage, fixed value or |
57
|
|
|
object describing parameter of investment optimisations. |
58
|
|
|
invest_relation_input_capacity : numeric (iterable or scalar) or None, :math:`r_{cap,in}` |
59
|
|
|
Ratio between the investment variable of the input Flow and the |
60
|
|
|
investment variable of the storage: |
61
|
|
|
:math:`\dot{E}_{in,invest} = E_{invest} \cdot r_{cap,in}` |
62
|
|
|
invest_relation_output_capacity : numeric (iterable or scalar) or None, :math:`r_{cap,out}` |
63
|
|
|
Ratio between the investment variable of the output Flow and the |
64
|
|
|
investment variable of the storage: |
65
|
|
|
:math:`\dot{E}_{out,invest} = E_{invest} \cdot r_{cap,out}` |
66
|
|
|
invest_relation_input_output : numeric (iterable or scalar) or None, :math:`r_{in,out}` |
67
|
|
|
Ratio between the investment variable of the output Flow and the |
68
|
|
|
investment variable of the input flow. This ratio used to fix the |
69
|
|
|
flow investments to each other. |
70
|
|
|
Values < 1 set the input flow lower than the output and > 1 will |
71
|
|
|
set the input flow higher than the output flow. If None no relation |
72
|
|
|
will be set: |
73
|
|
|
:math:`\dot{E}_{in,invest} = \dot{E}_{out,invest} \cdot r_{in,out}` |
74
|
|
|
initial_storage_level : numeric, :math:`c(-1)` |
75
|
|
|
The relative storage content in the timestep before the first |
76
|
|
|
time step of optimization (between 0 and 1). |
77
|
|
|
|
78
|
|
|
Note: When investment mode is used in a multi-period model, |
79
|
|
|
`initial_storage_level` is not supported. |
80
|
|
|
Storage output is forced to zero until the storage unit is invested in. |
81
|
|
|
balanced : boolean |
82
|
|
|
Couple storage level of first and last time step. |
83
|
|
|
(Total inflow and total outflow are balanced.) |
84
|
|
|
loss_rate : numeric (iterable or scalar) |
85
|
|
|
The relative loss of the storage content per hour. |
86
|
|
|
fixed_losses_relative : numeric (iterable or scalar), :math:`\gamma(t)` |
87
|
|
|
Losses per hour that are independent of the storage content but |
88
|
|
|
proportional to nominal storage capacity. |
89
|
|
|
|
90
|
|
|
Note: Fixed losses are not supported in investment mode. |
91
|
|
|
fixed_losses_absolute : numeric (iterable or scalar), :math:`\delta(t)` |
92
|
|
|
Losses per hour that are independent of storage content and independent |
93
|
|
|
of nominal storage capacity. |
94
|
|
|
|
95
|
|
|
Note: Fixed losses are not supported in investment mode. |
96
|
|
|
inflow_conversion_factor : numeric (iterable or scalar), :math:`\eta_i(t)` |
97
|
|
|
The relative conversion factor, i.e. efficiency associated with the |
98
|
|
|
inflow of the storage. |
99
|
|
|
outflow_conversion_factor : numeric (iterable or scalar), :math:`\eta_o(t)` |
100
|
|
|
see: inflow_conversion_factor |
101
|
|
|
min_storage_level : numeric (iterable or scalar), :math:`c_{min}(t)` |
102
|
|
|
The normed minimum storage content as fraction of the |
103
|
|
|
nominal storage capacity or the capacity that has been invested into |
104
|
|
|
(between 0 and 1). |
105
|
|
|
To set different values in every time step use a sequence. |
106
|
|
|
max_storage_level : numeric (iterable or scalar), :math:`c_{max}(t)` |
107
|
|
|
see: min_storage_level |
108
|
|
|
storage_costs : numeric (iterable or scalar), :math:`c_{storage}(t)` |
109
|
|
|
Cost (per energy) for having energy in the storage, starting from |
110
|
|
|
time point :math:`t_{1}`. (:math:`t_{0}` is left out to avoid counting |
111
|
|
|
it twice if balanced=True.) |
112
|
|
|
lifetime_inflow : int, :math:`n_{in}` |
113
|
|
|
Determine the lifetime of an inflow; only applicable for multi-period |
114
|
|
|
models which can invest in storage capacity and have an |
115
|
|
|
invest_relation_input_capacity defined |
116
|
|
|
lifetime_outflow : int, :math:`n_{in}` |
117
|
|
|
Determine the lifetime of an outflow; only applicable for multi-period |
118
|
|
|
models which can invest in storage capacity and have an |
119
|
|
|
invest_relation_output_capacity defined |
120
|
|
|
|
121
|
|
|
Notes |
122
|
|
|
----- |
123
|
|
|
The following sets, variables, constraints and objective parts are created |
124
|
|
|
* :py:class:`~oemof.solph.components._generic_storage.GenericStorageBlock` |
125
|
|
|
(if no Investment object present) |
126
|
|
|
* :py:class:`~oemof.solph.components._generic_storage.GenericInvestmentStorageBlock` |
127
|
|
|
(if Investment object present) |
128
|
|
|
|
129
|
|
|
Examples |
130
|
|
|
-------- |
131
|
|
|
Basic usage examples of the GenericStorage with a random selection of |
132
|
|
|
attributes. See the Flow class for all Flow attributes. |
133
|
|
|
|
134
|
|
|
>>> from oemof import solph |
135
|
|
|
|
136
|
|
|
>>> my_bus = solph.buses.Bus('my_bus') |
137
|
|
|
|
138
|
|
|
>>> my_storage = solph.components.GenericStorage( |
139
|
|
|
... label='storage', |
140
|
|
|
... nominal_capacity=1000, |
141
|
|
|
... inputs={my_bus: solph.flows.Flow(nominal_capacity=200, variable_costs=10)}, |
142
|
|
|
... outputs={my_bus: solph.flows.Flow(nominal_capacity=200)}, |
143
|
|
|
... loss_rate=0.01, |
144
|
|
|
... initial_storage_level=0, |
145
|
|
|
... max_storage_level = 0.9, |
146
|
|
|
... inflow_conversion_factor=0.9, |
147
|
|
|
... outflow_conversion_factor=0.93) |
148
|
|
|
|
149
|
|
|
>>> my_investment_storage = solph.components.GenericStorage( |
150
|
|
|
... label='storage', |
151
|
|
|
... nominal_capacity=solph.Investment(ep_costs=50), |
152
|
|
|
... inputs={my_bus: solph.flows.Flow()}, |
153
|
|
|
... outputs={my_bus: solph.flows.Flow()}, |
154
|
|
|
... loss_rate=0.02, |
155
|
|
|
... initial_storage_level=None, |
156
|
|
|
... invest_relation_input_capacity=1/6, |
157
|
|
|
... invest_relation_output_capacity=1/6, |
158
|
|
|
... inflow_conversion_factor=1, |
159
|
|
|
... outflow_conversion_factor=0.8) |
160
|
|
|
""" # noqa: E501 |
161
|
|
|
|
162
|
|
|
def __init__( |
163
|
|
|
self, |
164
|
|
|
label=None, |
165
|
|
|
inputs=None, |
166
|
|
|
outputs=None, |
167
|
|
|
nominal_capacity=None, |
168
|
|
|
nominal_storage_capacity=None, # Can be removed for versions >= v0.7 |
169
|
|
|
initial_storage_level=None, |
170
|
|
|
invest_relation_input_output=None, |
171
|
|
|
invest_relation_input_capacity=None, |
172
|
|
|
invest_relation_output_capacity=None, |
173
|
|
|
min_storage_level=0, |
174
|
|
|
max_storage_level=1, |
175
|
|
|
balanced=True, |
176
|
|
|
loss_rate=0, |
177
|
|
|
fixed_losses_relative=0, |
178
|
|
|
fixed_losses_absolute=0, |
179
|
|
|
inflow_conversion_factor=1, |
180
|
|
|
outflow_conversion_factor=1, |
181
|
|
|
fixed_costs=0, |
182
|
|
|
storage_costs=None, |
183
|
|
|
lifetime_inflow=None, |
184
|
|
|
lifetime_outflow=None, |
185
|
|
|
custom_attributes=None, |
186
|
|
|
): |
187
|
|
|
if inputs is None: |
188
|
|
|
inputs = {} |
189
|
|
|
if outputs is None: |
190
|
|
|
outputs = {} |
191
|
|
|
if custom_attributes is None: |
192
|
|
|
custom_attributes = {} |
193
|
|
|
super().__init__( |
194
|
|
|
label, |
195
|
|
|
inputs=inputs, |
196
|
|
|
outputs=outputs, |
197
|
|
|
custom_properties=custom_attributes, |
198
|
|
|
) |
199
|
|
|
# --- BEGIN: The following code can be removed for versions >= v0.7 --- |
200
|
|
|
if nominal_storage_capacity is not None: |
201
|
|
|
msg = ( |
202
|
|
|
"For backward compatibility," |
203
|
|
|
+ " the option nominal_storage_capacity overwrites the option" |
204
|
|
|
+ " nominal_capacity." |
205
|
|
|
+ " Both options cannot be set at the same time." |
206
|
|
|
) |
207
|
|
|
if nominal_capacity is not None: |
208
|
|
|
raise AttributeError(msg) |
209
|
|
|
else: |
210
|
|
|
warn(msg, FutureWarning) |
211
|
|
|
nominal_capacity = nominal_storage_capacity |
212
|
|
|
# --- END --- |
213
|
|
|
|
214
|
|
|
self.nominal_storage_capacity = None |
215
|
|
|
self.investment = None |
216
|
|
|
self._invest_group = False |
217
|
|
|
if isinstance(nominal_capacity, numbers.Real): |
218
|
|
|
self.nominal_storage_capacity = nominal_capacity |
219
|
|
|
elif isinstance(nominal_capacity, Investment): |
220
|
|
|
self.investment = nominal_capacity |
221
|
|
|
self._invest_group = True |
222
|
|
|
|
223
|
|
|
self.initial_storage_level = initial_storage_level |
224
|
|
|
self.balanced = balanced |
225
|
|
|
self.loss_rate = sequence(loss_rate) |
226
|
|
|
self.fixed_losses_relative = sequence(fixed_losses_relative) |
227
|
|
|
self.fixed_losses_absolute = sequence(fixed_losses_absolute) |
228
|
|
|
self.inflow_conversion_factor = sequence(inflow_conversion_factor) |
229
|
|
|
self.outflow_conversion_factor = sequence(outflow_conversion_factor) |
230
|
|
|
self.max_storage_level = sequence(max_storage_level) |
231
|
|
|
self.min_storage_level = sequence(min_storage_level) |
232
|
|
|
self.fixed_costs = sequence(fixed_costs) |
233
|
|
|
self.storage_costs = sequence(storage_costs) |
234
|
|
|
self.invest_relation_input_output = sequence( |
235
|
|
|
invest_relation_input_output |
236
|
|
|
) |
237
|
|
|
self.invest_relation_input_capacity = sequence( |
238
|
|
|
invest_relation_input_capacity |
239
|
|
|
) |
240
|
|
|
self.invest_relation_output_capacity = sequence( |
241
|
|
|
invest_relation_output_capacity |
242
|
|
|
) |
243
|
|
|
self.lifetime_inflow = lifetime_inflow |
244
|
|
|
self.lifetime_outflow = lifetime_outflow |
245
|
|
|
|
246
|
|
|
# Check number of flows. |
247
|
|
|
self._check_number_of_flows() |
248
|
|
|
# Check for infeasible parameter combinations |
249
|
|
|
self._check_infeasible_parameter_combinations() |
250
|
|
|
|
251
|
|
|
if self._invest_group: |
252
|
|
|
self._check_invest_attributes() |
253
|
|
|
|
254
|
|
|
def _set_flows(self): |
255
|
|
|
"""Define inflow / outflow as investment flows when they are |
256
|
|
|
coupled with storage capacity via invest relations |
257
|
|
|
""" |
258
|
|
|
for flow in self.inputs.values(): |
259
|
|
|
if self.invest_relation_input_capacity[ |
260
|
|
|
0 |
261
|
|
|
] is not None and not isinstance(flow.investment, Investment): |
262
|
|
|
flow.investment = Investment(lifetime=self.lifetime_inflow) |
263
|
|
|
for flow in self.outputs.values(): |
264
|
|
|
if self.invest_relation_output_capacity[ |
265
|
|
|
0 |
266
|
|
|
] is not None and not isinstance(flow.investment, Investment): |
267
|
|
|
flow.investment = Investment(lifetime=self.lifetime_outflow) |
268
|
|
|
|
269
|
|
|
def _check_invest_attributes(self): |
270
|
|
|
"""Raise errors for infeasible investment attribute combinations""" |
271
|
|
|
if ( |
272
|
|
|
self.invest_relation_input_output[0] is not None |
273
|
|
|
and self.invest_relation_output_capacity[0] is not None |
274
|
|
|
and self.invest_relation_input_capacity[0] is not None |
275
|
|
|
): |
276
|
|
|
e2 = ( |
277
|
|
|
"Overdetermined. Three investment object will be coupled" |
278
|
|
|
"with three constraints. Set one invest relation to 'None'." |
279
|
|
|
) |
280
|
|
|
raise AttributeError(e2) |
281
|
|
|
if ( |
282
|
|
|
self.investment |
283
|
|
|
and self.fixed_losses_absolute.max() != 0 |
284
|
|
|
and self.investment.existing == 0 |
285
|
|
|
and self.investment.minimum.min() == 0 |
286
|
|
|
): |
287
|
|
|
e3 = ( |
288
|
|
|
"With fixed_losses_absolute > 0, either investment.existing " |
289
|
|
|
"or investment.minimum has to be non-zero." |
290
|
|
|
) |
291
|
|
|
raise AttributeError(e3) |
292
|
|
|
|
293
|
|
|
self._set_flows() |
294
|
|
|
|
295
|
|
|
def _check_number_of_flows(self): |
296
|
|
|
"""Ensure that there is only one inflow and outflow to the storage""" |
297
|
|
|
msg = "Only one {0} flow allowed in the GenericStorage {1}." |
298
|
|
|
check_node_object_for_missing_attribute(self, "inputs") |
299
|
|
|
check_node_object_for_missing_attribute(self, "outputs") |
300
|
|
|
if len(self.inputs) > 1: |
301
|
|
|
raise AttributeError(msg.format("input", self.label)) |
302
|
|
|
if len(self.outputs) > 1: |
303
|
|
|
raise AttributeError(msg.format("output", self.label)) |
304
|
|
|
|
305
|
|
|
def _check_infeasible_parameter_combinations(self): |
306
|
|
|
"""Check for infeasible parameter combinations and raise error""" |
307
|
|
|
msg = ( |
308
|
|
|
"initial_storage_level must be greater or equal to " |
309
|
|
|
"min_storage_level and smaller or equal to " |
310
|
|
|
"max_storage_level." |
311
|
|
|
) |
312
|
|
|
if self.initial_storage_level is not None: |
313
|
|
|
if ( |
314
|
|
|
self.initial_storage_level < self.min_storage_level[0] |
315
|
|
|
or self.initial_storage_level > self.max_storage_level[0] |
316
|
|
|
): |
317
|
|
|
raise ValueError(msg) |
318
|
|
|
|
319
|
|
|
def constraint_group(self): |
320
|
|
|
if self._invest_group is True: |
321
|
|
|
return GenericInvestmentStorageBlock |
322
|
|
|
else: |
323
|
|
|
return GenericStorageBlock |
324
|
|
|
|
325
|
|
|
|
326
|
|
|
class GenericStorageBlock(ScalarBlock): |
327
|
|
|
r"""Storage without an :class:`.Investment` object. |
328
|
|
|
|
329
|
|
|
**The following sets are created:** (-> see basic sets at |
330
|
|
|
:class:`.Model` ) |
331
|
|
|
|
332
|
|
|
STORAGES |
333
|
|
|
A set with all :py:class:`~.GenericStorage` objects, which do not have an |
334
|
|
|
:attr:`investment` of type :class:`.Investment`. |
335
|
|
|
|
336
|
|
|
STORAGES_BALANCED |
337
|
|
|
A set of all :py:class:`~.GenericStorage` objects, with 'balanced' attribute set |
338
|
|
|
to True. |
339
|
|
|
|
340
|
|
|
STORAGES_WITH_INVEST_FLOW_REL |
341
|
|
|
A set with all :py:class:`~.GenericStorage` objects with two investment |
342
|
|
|
flows coupled with the 'invest_relation_input_output' attribute. |
343
|
|
|
|
344
|
|
|
**The following variables are created:** |
345
|
|
|
|
346
|
|
|
storage_content |
347
|
|
|
Storage content for every storage and timestep. The value for the |
348
|
|
|
storage content at the beginning is set by the parameter |
349
|
|
|
`initial_storage_level` or not set if `initial_storage_level` is None. |
350
|
|
|
The variable of storage s and timestep t can be accessed by: |
351
|
|
|
`om.GenericStorageBlock.storage_content[s, t]` |
352
|
|
|
|
353
|
|
|
intra_storage_delta |
354
|
|
|
Storage content for every storage and timestep of typical periods |
355
|
|
|
(only used in TSAM-mode). The variable of storage s and timestep t can |
356
|
|
|
be accessed by: `om.GenericStorageBlock.intra_storage_delta[s, k, t]` |
357
|
|
|
|
358
|
|
|
**The following constraints are created:** |
359
|
|
|
|
360
|
|
|
Set storage_content of last time step to one at t=0 if balanced == True |
361
|
|
|
.. math:: |
362
|
|
|
E(t_{last}) = E(-1) |
363
|
|
|
|
364
|
|
|
Storage losses :attr:`om.Storage.losses[n, t]` |
365
|
|
|
.. math:: E_{loss}(t) = &E(t-1) \cdot |
366
|
|
|
1 - (1 - \beta(t))^{\tau(t)/(t_u)} \\ |
367
|
|
|
&- \gamma(t)\cdot E_{nom} \cdot {\tau(t)/(t_u)}\\ |
368
|
|
|
&- \delta(t) \cdot {\tau(t)/(t_u)} |
369
|
|
|
|
370
|
|
|
Storage balance :attr:`om.Storage.balance[n, t]` |
371
|
|
|
.. math:: E(t) = &E(t-1) - E_{loss}(t)\\ |
372
|
|
|
&- \frac{\dot{E}_o(p, t)}{\eta_o(t)} \cdot \tau(t)\\ |
373
|
|
|
&+ \dot{E}_i(p, t) \cdot \eta_i(t) \cdot \tau(t) |
374
|
|
|
|
375
|
|
|
Connect the invest variables of the input and the output flow. |
376
|
|
|
.. math:: |
377
|
|
|
InvestmentFlowBlock.invest(source(n), n, p) + existing = \\ |
378
|
|
|
(InvestmentFlowBlock.invest(n, target(n), p) + existing) \\ |
379
|
|
|
* invest\_relation\_input\_output(n) \\ |
380
|
|
|
\forall n \in \textrm{INVEST\_REL\_IN\_OUT} \\ |
381
|
|
|
\forall p \in \textrm{PERIODS} |
382
|
|
|
|
383
|
|
|
|
384
|
|
|
|
385
|
|
|
=========================== ======================= ========= |
386
|
|
|
symbol explanation attribute |
387
|
|
|
=========================== ======================= ========= |
388
|
|
|
:math:`E(t)` energy currently stored `storage_content` |
389
|
|
|
:math:`E_{nom}` nominal capacity of `nominal_storage_capacity` |
390
|
|
|
the energy storage |
391
|
|
|
:math:`c(-1)` state before `initial_storage_level` |
392
|
|
|
initial time step |
393
|
|
|
:math:`c_{min}(t)` minimum allowed storage `min_storage_level[t]` |
394
|
|
|
:math:`c_{max}(t)` maximum allowed storage `max_storage_level[t]` |
395
|
|
|
:math:`\beta(t)` fraction of lost energy `loss_rate[t]` |
396
|
|
|
as share of |
397
|
|
|
:math:`E(t)` per hour |
398
|
|
|
:math:`\gamma(t)` fixed loss of energy `fixed_losses_relative[t]` |
399
|
|
|
per hour relative to |
400
|
|
|
:math:`E_{nom}` |
401
|
|
|
:math:`\delta(t)` absolute fixed loss `fixed_losses_absolute[t]` |
402
|
|
|
of energy per hour |
403
|
|
|
:math:`\dot{E}_i(t)` energy flowing in `inputs` |
404
|
|
|
:math:`\dot{E}_o(t)` energy flowing out `outputs` |
405
|
|
|
:math:`\eta_i(t)` conversion factor `inflow_conversion_factor[t]` |
406
|
|
|
(i.e. efficiency) |
407
|
|
|
when storing energy |
408
|
|
|
:math:`\eta_o(t)` conversion factor when `outflow_conversion_factor[t]` |
409
|
|
|
(i.e. efficiency) |
410
|
|
|
taking stored energy |
411
|
|
|
:math:`\tau(t)` duration of time step |
412
|
|
|
:math:`t_u` time unit of losses |
413
|
|
|
:math:`\beta(t)`, |
414
|
|
|
:math:`\gamma(t)` |
415
|
|
|
:math:`\delta(t)` and |
416
|
|
|
timeincrement |
417
|
|
|
:math:`\tau(t)` |
418
|
|
|
:math:`c_{storage}(t)` costs of having `storage_costs` |
419
|
|
|
energy stored |
420
|
|
|
=========================== ======================= ========= |
421
|
|
|
|
422
|
|
|
**The following parts of the objective function are created:** |
423
|
|
|
|
424
|
|
|
* :attr: `storage_costs` not 0 |
425
|
|
|
|
426
|
|
|
.. math:: |
427
|
|
|
\sum_{t \in \textrm{TIMEPOINTS} > 0} c_{storage}(t) \cdot E(t) |
428
|
|
|
|
429
|
|
|
* :attr:`fixed_costs` not 0 |
430
|
|
|
|
431
|
|
|
.. math:: |
432
|
|
|
\displaystyle \sum_{pp=0}^{year_{max}} E_{nom} |
433
|
|
|
\cdot c_{fixed}(pp) |
434
|
|
|
|
435
|
|
|
where :math:`year_{max}` denotes the last year of the optimization |
436
|
|
|
horizon, i.e. at the end of the last period. |
437
|
|
|
|
438
|
|
|
""" # noqa: E501 |
439
|
|
|
|
440
|
|
|
CONSTRAINT_GROUP = True |
441
|
|
|
|
442
|
|
|
def __init__(self, *args, **kwargs): |
443
|
|
|
super().__init__(*args, **kwargs) |
444
|
|
|
|
445
|
|
|
def _create(self, group=None): |
446
|
|
|
""" |
447
|
|
|
Parameters |
448
|
|
|
---------- |
449
|
|
|
group : list |
450
|
|
|
List containing storage objects. |
451
|
|
|
e.g. groups=[storage1, storage2,..] |
452
|
|
|
""" |
453
|
|
|
m = self.parent_block() |
454
|
|
|
|
455
|
|
|
if group is None: |
456
|
|
|
return None |
457
|
|
|
|
458
|
|
|
i = {n: [i for i in n.inputs][0] for n in group} |
459
|
|
|
o = {n: [o for o in n.outputs][0] for n in group} |
460
|
|
|
|
461
|
|
|
# ************* SETS ********************************* |
462
|
|
|
|
463
|
|
|
self.STORAGES = Set(initialize=[n for n in group]) |
464
|
|
|
|
465
|
|
|
self.STORAGES_BALANCED = Set( |
466
|
|
|
initialize=[n for n in group if n.balanced is True] |
467
|
|
|
) |
468
|
|
|
|
469
|
|
|
self.STORAGES_INITITAL_LEVEL = Set( |
470
|
|
|
initialize=[ |
471
|
|
|
n for n in group if n.initial_storage_level is not None |
472
|
|
|
] |
473
|
|
|
) |
474
|
|
|
|
475
|
|
|
self.STORAGES_WITH_INVEST_FLOW_REL = Set( |
476
|
|
|
initialize=[ |
477
|
|
|
n |
478
|
|
|
for n in group |
479
|
|
|
if n.invest_relation_input_output[0] is not None |
480
|
|
|
] |
481
|
|
|
) |
482
|
|
|
|
483
|
|
|
# ************* VARIABLES ***************************** |
484
|
|
|
|
485
|
|
|
def _storage_content_bound_rule(block, n, t): |
486
|
|
|
""" |
487
|
|
|
Rule definition for bounds of storage_content variable of |
488
|
|
|
storage n in timestep t. |
489
|
|
|
""" |
490
|
|
|
bounds = ( |
491
|
|
|
n.nominal_storage_capacity * n.min_storage_level[t], |
492
|
|
|
n.nominal_storage_capacity * n.max_storage_level[t], |
493
|
|
|
) |
494
|
|
|
return bounds |
495
|
|
|
|
496
|
|
|
if not m.TSAM_MODE: |
497
|
|
|
self.storage_content = Var( |
498
|
|
|
self.STORAGES, m.TIMEPOINTS, bounds=_storage_content_bound_rule |
499
|
|
|
) |
500
|
|
|
|
501
|
|
|
self.storage_losses = Var(self.STORAGES, m.TIMESTEPS) |
502
|
|
|
|
503
|
|
|
# set the initial storage content |
504
|
|
|
# ToDo: More elegant code possible? |
505
|
|
|
for n in group: |
506
|
|
|
if n.initial_storage_level is not None: |
507
|
|
|
self.storage_content[n, 0] = ( |
508
|
|
|
n.initial_storage_level * n.nominal_storage_capacity |
509
|
|
|
) |
510
|
|
|
self.storage_content[n, 0].fix() |
511
|
|
|
else: |
512
|
|
|
# called "inter" in https://doi.org/10.1016/j.apenergy.2018.01.023 |
513
|
|
|
self.inter_storage_content = Var( |
514
|
|
|
self.STORAGES, m.CLUSTERS_OFFSET, within=NonNegativeReals |
515
|
|
|
) |
516
|
|
|
# called "intra" in https://doi.org/10.1016/j.apenergy.2018.01.023 |
517
|
|
|
self.intra_storage_delta = Var( |
518
|
|
|
self.STORAGES, m.TIMEINDEX_TYPICAL_CLUSTER_OFFSET |
519
|
|
|
) |
520
|
|
|
# set the initial intra storage content |
521
|
|
|
# first timestep in intra storage is always zero |
522
|
|
|
for n in group: |
523
|
|
|
for p, k in m.TYPICAL_CLUSTERS: |
524
|
|
|
self.intra_storage_delta[n, p, k, 0] = 0 |
525
|
|
|
self.intra_storage_delta[n, p, k, 0].fix() |
526
|
|
|
if n.initial_storage_level is not None: |
527
|
|
|
self.inter_storage_content[n, 0] = ( |
528
|
|
|
n.initial_storage_level * n.nominal_storage_capacity |
529
|
|
|
) |
530
|
|
|
self.inter_storage_content[n, 0].fix() |
531
|
|
|
# ************* Constraints *************************** |
532
|
|
|
|
533
|
|
View Code Duplication |
def _storage_inter_minimum_level_rule(block): |
|
|
|
|
534
|
|
|
# See FINE implementation at |
535
|
|
|
# https://github.com/FZJ-IEK3-VSA/FINE/blob/ |
536
|
|
|
# 57ec32561fb95e746c505760bd0d61c97d2fd2fb/FINE/storage.py#L1329 |
537
|
|
|
for n in self.STORAGES: |
538
|
|
|
for p, i, g in m.TIMEINDEX_CLUSTER: |
539
|
|
|
t = m.get_timestep_from_tsam_timestep(p, i, g) |
540
|
|
|
lhs = n.nominal_storage_capacity * n.min_storage_level[t] |
541
|
|
|
k = m.es.tsa_parameters[p]["order"][i] |
542
|
|
|
tk = m.get_timestep_from_tsam_timestep(p, k, g) |
543
|
|
|
inter_i = ( |
544
|
|
|
sum( |
545
|
|
|
len(m.es.tsa_parameters[ip]["order"]) |
546
|
|
|
for ip in range(p) |
547
|
|
|
) |
548
|
|
|
+ i |
549
|
|
|
) |
550
|
|
|
rhs = ( |
551
|
|
|
self.inter_storage_content[n, inter_i] |
552
|
|
|
* (1 - n.loss_rate[t]) ** (g * m.timeincrement[tk]) |
553
|
|
|
+ self.intra_storage_delta[n, p, k, g] |
554
|
|
|
) |
555
|
|
|
self.storage_inter_minimum_level.add( |
556
|
|
|
(n, p, i, g), lhs <= rhs |
557
|
|
|
) |
558
|
|
|
|
559
|
|
|
if m.TSAM_MODE: |
560
|
|
|
self.storage_inter_minimum_level = Constraint( |
561
|
|
|
self.STORAGES, m.TIMEINDEX_CLUSTER, noruleinit=True |
562
|
|
|
) |
563
|
|
|
|
564
|
|
|
self.storage_inter_minimum_level_build = BuildAction( |
565
|
|
|
rule=_storage_inter_minimum_level_rule |
566
|
|
|
) |
567
|
|
|
|
568
|
|
View Code Duplication |
def _storage_inter_maximum_level_rule(block): |
|
|
|
|
569
|
|
|
for n in self.STORAGES: |
570
|
|
|
for p, i, g in m.TIMEINDEX_CLUSTER: |
571
|
|
|
t = m.get_timestep_from_tsam_timestep(p, i, g) |
572
|
|
|
k = m.es.tsa_parameters[p]["order"][i] |
573
|
|
|
tk = m.get_timestep_from_tsam_timestep(p, k, g) |
574
|
|
|
inter_i = ( |
575
|
|
|
sum( |
576
|
|
|
len(m.es.tsa_parameters[ip]["order"]) |
577
|
|
|
for ip in range(p) |
578
|
|
|
) |
579
|
|
|
+ i |
580
|
|
|
) |
581
|
|
|
lhs = ( |
582
|
|
|
self.inter_storage_content[n, inter_i] |
583
|
|
|
* (1 - n.loss_rate[t]) ** (g * m.timeincrement[tk]) |
584
|
|
|
+ self.intra_storage_delta[n, p, k, g] |
585
|
|
|
) |
586
|
|
|
rhs = n.nominal_storage_capacity * n.max_storage_level[t] |
587
|
|
|
self.storage_inter_maximum_level.add( |
588
|
|
|
(n, p, i, g), lhs <= rhs |
589
|
|
|
) |
590
|
|
|
|
591
|
|
|
if m.TSAM_MODE: |
592
|
|
|
self.storage_inter_maximum_level = Constraint( |
593
|
|
|
self.STORAGES, m.TIMEINDEX_CLUSTER, noruleinit=True |
594
|
|
|
) |
595
|
|
|
|
596
|
|
|
self.storage_inter_maximum_level_build = BuildAction( |
597
|
|
|
rule=_storage_inter_maximum_level_rule |
598
|
|
|
) |
599
|
|
|
|
600
|
|
|
def _storage_losses_rule(block, n, t): |
601
|
|
|
expr = block.storage_content[n, t] * ( |
602
|
|
|
1 - (1 - n.loss_rate[t]) ** m.timeincrement[t] |
603
|
|
|
) |
604
|
|
|
expr += ( |
605
|
|
|
n.fixed_losses_relative[t] |
606
|
|
|
* n.nominal_storage_capacity |
607
|
|
|
* m.timeincrement[t] |
608
|
|
|
) |
609
|
|
|
expr += n.fixed_losses_absolute[t] * m.timeincrement[t] |
610
|
|
|
|
611
|
|
|
return expr == block.storage_losses[n, t] |
612
|
|
|
|
613
|
|
|
if not m.TSAM_MODE: |
614
|
|
|
self.losses = Constraint( |
615
|
|
|
self.STORAGES, m.TIMESTEPS, rule=_storage_losses_rule |
616
|
|
|
) |
617
|
|
|
|
618
|
|
|
def _storage_balance_rule(block, n, t): |
619
|
|
|
""" |
620
|
|
|
Rule definition for the storage balance of every storage n and |
621
|
|
|
every timestep. |
622
|
|
|
""" |
623
|
|
|
expr = block.storage_content[n, t] |
624
|
|
|
expr -= block.storage_losses[n, t] |
625
|
|
|
expr += ( |
626
|
|
|
m.flow[i[n], n, t] * n.inflow_conversion_factor[t] |
|
|
|
|
627
|
|
|
) * m.timeincrement[t] |
628
|
|
|
expr -= ( |
629
|
|
|
m.flow[n, o[n], t] / n.outflow_conversion_factor[t] |
|
|
|
|
630
|
|
|
) * m.timeincrement[t] |
631
|
|
|
return expr == block.storage_content[n, t + 1] |
632
|
|
|
|
633
|
|
View Code Duplication |
def _intra_storage_balance_rule(block, n, p, k, g): |
|
|
|
|
634
|
|
|
""" |
635
|
|
|
Rule definition for the storage balance of every storage n and |
636
|
|
|
every timestep. |
637
|
|
|
""" |
638
|
|
|
t = m.get_timestep_from_tsam_timestep(p, k, g) |
639
|
|
|
expr = 0 |
640
|
|
|
expr += block.intra_storage_delta[n, p, k, g + 1] |
641
|
|
|
expr += ( |
642
|
|
|
-block.intra_storage_delta[n, p, k, g] |
643
|
|
|
* (1 - n.loss_rate[t]) ** m.timeincrement[t] |
644
|
|
|
) |
645
|
|
|
expr += ( |
646
|
|
|
n.fixed_losses_relative[t] |
647
|
|
|
* n.nominal_storage_capacity |
648
|
|
|
* m.timeincrement[t] |
649
|
|
|
) |
650
|
|
|
expr += n.fixed_losses_absolute[t] * m.timeincrement[t] |
651
|
|
|
expr += ( |
652
|
|
|
-m.flow[i[n], n, t] * n.inflow_conversion_factor[t] |
|
|
|
|
653
|
|
|
) * m.timeincrement[t] |
654
|
|
|
expr += ( |
655
|
|
|
m.flow[n, o[n], t] / n.outflow_conversion_factor[t] |
|
|
|
|
656
|
|
|
) * m.timeincrement[t] |
657
|
|
|
return expr == 0 |
658
|
|
|
|
659
|
|
|
if not m.TSAM_MODE: |
660
|
|
|
self.balance = Constraint( |
661
|
|
|
self.STORAGES, m.TIMESTEPS, rule=_storage_balance_rule |
662
|
|
|
) |
663
|
|
|
else: |
664
|
|
|
self.intra_balance = Constraint( |
665
|
|
|
self.STORAGES, |
666
|
|
|
m.TIMEINDEX_TYPICAL_CLUSTER, |
667
|
|
|
rule=_intra_storage_balance_rule, |
668
|
|
|
) |
669
|
|
|
|
670
|
|
|
def _inter_storage_balance_rule(block, n, i): |
671
|
|
|
""" |
672
|
|
|
Rule definition for the storage balance of every storage n and |
673
|
|
|
every timestep. |
674
|
|
|
""" |
675
|
|
|
ii = 0 |
676
|
|
|
for p in m.PERIODS: |
677
|
|
|
ii += len(m.es.tsa_parameters[p]["order"]) |
678
|
|
|
if ii > i: |
679
|
|
|
ii -= len(m.es.tsa_parameters[p]["order"]) |
680
|
|
|
ii = i - ii |
681
|
|
|
break |
682
|
|
|
|
683
|
|
|
k = m.es.tsa_parameters[p]["order"][ii] |
|
|
|
|
684
|
|
|
|
685
|
|
|
# Calculate inter losses over whole typical period |
686
|
|
|
t0 = m.get_timestep_from_tsam_timestep(p, k, 0) |
687
|
|
|
losses = math.prod( |
688
|
|
|
( |
689
|
|
|
(1 - n.loss_rate[t0 + s]) |
690
|
|
|
** m.es.tsa_parameters[p]["segments"][(k, s)] |
691
|
|
|
if "segments" in m.es.tsa_parameters[p] |
692
|
|
|
else 1 - n.loss_rate[t0 + s] |
693
|
|
|
) |
694
|
|
|
for s in range(m.es.tsa_parameters[p]["timesteps"]) |
695
|
|
|
) |
696
|
|
|
|
697
|
|
|
expr = 0 |
698
|
|
|
expr += block.inter_storage_content[n, i + 1] |
699
|
|
|
expr += -block.inter_storage_content[n, i] * losses |
700
|
|
|
expr += -self.intra_storage_delta[ |
701
|
|
|
n, p, k, m.es.tsa_parameters[p]["timesteps"] |
702
|
|
|
] |
703
|
|
|
return expr == 0 |
704
|
|
|
|
705
|
|
|
if m.TSAM_MODE: |
706
|
|
|
self.inter_balance = Constraint( |
707
|
|
|
self.STORAGES, |
708
|
|
|
m.CLUSTERS, |
709
|
|
|
rule=_inter_storage_balance_rule, |
710
|
|
|
) |
711
|
|
|
|
712
|
|
|
def _balanced_storage_rule(block, n): |
713
|
|
|
""" |
714
|
|
|
Storage content of last time step == initial storage content |
715
|
|
|
if balanced. |
716
|
|
|
""" |
717
|
|
|
return ( |
718
|
|
|
block.storage_content[n, m.TIMEPOINTS.at(-1)] |
719
|
|
|
== block.storage_content[n, m.TIMEPOINTS.at(1)] |
720
|
|
|
) |
721
|
|
|
|
722
|
|
|
def _balanced_inter_storage_rule(block, n): |
723
|
|
|
""" |
724
|
|
|
Storage content of last time step == initial storage content |
725
|
|
|
if balanced. |
726
|
|
|
""" |
727
|
|
|
return ( |
728
|
|
|
block.inter_storage_content[n, m.CLUSTERS_OFFSET.at(-1)] |
729
|
|
|
== block.inter_storage_content[n, m.CLUSTERS_OFFSET.at(1)] |
730
|
|
|
) |
731
|
|
|
|
732
|
|
|
if not m.TSAM_MODE: |
733
|
|
|
self.balanced_cstr = Constraint( |
734
|
|
|
self.STORAGES_BALANCED, rule=_balanced_storage_rule |
735
|
|
|
) |
736
|
|
|
else: |
737
|
|
|
self.balanced_cstr = Constraint( |
738
|
|
|
self.STORAGES_BALANCED, rule=_balanced_inter_storage_rule |
739
|
|
|
) |
740
|
|
|
|
741
|
|
|
def _power_coupled(_): |
742
|
|
|
""" |
743
|
|
|
Rule definition for constraint to connect the input power |
744
|
|
|
and output power |
745
|
|
|
""" |
746
|
|
|
for n in self.STORAGES_WITH_INVEST_FLOW_REL: |
747
|
|
|
for p in m.PERIODS: |
748
|
|
|
expr = ( |
749
|
|
|
m.InvestmentFlowBlock.total[n, o[n], p] |
|
|
|
|
750
|
|
|
) * n.invest_relation_input_output[p] == ( |
751
|
|
|
m.InvestmentFlowBlock.total[i[n], n, p] |
|
|
|
|
752
|
|
|
) |
753
|
|
|
self.power_coupled.add((n, p), expr) |
754
|
|
|
|
755
|
|
|
self.power_coupled = Constraint( |
756
|
|
|
self.STORAGES_WITH_INVEST_FLOW_REL, m.PERIODS, noruleinit=True |
757
|
|
|
) |
758
|
|
|
|
759
|
|
|
self.power_coupled_build = BuildAction(rule=_power_coupled) |
760
|
|
|
|
761
|
|
|
def _objective_expression(self): |
762
|
|
|
r""" |
763
|
|
|
Objective expression for storages with no investment. |
764
|
|
|
|
765
|
|
|
* Fixed costs (will not have an impact on the actual optimisation). |
766
|
|
|
* Variable costs for storage content. |
767
|
|
|
""" |
768
|
|
|
m = self.parent_block() |
769
|
|
|
|
770
|
|
|
fixed_costs = 0 |
771
|
|
|
|
772
|
|
|
for n in self.STORAGES: |
773
|
|
|
if valid_sequence(n.fixed_costs, len(m.PERIODS)): |
774
|
|
|
fixed_costs += sum( |
775
|
|
|
n.nominal_storage_capacity * n.fixed_costs[pp] |
776
|
|
|
for pp in range(m.es.end_year_of_optimization) |
777
|
|
|
) |
778
|
|
|
self.fixed_costs = Expression(expr=fixed_costs) |
779
|
|
|
|
780
|
|
|
storage_costs = 0 |
781
|
|
|
|
782
|
|
|
for n in self.STORAGES: |
783
|
|
View Code Duplication |
if valid_sequence(n.storage_costs, len(m.TIMESTEPS)): |
|
|
|
|
784
|
|
|
# We actually want to iterate over all TIMEPOINTS except the |
785
|
|
|
# 0th. As integers are used for the index, this is equicalent |
786
|
|
|
# to iterating over the TIMESTEPS with one offset. |
787
|
|
|
if not m.TSAM_MODE: |
788
|
|
|
for t in m.TIMESTEPS: |
789
|
|
|
storage_costs += ( |
790
|
|
|
self.storage_content[n, t + 1] * n.storage_costs[t] |
791
|
|
|
) |
792
|
|
|
else: |
793
|
|
|
for t in m.TIMESTEPS_ORIGINAL: |
794
|
|
|
storage_costs += ( |
795
|
|
|
self.storage_content[n, t + 1] |
796
|
|
|
* n.storage_costs[t + 1] |
797
|
|
|
) |
798
|
|
|
|
799
|
|
|
self.storage_costs = Expression(expr=storage_costs) |
800
|
|
|
self.costs = Expression(expr=storage_costs + fixed_costs) |
801
|
|
|
|
802
|
|
|
return self.costs |
803
|
|
|
|
804
|
|
|
|
805
|
|
|
class GenericInvestmentStorageBlock(ScalarBlock): |
806
|
|
|
r""" |
807
|
|
|
Block for all storages with :attr:`Investment` being not None. |
808
|
|
|
See :class:`.Investment` for all parameters of the |
809
|
|
|
Investment class. |
810
|
|
|
|
811
|
|
|
**Variables** |
812
|
|
|
|
813
|
|
|
All Storages are indexed by :math:`n` (denoting the respective storage |
814
|
|
|
unit), which is omitted in the following for the sake of convenience. |
815
|
|
|
The following variables are created as attributes of |
816
|
|
|
:attr:`om.GenericInvestmentStorageBlock`: |
817
|
|
|
|
818
|
|
|
* :math:`P_i(p, t)` |
819
|
|
|
|
820
|
|
|
Inflow of the storage |
821
|
|
|
(created in :class:`oemof.solph.models.Model`). |
822
|
|
|
|
823
|
|
|
* :math:`P_o(p, t)` |
824
|
|
|
|
825
|
|
|
Outflow of the storage |
826
|
|
|
(created in :class:`oemof.solph.models.Model`). |
827
|
|
|
|
828
|
|
|
* :math:`E(t)` |
829
|
|
|
|
830
|
|
|
Current storage content (Absolute level of stored energy). |
831
|
|
|
|
832
|
|
|
* :math:`E_{invest}(p)` |
833
|
|
|
|
834
|
|
|
Invested (nominal) capacity of the storage in period p. |
835
|
|
|
|
836
|
|
|
* :math:`E_{total}(p)` |
837
|
|
|
|
838
|
|
|
Total installed (nominal) capacity of the storage in period p. |
839
|
|
|
|
840
|
|
|
* :math:`E_{old}(p)` |
841
|
|
|
|
842
|
|
|
Old (nominal) capacity of the storage to be decommissioned in period p. |
843
|
|
|
|
844
|
|
|
* :math:`E_{old,exo}(p)` |
845
|
|
|
|
846
|
|
|
Exogenous old (nominal) capacity of the storage to be decommissioned |
847
|
|
|
in period p; existing capacity reaching its lifetime. |
848
|
|
|
|
849
|
|
|
* :math:`E_{old,endo}(p)` |
850
|
|
|
|
851
|
|
|
Endogenous old (nominal) capacity of the storage to be decommissioned |
852
|
|
|
in period p; endgenous investments reaching their lifetime. |
853
|
|
|
|
854
|
|
|
* :math:`E(-1)` |
855
|
|
|
|
856
|
|
|
Initial storage content (before timestep 0). |
857
|
|
|
Not applicable for a multi-period model. |
858
|
|
|
|
859
|
|
|
* :math:`b_{invest}(p)` |
860
|
|
|
|
861
|
|
|
Binary variable for the status of the investment, if |
862
|
|
|
:attr:`nonconvex` is `True`. |
863
|
|
|
|
864
|
|
|
**Constraints** |
865
|
|
|
|
866
|
|
|
The following constraints are created for all investment storages: |
867
|
|
|
|
868
|
|
|
Storage balance (Same as for :class:`.GenericStorageBlock`) |
869
|
|
|
|
870
|
|
|
.. math:: E(t) = &E(t-1) \cdot |
871
|
|
|
(1 - \beta(t)) ^{\tau(t)/(t_u)} \\ |
872
|
|
|
&- \gamma(t)\cdot (E_{total}(p)) \cdot {\tau(t)/(t_u)}\\ |
873
|
|
|
&- \delta(t) \cdot {\tau(t)/(t_u)}\\ |
874
|
|
|
&- \frac{\dot{E}_o(p, t))}{\eta_o(t)} \cdot \tau(t) |
875
|
|
|
+ \dot{E}_i(p, t) \cdot \eta_i(t) \cdot \tau(t) |
876
|
|
|
|
877
|
|
|
Total storage capacity (p > 0 for multi-period model only) |
878
|
|
|
|
879
|
|
|
.. math:: |
880
|
|
|
& |
881
|
|
|
if \quad p=0:\\ |
882
|
|
|
& |
883
|
|
|
E_{total}(p) = E_{exist} + E_{invest}(p)\\ |
884
|
|
|
&\\ |
885
|
|
|
& |
886
|
|
|
else:\\ |
887
|
|
|
& |
888
|
|
|
E_{total}(p) = E_{total}(p-1) + E_{invest}(p) - E_{old}(p)\\ |
889
|
|
|
&\\ |
890
|
|
|
& |
891
|
|
|
\forall p \in \textrm{PERIODS} |
892
|
|
|
|
893
|
|
|
Old storage capacity (p > 0 for multi-period model only) |
894
|
|
|
|
895
|
|
|
.. math:: |
896
|
|
|
& |
897
|
|
|
E_{old}(p) = E_{old,exo}(p) + E_{old,end}(p)\\ |
898
|
|
|
&\\ |
899
|
|
|
& |
900
|
|
|
if \quad p=0:\\ |
901
|
|
|
& |
902
|
|
|
E_{old,end}(p) = 0\\ |
903
|
|
|
&\\ |
904
|
|
|
& |
905
|
|
|
else \quad if \quad l \leq year(p):\\ |
906
|
|
|
& |
907
|
|
|
E_{old,end}(p) = E_{invest}(p_{comm})\\ |
908
|
|
|
&\\ |
909
|
|
|
& |
910
|
|
|
else:\\ |
911
|
|
|
& |
912
|
|
|
E_{old,end}(p)\\ |
913
|
|
|
&\\ |
914
|
|
|
& |
915
|
|
|
if \quad p=0:\\ |
916
|
|
|
& |
917
|
|
|
E_{old,exo}(p) = 0\\ |
918
|
|
|
&\\ |
919
|
|
|
& |
920
|
|
|
else \quad if \quad l - a \leq year(p):\\ |
921
|
|
|
& |
922
|
|
|
E_{old,exo}(p) = E_{exist} (*)\\ |
923
|
|
|
&\\ |
924
|
|
|
& |
925
|
|
|
else:\\ |
926
|
|
|
& |
927
|
|
|
E_{old,exo}(p) = 0\\ |
928
|
|
|
&\\ |
929
|
|
|
& |
930
|
|
|
\forall p \in \textrm{PERIODS} |
931
|
|
|
|
932
|
|
|
where: |
933
|
|
|
|
934
|
|
|
* (*) is only performed for the first period the condition is True. |
935
|
|
|
A decommissioning flag is then set to True to prevent having falsely |
936
|
|
|
added old capacity in future periods. |
937
|
|
|
* :math:`year(p)` is the year corresponding to period p |
938
|
|
|
* :math:`p_{comm}` is the commissioning period of the storage |
939
|
|
|
|
940
|
|
|
Depending on the attribute :attr:`nonconvex`, the constraints for the |
941
|
|
|
bounds of the decision variable :math:`E_{invest}(p)` are different:\ |
942
|
|
|
|
943
|
|
|
* :attr:`nonconvex = False` |
944
|
|
|
|
945
|
|
|
.. math:: |
946
|
|
|
& |
947
|
|
|
E_{invest, min}(p) \le E_{invest}(p) \le E_{invest, max}(p) \\ |
948
|
|
|
& |
949
|
|
|
\forall p \in \textrm{PERIODS} |
950
|
|
|
|
951
|
|
|
* :attr:`nonconvex = True` |
952
|
|
|
|
953
|
|
|
.. math:: |
954
|
|
|
& |
955
|
|
|
E_{invest, min}(p) \cdot b_{invest}(p) \le E_{invest}(p)\\ |
956
|
|
|
& |
957
|
|
|
E_{invest}(p) \le E_{invest, max}(p) \cdot b_{invest}(p)\\ |
958
|
|
|
& |
959
|
|
|
\forall p \in \textrm{PERIODS} |
960
|
|
|
|
961
|
|
|
The following constraints are created depending on the attributes of |
962
|
|
|
the :class:`.GenericStorage`: |
963
|
|
|
|
964
|
|
|
* :attr:`initial_storage_level is None`; |
965
|
|
|
not applicable for multi-period model |
966
|
|
|
|
967
|
|
|
Constraint for a variable initial storage content: |
968
|
|
|
|
969
|
|
|
.. math:: |
970
|
|
|
E(-1) \le E_{exist} + E_{invest}(0) |
971
|
|
|
|
972
|
|
|
* :attr:`initial_storage_level is not None`; |
973
|
|
|
not applicable for multi-period model |
974
|
|
|
|
975
|
|
|
An initial value for the storage content is given: |
976
|
|
|
|
977
|
|
|
.. math:: |
978
|
|
|
E(-1) = (E_{invest}(0) + E_{exist}) \cdot c(-1) |
979
|
|
|
|
980
|
|
|
* :attr:`balanced=True`; |
981
|
|
|
not applicable for multi-period model |
982
|
|
|
|
983
|
|
|
The energy content of storage of the first and the last timestep |
984
|
|
|
are set equal: |
985
|
|
|
|
986
|
|
|
.. math:: |
987
|
|
|
E(-1) = E(t_{last}) |
988
|
|
|
|
989
|
|
|
* :attr:`invest_relation_input_capacity is not None` |
990
|
|
|
|
991
|
|
|
Connect the invest variables of the storage and the input flow: |
992
|
|
|
|
993
|
|
|
.. math:: |
994
|
|
|
& |
995
|
|
|
P_{i,total}(p) = |
996
|
|
|
E_{total}(p) \cdot r_{cap,in} \\ |
997
|
|
|
& |
998
|
|
|
\forall p \in \textrm{PERIODS} |
999
|
|
|
|
1000
|
|
|
* :attr:`invest_relation_output_capacity is not None` |
1001
|
|
|
|
1002
|
|
|
Connect the invest variables of the storage and the output flow: |
1003
|
|
|
|
1004
|
|
|
.. math:: |
1005
|
|
|
& |
1006
|
|
|
P_{o,total}(p) = |
1007
|
|
|
E_{total}(p) \cdot r_{cap,out}\\ |
1008
|
|
|
& |
1009
|
|
|
\forall p \in \textrm{PERIODS} |
1010
|
|
|
|
1011
|
|
|
* :attr:`invest_relation_input_output is not None` |
1012
|
|
|
|
1013
|
|
|
Connect the invest variables of the input and the output flow: |
1014
|
|
|
|
1015
|
|
|
.. math:: |
1016
|
|
|
& |
1017
|
|
|
P_{i,total}(p) = |
1018
|
|
|
P_{o,total}(p) \cdot r_{in,out}\\ |
1019
|
|
|
& |
1020
|
|
|
\forall p \in \textrm{PERIODS} |
1021
|
|
|
|
1022
|
|
|
* :attr:`max_storage_level` |
1023
|
|
|
|
1024
|
|
|
Rule for upper bound constraint for the storage content: |
1025
|
|
|
|
1026
|
|
|
.. math:: |
1027
|
|
|
& |
1028
|
|
|
E(t) \leq E_{total}(p) \cdot c_{max}(t)\\ |
1029
|
|
|
& |
1030
|
|
|
\forall p, t \in \textrm{TIMEINDEX} |
1031
|
|
|
|
1032
|
|
|
* :attr:`min_storage_level` |
1033
|
|
|
|
1034
|
|
|
Rule for lower bound constraint for the storage content: |
1035
|
|
|
|
1036
|
|
|
.. math:: |
1037
|
|
|
& |
1038
|
|
|
E(t) \geq E_{total}(p) \cdot c_{min}(t)\\ |
1039
|
|
|
& |
1040
|
|
|
\forall p, t \in \textrm{TIMEINDEX} |
1041
|
|
|
|
1042
|
|
|
|
1043
|
|
|
**Objective function** |
1044
|
|
|
|
1045
|
|
|
Objective terms for a standard model and a multi-period model differ |
1046
|
|
|
quite strongly. Besides, the part of the objective function added by the |
1047
|
|
|
investment storages also depends on whether a convex or nonconvex |
1048
|
|
|
investment option is selected. The following parts of the objective |
1049
|
|
|
function are created: |
1050
|
|
|
|
1051
|
|
|
*Standard model* |
1052
|
|
|
|
1053
|
|
|
* :attr:`nonconvex = False` |
1054
|
|
|
|
1055
|
|
|
.. math:: |
1056
|
|
|
E_{invest}(0) \cdot c_{invest,var}(0) |
1057
|
|
|
|
1058
|
|
|
* :attr:`nonconvex = True` |
1059
|
|
|
|
1060
|
|
|
.. math:: |
1061
|
|
|
E_{invest}(0) \cdot c_{invest,var}(0) |
1062
|
|
|
+ c_{invest,fix}(0) \cdot b_{invest}(0)\\ |
1063
|
|
|
|
1064
|
|
|
Where 0 denotes the 0th (investment) period since |
1065
|
|
|
in a standard model, there is only this one period. |
1066
|
|
|
|
1067
|
|
|
*Multi-period model* |
1068
|
|
|
|
1069
|
|
|
* :attr:`nonconvex = False` |
1070
|
|
|
|
1071
|
|
|
.. math:: |
1072
|
|
|
& |
1073
|
|
|
E_{invest}(p) \cdot A(c_{invest,var}(p), l, ir) |
1074
|
|
|
\cdot \frac {1}{ANF(d, ir)} \cdot DF^{-p}\\ |
1075
|
|
|
& |
1076
|
|
|
\forall p \in \textrm{PERIODS} |
1077
|
|
|
|
1078
|
|
|
In case, the remaining lifetime of a storage is greater than 0 and |
1079
|
|
|
attribute `use_remaining_value` of the energy system is True, |
1080
|
|
|
the difference in value for the investment period compared to the |
1081
|
|
|
last period of the optimization horizon is accounted for |
1082
|
|
|
as an adder to the investment costs: |
1083
|
|
|
|
1084
|
|
|
.. math:: |
1085
|
|
|
& |
1086
|
|
|
E_{invest}(p) \cdot (A(c_{invest,var}(p), l_{r}, ir) - |
1087
|
|
|
A(c_{invest,var}(|P|), l_{r}, ir)\\ |
1088
|
|
|
& \cdot \frac {1}{ANF(l_{r}, ir)} \cdot DF^{-|P|}\\ |
1089
|
|
|
&\\ |
1090
|
|
|
& |
1091
|
|
|
\forall p \in \textrm{PERIODS} |
1092
|
|
|
|
1093
|
|
|
* :attr:`nonconvex = True` |
1094
|
|
|
|
1095
|
|
|
.. math:: |
1096
|
|
|
& |
1097
|
|
|
(E_{invest}(p) \cdot A(c_{invest,var}(p), l, ir) |
1098
|
|
|
\cdot \frac {1}{ANF(d, ir)}\\ |
1099
|
|
|
& |
1100
|
|
|
+ c_{invest,fix}(p) \cdot b_{invest}(p)) \cdot DF^{-p} \\ |
1101
|
|
|
& |
1102
|
|
|
\forall p \in \textrm{PERIODS} |
1103
|
|
|
|
1104
|
|
|
In case, the remaining lifetime of a storage is greater than 0 and |
1105
|
|
|
attribute `use_remaining_value` of the energy system is True, |
1106
|
|
|
the difference in value for the investment period compared to the |
1107
|
|
|
last period of the optimization horizon is accounted for |
1108
|
|
|
as an adder to the investment costs: |
1109
|
|
|
|
1110
|
|
|
.. math:: |
1111
|
|
|
& |
1112
|
|
|
(E_{invest}(p) \cdot (A(c_{invest,var}(p), l_{r}, ir) - |
1113
|
|
|
A(c_{invest,var}(|P|), l_{r}, ir)\\ |
1114
|
|
|
& \cdot \frac {1}{ANF(l_{r}, ir)} \cdot DF^{-|P|}\\ |
1115
|
|
|
& |
1116
|
|
|
+ (c_{invest,fix}(p) - c_{invest,fix}(|P|)) |
1117
|
|
|
\cdot b_{invest}(p)) \cdot DF^{-p}\\ |
1118
|
|
|
&\\ |
1119
|
|
|
& |
1120
|
|
|
\forall p \in \textrm{PERIODS} |
1121
|
|
|
|
1122
|
|
|
* :attr:`fixed_costs` not None for investments |
1123
|
|
|
|
1124
|
|
|
.. math:: |
1125
|
|
|
& |
1126
|
|
|
\sum_{pp=year(p)}^{limit_{end}} |
1127
|
|
|
E_{invest}(p) \cdot c_{fixed}(pp) \cdot DF^{-pp}) |
1128
|
|
|
\cdot DF^{-p}\\ |
1129
|
|
|
& |
1130
|
|
|
\forall p \in \textrm{PERIODS} |
1131
|
|
|
|
1132
|
|
|
* :attr:`fixed_costs` not None for existing capacity |
1133
|
|
|
|
1134
|
|
|
.. math:: |
1135
|
|
|
\sum_{pp=0}^{limit_{exo}} E_{exist} \cdot c_{fixed}(pp) |
1136
|
|
|
\cdot DF^{-pp} |
1137
|
|
|
|
1138
|
|
|
where: |
1139
|
|
|
|
1140
|
|
|
* :math:`A(c_{invest,var}(p), l, ir)` A is the annuity for |
1141
|
|
|
investment expenses :math:`c_{invest,var}(p)`, lifetime :math:`l` |
1142
|
|
|
and interest rate :math:`ir`. |
1143
|
|
|
* :math:`l_{r}` is the remaining lifetime at the end of the |
1144
|
|
|
optimization horizon (in case it is greater than 0 and |
1145
|
|
|
smaller than the actual lifetime). |
1146
|
|
|
* :math:`ANF(d, ir)` is the annuity factor for duration :math:`d` |
1147
|
|
|
and interest rate :math:`ir`. |
1148
|
|
|
* :math:`d=min\{year_{max} - year(p), l\}` defines the |
1149
|
|
|
number of years within the optimization horizon that investment |
1150
|
|
|
annuities are accounted for. |
1151
|
|
|
* :math:`year(p)` denotes the start year of period :math:`p`. |
1152
|
|
|
* :math:`year_{max}` denotes the last year of the optimization |
1153
|
|
|
horizon, i.e. at the end of the last period. |
1154
|
|
|
* :math:`limit_{end}=min\{year_{max}, year(p) + l\}` is used as an |
1155
|
|
|
upper bound to ensure fixed costs for endogenous investments |
1156
|
|
|
to occur within the optimization horizon. |
1157
|
|
|
* :math:`limit_{exo}=min\{year_{max}, l - a\}` is used as an |
1158
|
|
|
upper bound to ensure fixed costs for existing capacities to occur |
1159
|
|
|
within the optimization horizon. :math:`a` is the initial age |
1160
|
|
|
of an asset. |
1161
|
|
|
* :math:`DF=(1+dr)` is the discount factor. |
1162
|
|
|
|
1163
|
|
|
The annuity / annuity factor hereby is: |
1164
|
|
|
|
1165
|
|
|
.. math:: |
1166
|
|
|
& |
1167
|
|
|
A(c_{invest,var}(p), l, ir) = c_{invest,var}(p) \cdot |
1168
|
|
|
\frac {(1+ir)^l \cdot ir} {(1+ir)^l - 1}\\ |
1169
|
|
|
&\\ |
1170
|
|
|
& |
1171
|
|
|
ANF(d, ir)=\frac {(1+ir)^d \cdot ir} {(1+ir)^d - 1} |
1172
|
|
|
|
1173
|
|
|
They are retrieved, using oemof.tools.economics annuity function. The |
1174
|
|
|
interest rate :math:`ir` for the annuity is defined as weighted |
1175
|
|
|
average costs of capital (wacc) and assumed constant over time. |
1176
|
|
|
|
1177
|
|
|
The overall summed cost expressions for all *InvestmentFlowBlock* objects |
1178
|
|
|
can be accessed by |
1179
|
|
|
|
1180
|
|
|
* :attr:`om.GenericInvestmentStorageBlock.investment_costs`, |
1181
|
|
|
* :attr:`om.GenericInvestmentStorageBlock.fixed_costs` and |
1182
|
|
|
* :attr:`om.GenericInvestmentStorageBlock.costs`. |
1183
|
|
|
|
1184
|
|
|
Their values after optimization can be retrieved by |
1185
|
|
|
|
1186
|
|
|
* :meth:`om.GenericInvestmentStorageBlock.investment_costs`, |
1187
|
|
|
* :attr:`om.GenericInvestmentStorageBlock.period_investment_costs` |
1188
|
|
|
(yielding a dict keyed by periods); note: this is not a Pyomo expression, |
1189
|
|
|
but calculated, |
1190
|
|
|
* :meth:`om.GenericInvestmentStorageBlock.fixed_costs` and |
1191
|
|
|
* :meth:`om.GenericInvestmentStorageBlock.costs`. |
1192
|
|
|
|
1193
|
|
|
.. csv-table:: List of Variables |
1194
|
|
|
:header: "symbol", "attribute", "explanation" |
1195
|
|
|
:widths: 1, 1, 1 |
1196
|
|
|
|
1197
|
|
|
":math:`P_i(p, t)`", ":attr:`flow[i[n], n, p, t]`", "Inflow |
1198
|
|
|
of the storage" |
1199
|
|
|
":math:`P_o(p, t)`", ":attr:`flow[n, o[n], p, t]`", "Outflow |
1200
|
|
|
of the storage" |
1201
|
|
|
":math:`E(t)`", ":attr:`storage_content[n, t]`", "Current storage |
1202
|
|
|
content (current absolute stored energy)" |
1203
|
|
|
":math:`E_{loss}(t)`", ":attr:`storage_losses[n, t]`", "Current storage |
1204
|
|
|
losses (absolute losses per time step)" |
1205
|
|
|
":math:`E_{invest}(p)`", ":attr:`invest[n, p]`", "Invested (nominal) |
1206
|
|
|
capacity of the storage" |
1207
|
|
|
":math:`E_{old}(p)`", ":attr:`old[n, p]`", " |
1208
|
|
|
| Old (nominal) capacity of the storage |
1209
|
|
|
| to be decommissioned in period p" |
1210
|
|
|
":math:`E_{old,exo}(p)`", ":attr:`old_exo[n, p]`", " |
1211
|
|
|
| Old (nominal) capacity of the storage |
1212
|
|
|
| to be decommissioned in period p |
1213
|
|
|
| which was exogenously given by :math:`E_{exist}`" |
1214
|
|
|
":math:`E_{old,end}(p)`", ":attr:`old_end[n, p]`", " |
1215
|
|
|
| Old (nominal) capacity of the storage |
1216
|
|
|
| to be decommissioned in period p |
1217
|
|
|
| which was endogenously determined by :math:`E_{invest}(p_{comm})` |
1218
|
|
|
| where :math:`p_{comm}` is the commissioning period" |
1219
|
|
|
":math:`E(-1)`", ":attr:`init_cap[n]`", "Initial storage capacity |
1220
|
|
|
(before timestep 0)" |
1221
|
|
|
":math:`b_{invest}(p)`", ":attr:`invest_status[i, o, p]`", "Binary |
1222
|
|
|
variable for the status of investment" |
1223
|
|
|
":math:`P_{i,invest}(p)`", " |
1224
|
|
|
:attr:`InvestmentFlowBlock.invest[i[n], n, p]`", " |
1225
|
|
|
Invested (nominal) inflow (InvestmentFlowBlock)" |
1226
|
|
|
":math:`P_{o,invest}`", " |
1227
|
|
|
:attr:`InvestmentFlowBlock.invest[n, o[n]]`", " |
1228
|
|
|
Invested (nominal) outflow (InvestmentFlowBlock)" |
1229
|
|
|
|
1230
|
|
|
.. csv-table:: List of Parameters |
1231
|
|
|
:header: "symbol", "attribute", "explanation" |
1232
|
|
|
:widths: 1, 1, 1 |
1233
|
|
|
|
1234
|
|
|
":math:`E_{exist}`", "`flows[i, o].investment.existing`", " |
1235
|
|
|
Existing storage capacity" |
1236
|
|
|
":math:`E_{invest,min}`", "`flows[i, o].investment.minimum`", " |
1237
|
|
|
Minimum investment value" |
1238
|
|
|
":math:`E_{invest,max}`", "`flows[i, o].investment.maximum`", " |
1239
|
|
|
Maximum investment value" |
1240
|
|
|
":math:`P_{i,exist}`", "`flows[i[n], n].investment.existing` |
1241
|
|
|
", "Existing inflow capacity" |
1242
|
|
|
":math:`P_{o,exist}`", "`flows[n, o[n]].investment.existing` |
1243
|
|
|
", "Existing outflow capacity" |
1244
|
|
|
":math:`c_{invest,var}`", "`flows[i, o].investment.ep_costs` |
1245
|
|
|
", "Variable investment costs" |
1246
|
|
|
":math:`c_{invest,fix}`", "`flows[i, o].investment.offset`", " |
1247
|
|
|
Fix investment costs" |
1248
|
|
|
":math:`c_{fixed}`", "`flows[i, o].investment.fixed_costs`", " |
1249
|
|
|
Fixed costs; only allowed in multi-period model" |
1250
|
|
|
":math:`r_{cap,in}`", ":attr:`invest_relation_input_capacity`", " |
1251
|
|
|
Relation of storage capacity and nominal inflow" |
1252
|
|
|
":math:`r_{cap,out}`", ":attr:`invest_relation_output_capacity`", " |
1253
|
|
|
Relation of storage capacity and nominal outflow" |
1254
|
|
|
":math:`r_{in,out}`", ":attr:`invest_relation_input_output`", " |
1255
|
|
|
Relation of nominal in- and outflow" |
1256
|
|
|
":math:`\beta(t)`", "`loss_rate[t]`", "Fraction of lost energy |
1257
|
|
|
as share of :math:`E(t)` per hour" |
1258
|
|
|
":math:`\gamma(t)`", "`fixed_losses_relative[t]`", "Fixed loss |
1259
|
|
|
of energy relative to :math:`E_{invest} + E_{exist}` per hour" |
1260
|
|
|
":math:`\delta(t)`", "`fixed_losses_absolute[t]`", "Absolute |
1261
|
|
|
fixed loss of energy per hour" |
1262
|
|
|
":math:`\eta_i(t)`", "`inflow_conversion_factor[t]`", " |
1263
|
|
|
Conversion factor (i.e. efficiency) when storing energy" |
1264
|
|
|
":math:`\eta_o(t)`", "`outflow_conversion_factor[t]`", " |
1265
|
|
|
Conversion factor when (i.e. efficiency) taking stored energy" |
1266
|
|
|
":math:`c(-1)`", "`initial_storage_level`", "Initial relative |
1267
|
|
|
storage content (before timestep 0)" |
1268
|
|
|
":math:`c_{max}`", "`flows[i, o].max[t]`", "Normed maximum |
1269
|
|
|
value of storage content" |
1270
|
|
|
":math:`c_{min}`", "`flows[i, o].min[t]`", "Normed minimum |
1271
|
|
|
value of storage content" |
1272
|
|
|
":math:`l`", "`flows[i, o].investment.lifetime`", " |
1273
|
|
|
Lifetime for investments in storage capacity" |
1274
|
|
|
":math:`a`", "`flows[i, o].investment.age`", " |
1275
|
|
|
Initial age of existing capacity / energy" |
1276
|
|
|
":math:`\tau(t)`", "", "Duration of time step" |
1277
|
|
|
":math:`t_u`", "", "Time unit of losses :math:`\beta(t)`, |
1278
|
|
|
:math:`\gamma(t)`, :math:`\delta(t)` and timeincrement :math:`\tau(t)`" |
1279
|
|
|
|
1280
|
|
|
""" |
1281
|
|
|
|
1282
|
|
|
CONSTRAINT_GROUP = True |
1283
|
|
|
|
1284
|
|
|
def __init__(self, *args, **kwargs): |
1285
|
|
|
super().__init__(*args, **kwargs) |
1286
|
|
|
|
1287
|
|
|
def _create(self, group): |
1288
|
|
|
"""Create a storage block for investment modeling""" |
1289
|
|
|
m = self.parent_block() |
1290
|
|
|
|
1291
|
|
|
# ########################## CHECKS ################################### |
1292
|
|
|
if m.es.periods is not None: |
1293
|
|
|
for n in group: |
1294
|
|
|
error_fixed_absolute_losses = ( |
1295
|
|
|
"For a multi-period investment model, fixed absolute" |
1296
|
|
|
" losses are not supported. Please remove parameter." |
1297
|
|
|
) |
1298
|
|
|
if n.fixed_losses_absolute[0] != 0: |
1299
|
|
|
raise ValueError(error_fixed_absolute_losses) |
1300
|
|
|
error_initial_storage_level = ( |
1301
|
|
|
"For a multi-period model, initial_storage_level is" |
1302
|
|
|
" not supported.\nIt needs to be removed since it" |
1303
|
|
|
" has no effect.\nstorage_content will be zero," |
1304
|
|
|
" until there is some usable storage capacity installed." |
1305
|
|
|
) |
1306
|
|
|
if n.initial_storage_level is not None: |
1307
|
|
|
raise ValueError(error_initial_storage_level) |
1308
|
|
|
|
1309
|
|
|
# ########################## SETS ##################################### |
1310
|
|
|
|
1311
|
|
|
self.INVESTSTORAGES = Set(initialize=[n for n in group]) |
1312
|
|
|
|
1313
|
|
|
self.CONVEX_INVESTSTORAGES = Set( |
1314
|
|
|
initialize=[n for n in group if n.investment.nonconvex is False] |
1315
|
|
|
) |
1316
|
|
|
|
1317
|
|
|
self.NON_CONVEX_INVESTSTORAGES = Set( |
1318
|
|
|
initialize=[n for n in group if n.investment.nonconvex is True] |
1319
|
|
|
) |
1320
|
|
|
|
1321
|
|
|
self.INVESTSTORAGES_BALANCED = Set( |
1322
|
|
|
initialize=[n for n in group if n.balanced is True] |
1323
|
|
|
) |
1324
|
|
|
|
1325
|
|
|
self.INVESTSTORAGES_NO_INIT_CONTENT = Set( |
1326
|
|
|
initialize=[n for n in group if n.initial_storage_level is None] |
1327
|
|
|
) |
1328
|
|
|
|
1329
|
|
|
self.INVESTSTORAGES_INIT_CONTENT = Set( |
1330
|
|
|
initialize=[ |
1331
|
|
|
n for n in group if n.initial_storage_level is not None |
1332
|
|
|
] |
1333
|
|
|
) |
1334
|
|
|
|
1335
|
|
|
self.INVEST_REL_CAP_IN = Set( |
1336
|
|
|
initialize=[ |
1337
|
|
|
n |
1338
|
|
|
for n in group |
1339
|
|
|
if n.invest_relation_input_capacity[0] is not None |
1340
|
|
|
] |
1341
|
|
|
) |
1342
|
|
|
|
1343
|
|
|
self.INVEST_REL_CAP_OUT = Set( |
1344
|
|
|
initialize=[ |
1345
|
|
|
n |
1346
|
|
|
for n in group |
1347
|
|
|
if n.invest_relation_output_capacity[0] is not None |
1348
|
|
|
] |
1349
|
|
|
) |
1350
|
|
|
|
1351
|
|
|
self.INVEST_REL_IN_OUT = Set( |
1352
|
|
|
initialize=[ |
1353
|
|
|
n |
1354
|
|
|
for n in group |
1355
|
|
|
if n.invest_relation_input_output[0] is not None |
1356
|
|
|
] |
1357
|
|
|
) |
1358
|
|
|
|
1359
|
|
|
# The storage content is a non-negative variable, therefore it makes no |
1360
|
|
|
# sense to create an additional constraint if the lower bound is zero |
1361
|
|
|
# for all time steps. |
1362
|
|
|
self.MIN_INVESTSTORAGES = Set( |
1363
|
|
|
initialize=[ |
1364
|
|
|
n |
1365
|
|
|
for n in group |
1366
|
|
|
if sum([n.min_storage_level[t] for t in m.TIMESTEPS]) > 0 |
1367
|
|
|
] |
1368
|
|
|
) |
1369
|
|
|
|
1370
|
|
|
self.OVERALL_MAXIMUM_INVESTSTORAGES = Set( |
1371
|
|
|
initialize=[ |
1372
|
|
|
n for n in group if n.investment.overall_maximum is not None |
1373
|
|
|
] |
1374
|
|
|
) |
1375
|
|
|
|
1376
|
|
|
self.OVERALL_MINIMUM_INVESTSTORAGES = Set( |
1377
|
|
|
initialize=[ |
1378
|
|
|
n for n in group if n.investment.overall_minimum is not None |
1379
|
|
|
] |
1380
|
|
|
) |
1381
|
|
|
|
1382
|
|
|
self.EXISTING_INVESTSTORAGES = Set( |
1383
|
|
|
initialize=[n for n in group if n.investment.existing is not None] |
1384
|
|
|
) |
1385
|
|
|
|
1386
|
|
|
# ######################### Variables ################################ |
1387
|
|
|
if not m.TSAM_MODE: |
1388
|
|
|
self.storage_content = Var( |
1389
|
|
|
self.INVESTSTORAGES, m.TIMEPOINTS, within=NonNegativeReals |
1390
|
|
|
) |
1391
|
|
|
else: |
1392
|
|
|
self.inter_storage_content = Var( |
1393
|
|
|
self.INVESTSTORAGES, m.CLUSTERS_OFFSET, within=NonNegativeReals |
1394
|
|
|
) |
1395
|
|
|
self.intra_storage_delta = Var( |
1396
|
|
|
self.INVESTSTORAGES, m.TIMEINDEX_TYPICAL_CLUSTER_OFFSET |
1397
|
|
|
) |
1398
|
|
|
# set the initial intra storage content |
1399
|
|
|
# first timestep in intra storage is always zero |
1400
|
|
|
for n in group: |
1401
|
|
|
for p, k in m.TYPICAL_CLUSTERS: |
1402
|
|
|
self.intra_storage_delta[n, p, k, 0] = 0 |
1403
|
|
|
self.intra_storage_delta[n, p, k, 0].fix() |
1404
|
|
|
|
1405
|
|
|
def _storage_investvar_bound_rule(_, n, p): |
1406
|
|
|
""" |
1407
|
|
|
Rule definition to bound the invested storage capacity `invest`. |
1408
|
|
|
""" |
1409
|
|
|
if n in self.CONVEX_INVESTSTORAGES: |
1410
|
|
|
return n.investment.minimum[p], n.investment.maximum[p] |
1411
|
|
|
else: # n in self.NON_CONVEX_INVESTSTORAGES |
1412
|
|
|
return 0, n.investment.maximum[p] |
1413
|
|
|
|
1414
|
|
|
self.invest = Var( |
1415
|
|
|
self.INVESTSTORAGES, |
1416
|
|
|
m.PERIODS, |
1417
|
|
|
within=NonNegativeReals, |
1418
|
|
|
bounds=_storage_investvar_bound_rule, |
1419
|
|
|
) |
1420
|
|
|
|
1421
|
|
|
# Total capacity |
1422
|
|
|
self.total = Var( |
1423
|
|
|
self.INVESTSTORAGES, |
1424
|
|
|
m.PERIODS, |
1425
|
|
|
within=NonNegativeReals, |
1426
|
|
|
initialize=0, |
1427
|
|
|
) |
1428
|
|
|
|
1429
|
|
|
if m.es.periods is not None: |
1430
|
|
|
# Old capacity to be decommissioned (due to lifetime) |
1431
|
|
|
self.old = Var( |
1432
|
|
|
self.INVESTSTORAGES, m.PERIODS, within=NonNegativeReals |
1433
|
|
|
) |
1434
|
|
|
|
1435
|
|
|
# Old endogenous capacity to be decommissioned (due to lifetime) |
1436
|
|
|
self.old_end = Var( |
1437
|
|
|
self.INVESTSTORAGES, m.PERIODS, within=NonNegativeReals |
1438
|
|
|
) |
1439
|
|
|
|
1440
|
|
|
# Old exogenous capacity to be decommissioned (due to lifetime) |
1441
|
|
|
self.old_exo = Var( |
1442
|
|
|
self.INVESTSTORAGES, m.PERIODS, within=NonNegativeReals |
1443
|
|
|
) |
1444
|
|
|
|
1445
|
|
|
# create status variable for a non-convex investment storage |
1446
|
|
|
self.invest_status = Var( |
1447
|
|
|
self.NON_CONVEX_INVESTSTORAGES, m.PERIODS, within=Binary |
1448
|
|
|
) |
1449
|
|
|
|
1450
|
|
|
# ######################### CONSTRAINTS ############################### |
1451
|
|
|
i = {n: [i for i in n.inputs][0] for n in group} |
1452
|
|
|
o = {n: [o for o in n.outputs][0] for n in group} |
1453
|
|
|
|
1454
|
|
|
# Handle unit lifetimes |
1455
|
|
|
def _total_storage_capacity_rule(block): |
1456
|
|
|
"""Rule definition for determining total installed |
1457
|
|
|
capacity (taking decommissioning into account) |
1458
|
|
|
""" |
1459
|
|
|
for n in self.INVESTSTORAGES: |
1460
|
|
|
for p in m.PERIODS: |
1461
|
|
|
if p == 0: |
1462
|
|
|
expr = ( |
1463
|
|
|
self.total[n, p] |
1464
|
|
|
== self.invest[n, p] + n.investment.existing |
1465
|
|
|
) |
1466
|
|
|
self.total_storage_rule.add((n, p), expr) |
1467
|
|
|
else: |
1468
|
|
|
expr = ( |
1469
|
|
|
self.total[n, p] |
1470
|
|
|
== self.invest[n, p] |
1471
|
|
|
+ self.total[n, p - 1] |
1472
|
|
|
- self.old[n, p] |
1473
|
|
|
) |
1474
|
|
|
self.total_storage_rule.add((n, p), expr) |
1475
|
|
|
|
1476
|
|
|
self.total_storage_rule = Constraint( |
1477
|
|
|
self.INVESTSTORAGES, m.PERIODS, noruleinit=True |
1478
|
|
|
) |
1479
|
|
|
|
1480
|
|
|
self.total_storage_rule_build = BuildAction( |
1481
|
|
|
rule=_total_storage_capacity_rule |
1482
|
|
|
) |
1483
|
|
|
|
1484
|
|
|
# multi-period storage implementation for time intervals |
1485
|
|
|
if m.es.periods is not None: |
1486
|
|
|
|
1487
|
|
|
def _old_storage_capacity_rule_end(block): |
1488
|
|
|
"""Rule definition for determining old endogenously installed |
1489
|
|
|
capacity to be decommissioned due to reaching its lifetime. |
1490
|
|
|
Investment and decommissioning periods are linked within |
1491
|
|
|
the constraint. The respective decommissioning period is |
1492
|
|
|
determined for every investment period based on the components |
1493
|
|
|
lifetime and a matrix describing its age of each endogenous |
1494
|
|
|
investment. Decommissioning can only occur at the beginning of |
1495
|
|
|
each period. |
1496
|
|
|
|
1497
|
|
|
Note |
1498
|
|
|
---- |
1499
|
|
|
For further information on the implementation check |
1500
|
|
|
PR#957 https://github.com/oemof/oemof-solph/pull/957 |
1501
|
|
|
""" |
1502
|
|
|
for n in self.INVESTSTORAGES: |
1503
|
|
|
lifetime = n.investment.lifetime |
1504
|
|
|
if lifetime is None: |
1505
|
|
|
msg = ( |
1506
|
|
|
"You have to specify a lifetime " |
1507
|
|
|
"for a Flow going into or out of " |
1508
|
|
|
"a GenericStorage unit " |
1509
|
|
|
"in a multi-period model!" |
1510
|
|
|
f" Value for {n} is missing." |
1511
|
|
|
) |
1512
|
|
|
raise ValueError(msg) |
1513
|
|
|
# get the period matrix describing the temporal distance |
1514
|
|
|
# between all period combinations. |
1515
|
|
|
periods_matrix = m.es.periods_matrix |
1516
|
|
|
|
1517
|
|
|
# get the index of the minimum value in each row greater |
1518
|
|
|
# equal than the lifetime. This value equals the |
1519
|
|
|
# decommissioning period if not zero. The index of this |
1520
|
|
|
# value represents the investment period. If np.where |
1521
|
|
|
# condition is not met in any row, min value will be zero |
1522
|
|
|
decomm_periods = np.argmin( |
1523
|
|
|
np.where( |
1524
|
|
|
(periods_matrix >= lifetime), |
1525
|
|
|
periods_matrix, |
1526
|
|
|
np.inf, |
1527
|
|
|
), |
1528
|
|
|
axis=1, |
1529
|
|
|
) |
1530
|
|
|
|
1531
|
|
|
# no decommissioning in first period |
1532
|
|
|
expr = self.old_end[n, 0] == 0 |
1533
|
|
|
self.old_rule_end.add((n, 0), expr) |
1534
|
|
|
|
1535
|
|
|
# all periods not in decomm_periods have no decommissioning |
1536
|
|
|
# zero is excluded |
1537
|
|
|
for p in m.PERIODS: |
1538
|
|
|
if p not in decomm_periods and p != 0: |
1539
|
|
|
expr = self.old_end[n, p] == 0 |
1540
|
|
|
self.old_rule_end.add((n, p), expr) |
1541
|
|
|
|
1542
|
|
|
# multiple invests can be decommissioned in the same period |
1543
|
|
|
# but only sequential ones, thus a bookkeeping is |
1544
|
|
|
# introduced andconstraints are added to equation one |
1545
|
|
|
# iteration later. |
1546
|
|
|
last_decomm_p = np.nan |
1547
|
|
|
# loop over invest periods (values are decomm_periods) |
1548
|
|
|
for invest_p, decomm_p in enumerate(decomm_periods): |
1549
|
|
|
# Add constraint of iteration before |
1550
|
|
|
# (skipped in first iteration by last_decomm_p = nan) |
1551
|
|
|
if (decomm_p != last_decomm_p) and ( |
1552
|
|
|
last_decomm_p is not np.nan |
1553
|
|
|
): |
1554
|
|
|
expr = self.old_end[n, last_decomm_p] == expr |
1555
|
|
|
self.old_rule_end.add((n, last_decomm_p), expr) |
1556
|
|
|
|
1557
|
|
|
# no decommissioning if decomm_p is zero |
1558
|
|
|
if decomm_p == 0: |
1559
|
|
|
# overwrite decomm_p with zero to avoid |
1560
|
|
|
# chaining invest periods in next iteration |
1561
|
|
|
last_decomm_p = 0 |
1562
|
|
|
|
1563
|
|
|
# if decomm_p is the same as the last one chain invest |
1564
|
|
|
# period |
1565
|
|
|
elif decomm_p == last_decomm_p: |
1566
|
|
|
expr += self.invest[n, invest_p] |
1567
|
|
|
# overwrite decomm_p |
1568
|
|
|
last_decomm_p = decomm_p |
1569
|
|
|
|
1570
|
|
|
# if decomm_p is not zero, not the same as the last one |
1571
|
|
|
# and it's not the first period |
1572
|
|
|
else: |
1573
|
|
|
expr = self.invest[n, invest_p] |
1574
|
|
|
# overwrite decomm_p |
1575
|
|
|
last_decomm_p = decomm_p |
1576
|
|
|
|
1577
|
|
|
# Add constraint of very last iteration |
1578
|
|
|
if last_decomm_p != 0: |
1579
|
|
|
expr = self.old_end[n, last_decomm_p] == expr |
1580
|
|
|
self.old_rule_end.add((n, last_decomm_p), expr) |
1581
|
|
|
|
1582
|
|
|
self.old_rule_end = Constraint( |
1583
|
|
|
self.INVESTSTORAGES, m.PERIODS, noruleinit=True |
1584
|
|
|
) |
1585
|
|
|
|
1586
|
|
|
self.old_rule_end_build = BuildAction( |
1587
|
|
|
rule=_old_storage_capacity_rule_end |
1588
|
|
|
) |
1589
|
|
|
|
1590
|
|
|
def _old_storage_capacity_rule_exo(block): |
1591
|
|
|
"""Rule definition for determining old exogenously given |
1592
|
|
|
capacity to be decommissioned due to reaching its lifetime |
1593
|
|
|
""" |
1594
|
|
|
for n in self.INVESTSTORAGES: |
1595
|
|
|
age = n.investment.age |
1596
|
|
|
lifetime = n.investment.lifetime |
1597
|
|
|
is_decommissioned = False |
1598
|
|
|
for p in m.PERIODS: |
1599
|
|
|
# No shutdown in first period |
1600
|
|
|
if p == 0: |
1601
|
|
|
expr = self.old_exo[n, p] == 0 |
1602
|
|
|
self.old_rule_exo.add((n, p), expr) |
1603
|
|
|
elif lifetime - age <= m.es.periods_years[p]: |
1604
|
|
|
# Track decommissioning status |
1605
|
|
|
if not is_decommissioned: |
1606
|
|
|
expr = ( |
1607
|
|
|
self.old_exo[n, p] == n.investment.existing |
1608
|
|
|
) |
1609
|
|
|
is_decommissioned = True |
1610
|
|
|
else: |
1611
|
|
|
expr = self.old_exo[n, p] == 0 |
1612
|
|
|
self.old_rule_exo.add((n, p), expr) |
1613
|
|
|
else: |
1614
|
|
|
expr = self.old_exo[n, p] == 0 |
1615
|
|
|
self.old_rule_exo.add((n, p), expr) |
1616
|
|
|
|
1617
|
|
|
self.old_rule_exo = Constraint( |
1618
|
|
|
self.INVESTSTORAGES, m.PERIODS, noruleinit=True |
1619
|
|
|
) |
1620
|
|
|
|
1621
|
|
|
self.old_rule_exo_build = BuildAction( |
1622
|
|
|
rule=_old_storage_capacity_rule_exo |
1623
|
|
|
) |
1624
|
|
|
|
1625
|
|
|
def _old_storage_capacity_rule(block): |
1626
|
|
|
"""Rule definition for determining (overall) old capacity |
1627
|
|
|
to be decommissioned due to reaching its lifetime |
1628
|
|
|
""" |
1629
|
|
|
for n in self.INVESTSTORAGES: |
1630
|
|
|
for p in m.PERIODS: |
1631
|
|
|
expr = ( |
1632
|
|
|
self.old[n, p] |
1633
|
|
|
== self.old_end[n, p] + self.old_exo[n, p] |
1634
|
|
|
) |
1635
|
|
|
self.old_rule.add((n, p), expr) |
1636
|
|
|
|
1637
|
|
|
self.old_rule = Constraint( |
1638
|
|
|
self.INVESTSTORAGES, m.PERIODS, noruleinit=True |
1639
|
|
|
) |
1640
|
|
|
|
1641
|
|
|
self.old_rule_build = BuildAction(rule=_old_storage_capacity_rule) |
1642
|
|
|
|
1643
|
|
|
def _initially_empty_rule(_): |
1644
|
|
|
"""Ensure storage to be empty initially""" |
1645
|
|
|
for n in self.INVESTSTORAGES: |
1646
|
|
|
expr = self.storage_content[n, 0] == 0 |
1647
|
|
|
self.initially_empty.add((n, 0), expr) |
1648
|
|
|
|
1649
|
|
|
if not m.TSAM_MODE: |
1650
|
|
|
# inter and intra initial storage contents are handled above |
1651
|
|
|
self.initially_empty = Constraint( |
1652
|
|
|
self.INVESTSTORAGES, m.TIMESTEPS, noruleinit=True |
1653
|
|
|
) |
1654
|
|
|
|
1655
|
|
|
self.initially_empty_build = BuildAction( |
1656
|
|
|
rule=_initially_empty_rule |
1657
|
|
|
) |
1658
|
|
|
|
1659
|
|
|
# Standard storage implementation for discrete time points |
1660
|
|
|
else: |
1661
|
|
|
|
1662
|
|
|
def _inv_storage_init_content_max_rule(block, n): |
1663
|
|
|
"""Constraint for a variable initial storage capacity.""" |
1664
|
|
|
if not m.TSAM_MODE: |
1665
|
|
|
lhs = block.storage_content[n, 0] |
1666
|
|
|
else: |
1667
|
|
|
lhs = block.intra_storage_delta[n, 0, 0, 0] |
1668
|
|
|
return lhs <= n.investment.existing + block.invest[n, 0] |
1669
|
|
|
|
1670
|
|
|
self.init_content_limit = Constraint( |
1671
|
|
|
self.INVESTSTORAGES_NO_INIT_CONTENT, |
1672
|
|
|
rule=_inv_storage_init_content_max_rule, |
1673
|
|
|
) |
1674
|
|
|
|
1675
|
|
|
def _inv_storage_init_content_fix_rule(block, n): |
1676
|
|
|
"""Constraint for a fixed initial storage capacity.""" |
1677
|
|
|
if not m.TSAM_MODE: |
1678
|
|
|
lhs = block.storage_content[n, 0] |
1679
|
|
|
else: |
1680
|
|
|
lhs = block.intra_storage_delta[n, 0, 0, 0] |
1681
|
|
|
return lhs == n.initial_storage_level * ( |
1682
|
|
|
n.investment.existing + block.invest[n, 0] |
1683
|
|
|
) |
1684
|
|
|
|
1685
|
|
|
self.init_content_fix = Constraint( |
1686
|
|
|
self.INVESTSTORAGES_INIT_CONTENT, |
1687
|
|
|
rule=_inv_storage_init_content_fix_rule, |
1688
|
|
|
) |
1689
|
|
|
|
1690
|
|
|
def _storage_balance_rule(block, n, p, t): |
1691
|
|
|
""" |
1692
|
|
|
Rule definition for the storage balance of every storage n and |
1693
|
|
|
every timestep. |
1694
|
|
|
""" |
1695
|
|
|
expr = 0 |
1696
|
|
|
expr += block.storage_content[n, t + 1] |
1697
|
|
|
expr += ( |
1698
|
|
|
-block.storage_content[n, t] |
1699
|
|
|
* (1 - n.loss_rate[t]) ** m.timeincrement[t] |
1700
|
|
|
) |
1701
|
|
|
expr += ( |
1702
|
|
|
n.fixed_losses_relative[t] |
1703
|
|
|
* self.total[n, p] |
1704
|
|
|
* m.timeincrement[t] |
1705
|
|
|
) |
1706
|
|
|
expr += n.fixed_losses_absolute[t] * m.timeincrement[t] |
1707
|
|
|
expr += ( |
1708
|
|
|
-m.flow[i[n], n, t] * n.inflow_conversion_factor[t] |
1709
|
|
|
) * m.timeincrement[t] |
1710
|
|
|
expr += ( |
1711
|
|
|
m.flow[n, o[n], t] / n.outflow_conversion_factor[t] |
1712
|
|
|
) * m.timeincrement[t] |
1713
|
|
|
return expr == 0 |
1714
|
|
|
|
1715
|
|
View Code Duplication |
def _intra_storage_balance_rule(block, n, p, k, g): |
|
|
|
|
1716
|
|
|
""" |
1717
|
|
|
Rule definition for the storage balance of every storage n and |
1718
|
|
|
every timestep. |
1719
|
|
|
""" |
1720
|
|
|
t = m.get_timestep_from_tsam_timestep(p, k, g) |
1721
|
|
|
expr = 0 |
1722
|
|
|
expr += block.intra_storage_delta[n, p, k, g + 1] |
1723
|
|
|
expr += ( |
1724
|
|
|
-block.intra_storage_delta[n, p, k, g] |
1725
|
|
|
* (1 - n.loss_rate[t]) ** m.timeincrement[t] |
1726
|
|
|
) |
1727
|
|
|
expr += ( |
1728
|
|
|
n.fixed_losses_relative[t] |
1729
|
|
|
* self.total[n, p] |
1730
|
|
|
* m.timeincrement[t] |
1731
|
|
|
) |
1732
|
|
|
expr += n.fixed_losses_absolute[t] * m.timeincrement[t] |
1733
|
|
|
expr += ( |
1734
|
|
|
-m.flow[i[n], n, t] * n.inflow_conversion_factor[t] |
1735
|
|
|
) * m.timeincrement[t] |
1736
|
|
|
expr += ( |
1737
|
|
|
m.flow[n, o[n], t] / n.outflow_conversion_factor[t] |
1738
|
|
|
) * m.timeincrement[t] |
1739
|
|
|
return expr == 0 |
1740
|
|
|
|
1741
|
|
|
if not m.TSAM_MODE: |
1742
|
|
|
self.balance = Constraint( |
1743
|
|
|
self.INVESTSTORAGES, |
1744
|
|
|
m.TIMEINDEX, |
1745
|
|
|
rule=_storage_balance_rule, |
1746
|
|
|
) |
1747
|
|
|
else: |
1748
|
|
|
self.intra_balance = Constraint( |
1749
|
|
|
self.INVESTSTORAGES, |
1750
|
|
|
m.TIMEINDEX_TYPICAL_CLUSTER, |
1751
|
|
|
rule=_intra_storage_balance_rule, |
1752
|
|
|
) |
1753
|
|
|
|
1754
|
|
|
def _inter_storage_balance_rule(block, n, i): |
1755
|
|
|
""" |
1756
|
|
|
Rule definition for the storage balance of every storage n and |
1757
|
|
|
every timestep. |
1758
|
|
|
""" |
1759
|
|
|
ii = 0 |
1760
|
|
|
for p in m.PERIODS: |
1761
|
|
|
ii += len(m.es.tsa_parameters[p]["order"]) |
1762
|
|
|
if ii > i: |
1763
|
|
|
ii -= len(m.es.tsa_parameters[p]["order"]) |
1764
|
|
|
ii = i - ii |
1765
|
|
|
break |
1766
|
|
|
|
1767
|
|
|
k = m.es.tsa_parameters[p]["order"][ii] |
|
|
|
|
1768
|
|
|
t = m.get_timestep_from_tsam_timestep( |
1769
|
|
|
p, k, m.es.tsa_parameters[p]["timesteps"] - 1 |
1770
|
|
|
) |
1771
|
|
|
expr = 0 |
1772
|
|
|
expr += block.inter_storage_content[n, i + 1] |
1773
|
|
|
expr += -block.inter_storage_content[n, i] * ( |
1774
|
|
|
1 - n.loss_rate[t] |
1775
|
|
|
) ** (m.timeincrement[t] * m.es.tsa_parameters[p]["timesteps"]) |
1776
|
|
|
expr += -self.intra_storage_delta[ |
1777
|
|
|
n, p, k, m.es.tsa_parameters[p]["timesteps"] |
1778
|
|
|
] |
1779
|
|
|
return expr == 0 |
1780
|
|
|
|
1781
|
|
|
if m.TSAM_MODE: |
1782
|
|
|
self.inter_balance = Constraint( |
1783
|
|
|
self.INVESTSTORAGES, |
1784
|
|
|
m.CLUSTERS, |
1785
|
|
|
rule=_inter_storage_balance_rule, |
1786
|
|
|
) |
1787
|
|
|
|
1788
|
|
|
if m.es.periods is None and not m.TSAM_MODE: |
1789
|
|
|
|
1790
|
|
|
def _balanced_storage_rule(block, n): |
1791
|
|
|
return ( |
1792
|
|
|
block.storage_content[n, m.TIMEPOINTS.at(-1)] |
1793
|
|
|
== block.storage_content[n, m.TIMEPOINTS.at(1)] |
1794
|
|
|
) |
1795
|
|
|
|
1796
|
|
|
self.balanced_cstr = Constraint( |
1797
|
|
|
self.INVESTSTORAGES_BALANCED, rule=_balanced_storage_rule |
1798
|
|
|
) |
1799
|
|
|
|
1800
|
|
|
def _power_coupled(block): |
1801
|
|
|
""" |
1802
|
|
|
Rule definition for constraint to connect the input power |
1803
|
|
|
and output power |
1804
|
|
|
""" |
1805
|
|
|
for n in self.INVEST_REL_IN_OUT: |
1806
|
|
|
for p in m.PERIODS: |
1807
|
|
|
expr = ( |
1808
|
|
|
m.InvestmentFlowBlock.total[n, o[n], p] |
1809
|
|
|
) * n.invest_relation_input_output[p] == ( |
1810
|
|
|
m.InvestmentFlowBlock.total[i[n], n, p] |
1811
|
|
|
) |
1812
|
|
|
self.power_coupled.add((n, p), expr) |
1813
|
|
|
|
1814
|
|
|
self.power_coupled = Constraint( |
1815
|
|
|
self.INVEST_REL_IN_OUT, m.PERIODS, noruleinit=True |
1816
|
|
|
) |
1817
|
|
|
|
1818
|
|
|
self.power_coupled_build = BuildAction(rule=_power_coupled) |
1819
|
|
|
|
1820
|
|
|
def _storage_capacity_inflow_invest_rule(block): |
1821
|
|
|
""" |
1822
|
|
|
Rule definition of constraint connecting the inflow |
1823
|
|
|
`InvestmentFlowBlock.invest of storage with invested capacity |
1824
|
|
|
`invest` by nominal_storage_capacity__inflow_ratio |
1825
|
|
|
""" |
1826
|
|
|
for n in self.INVEST_REL_CAP_IN: |
1827
|
|
|
for p in m.PERIODS: |
1828
|
|
|
expr = ( |
1829
|
|
|
m.InvestmentFlowBlock.total[i[n], n, p] |
1830
|
|
|
== self.total[n, p] |
1831
|
|
|
* n.invest_relation_input_capacity[p] |
1832
|
|
|
) |
1833
|
|
|
self.storage_capacity_inflow.add((n, p), expr) |
1834
|
|
|
|
1835
|
|
|
self.storage_capacity_inflow = Constraint( |
1836
|
|
|
self.INVEST_REL_CAP_IN, m.PERIODS, noruleinit=True |
1837
|
|
|
) |
1838
|
|
|
|
1839
|
|
|
self.storage_capacity_inflow_build = BuildAction( |
1840
|
|
|
rule=_storage_capacity_inflow_invest_rule |
1841
|
|
|
) |
1842
|
|
|
|
1843
|
|
|
def _storage_capacity_outflow_invest_rule(block): |
1844
|
|
|
""" |
1845
|
|
|
Rule definition of constraint connecting outflow |
1846
|
|
|
`InvestmentFlowBlock.invest` of storage and invested capacity |
1847
|
|
|
`invest` by nominal_storage_capacity__outflow_ratio |
1848
|
|
|
""" |
1849
|
|
|
for n in self.INVEST_REL_CAP_OUT: |
1850
|
|
|
for p in m.PERIODS: |
1851
|
|
|
expr = ( |
1852
|
|
|
m.InvestmentFlowBlock.total[n, o[n], p] |
1853
|
|
|
== self.total[n, p] |
1854
|
|
|
* n.invest_relation_output_capacity[p] |
1855
|
|
|
) |
1856
|
|
|
self.storage_capacity_outflow.add((n, p), expr) |
1857
|
|
|
|
1858
|
|
|
self.storage_capacity_outflow = Constraint( |
1859
|
|
|
self.INVEST_REL_CAP_OUT, m.PERIODS, noruleinit=True |
1860
|
|
|
) |
1861
|
|
|
|
1862
|
|
|
self.storage_capacity_outflow_build = BuildAction( |
1863
|
|
|
rule=_storage_capacity_outflow_invest_rule |
1864
|
|
|
) |
1865
|
|
|
|
1866
|
|
|
self._add_storage_limit_constraints() |
1867
|
|
|
|
1868
|
|
|
def maximum_invest_limit(block, n, p): |
1869
|
|
|
""" |
1870
|
|
|
Constraint for the maximal investment in non convex investment |
1871
|
|
|
storage. |
1872
|
|
|
""" |
1873
|
|
|
return ( |
1874
|
|
|
n.investment.maximum[p] * self.invest_status[n, p] |
1875
|
|
|
- self.invest[n, p] |
1876
|
|
|
) >= 0 |
1877
|
|
|
|
1878
|
|
|
self.limit_max = Constraint( |
1879
|
|
|
self.NON_CONVEX_INVESTSTORAGES, |
1880
|
|
|
m.PERIODS, |
1881
|
|
|
rule=maximum_invest_limit, |
1882
|
|
|
) |
1883
|
|
|
|
1884
|
|
|
def smallest_invest(block, n, p): |
1885
|
|
|
""" |
1886
|
|
|
Constraint for the minimal investment in non convex investment |
1887
|
|
|
storage if the invest is greater than 0. So the invest variable |
1888
|
|
|
can be either 0 or greater than the minimum. |
1889
|
|
|
""" |
1890
|
|
|
return ( |
1891
|
|
|
self.invest[n, p] |
1892
|
|
|
- n.investment.minimum[p] * self.invest_status[n, p] |
1893
|
|
|
>= 0 |
1894
|
|
|
) |
1895
|
|
|
|
1896
|
|
|
self.limit_min = Constraint( |
1897
|
|
|
self.NON_CONVEX_INVESTSTORAGES, m.PERIODS, rule=smallest_invest |
1898
|
|
|
) |
1899
|
|
|
|
1900
|
|
|
if m.es.periods is not None: |
1901
|
|
|
|
1902
|
|
|
def _overall_storage_maximum_investflow_rule(block): |
1903
|
|
|
"""Rule definition for maximum overall investment |
1904
|
|
|
in investment case. |
1905
|
|
|
""" |
1906
|
|
|
for n in self.OVERALL_MAXIMUM_INVESTSTORAGES: |
1907
|
|
|
for p in m.PERIODS: |
1908
|
|
|
expr = self.total[n, p] <= n.investment.overall_maximum |
1909
|
|
|
self.overall_storage_maximum.add((n, p), expr) |
1910
|
|
|
|
1911
|
|
|
self.overall_storage_maximum = Constraint( |
1912
|
|
|
self.OVERALL_MAXIMUM_INVESTSTORAGES, m.PERIODS, noruleinit=True |
1913
|
|
|
) |
1914
|
|
|
|
1915
|
|
|
self.overall_maximum_build = BuildAction( |
1916
|
|
|
rule=_overall_storage_maximum_investflow_rule |
1917
|
|
|
) |
1918
|
|
|
|
1919
|
|
|
def _overall_minimum_investflow_rule(block): |
1920
|
|
|
"""Rule definition for minimum overall investment |
1921
|
|
|
in investment case. |
1922
|
|
|
|
1923
|
|
|
Note: This is only applicable for the last period |
1924
|
|
|
""" |
1925
|
|
|
for n in self.OVERALL_MINIMUM_INVESTSTORAGES: |
1926
|
|
|
expr = ( |
1927
|
|
|
n.investment.overall_minimum |
1928
|
|
|
<= self.total[n, m.PERIODS[-1]] |
1929
|
|
|
) |
1930
|
|
|
self.overall_minimum.add(n, expr) |
1931
|
|
|
|
1932
|
|
|
self.overall_minimum = Constraint( |
1933
|
|
|
self.OVERALL_MINIMUM_INVESTSTORAGES, noruleinit=True |
1934
|
|
|
) |
1935
|
|
|
|
1936
|
|
|
self.overall_minimum_build = BuildAction( |
1937
|
|
|
rule=_overall_minimum_investflow_rule |
1938
|
|
|
) |
1939
|
|
|
|
1940
|
|
|
def _add_storage_limit_constraints(self): |
1941
|
|
|
m = self.parent_block() |
1942
|
|
|
if not m.TSAM_MODE: |
1943
|
|
|
if m.es.periods is None: |
1944
|
|
|
|
1945
|
|
|
def _max_storage_content_invest_rule(_, n, t): |
1946
|
|
|
""" |
1947
|
|
|
Rule definition for upper bound constraint for the |
1948
|
|
|
storage content. |
1949
|
|
|
""" |
1950
|
|
|
expr = ( |
1951
|
|
|
self.storage_content[n, t] |
1952
|
|
|
<= self.total[n, 0] * n.max_storage_level[t] |
1953
|
|
|
) |
1954
|
|
|
return expr |
1955
|
|
|
|
1956
|
|
|
self.max_storage_content = Constraint( |
1957
|
|
|
self.INVESTSTORAGES, |
1958
|
|
|
m.TIMEPOINTS, |
1959
|
|
|
rule=_max_storage_content_invest_rule, |
1960
|
|
|
) |
1961
|
|
|
|
1962
|
|
|
def _min_storage_content_invest_rule(_, n, t): |
1963
|
|
|
""" |
1964
|
|
|
Rule definition of lower bound constraint for the |
1965
|
|
|
storage content. |
1966
|
|
|
""" |
1967
|
|
|
expr = ( |
1968
|
|
|
self.storage_content[n, t] |
1969
|
|
|
>= self.total[n, 0] * n.min_storage_level[t] |
1970
|
|
|
) |
1971
|
|
|
return expr |
1972
|
|
|
|
1973
|
|
|
self.min_storage_content = Constraint( |
1974
|
|
|
self.MIN_INVESTSTORAGES, |
1975
|
|
|
m.TIMEPOINTS, |
1976
|
|
|
rule=_min_storage_content_invest_rule, |
1977
|
|
|
) |
1978
|
|
|
else: |
1979
|
|
|
|
1980
|
|
|
def _max_storage_content_invest_rule(_, n, p, t): |
1981
|
|
|
""" |
1982
|
|
|
Rule definition for upper bound constraint for the |
1983
|
|
|
storage content. |
1984
|
|
|
""" |
1985
|
|
|
expr = ( |
1986
|
|
|
self.storage_content[n, t] |
1987
|
|
|
<= self.total[n, p] * n.max_storage_level[t] |
1988
|
|
|
) |
1989
|
|
|
return expr |
1990
|
|
|
|
1991
|
|
|
self.max_storage_content = Constraint( |
1992
|
|
|
self.INVESTSTORAGES, |
1993
|
|
|
m.TIMEINDEX, |
1994
|
|
|
rule=_max_storage_content_invest_rule, |
1995
|
|
|
) |
1996
|
|
|
|
1997
|
|
|
def _min_storage_content_invest_rule(_, n, p, t): |
1998
|
|
|
""" |
1999
|
|
|
Rule definition of lower bound constraint for the |
2000
|
|
|
storage content. |
2001
|
|
|
""" |
2002
|
|
|
expr = ( |
2003
|
|
|
self.storage_content[n, t] |
2004
|
|
|
>= self.total[n, p] * n.min_storage_level[t] |
2005
|
|
|
) |
2006
|
|
|
return expr |
2007
|
|
|
|
2008
|
|
|
self.min_storage_content = Constraint( |
2009
|
|
|
self.MIN_INVESTSTORAGES, |
2010
|
|
|
m.TIMEINDEX, |
2011
|
|
|
rule=_min_storage_content_invest_rule, |
2012
|
|
|
) |
2013
|
|
|
else: |
2014
|
|
|
|
2015
|
|
View Code Duplication |
def _storage_inter_maximum_level_rule(block): |
|
|
|
|
2016
|
|
|
for n in self.INVESTSTORAGES: |
2017
|
|
|
for p, i, g in m.TIMEINDEX_CLUSTER: |
2018
|
|
|
t = m.get_timestep_from_tsam_timestep(p, i, g) |
2019
|
|
|
k = m.es.tsa_parameters[p]["order"][i] |
2020
|
|
|
tk = m.get_timestep_from_tsam_timestep(p, k, g) |
2021
|
|
|
inter_i = ( |
2022
|
|
|
sum( |
2023
|
|
|
len(m.es.tsa_parameters[ip]["order"]) |
2024
|
|
|
for ip in range(p) |
2025
|
|
|
) |
2026
|
|
|
+ i |
2027
|
|
|
) |
2028
|
|
|
lhs = ( |
2029
|
|
|
self.inter_storage_content[n, inter_i] |
2030
|
|
|
* (1 - n.loss_rate[t]) ** (g * m.timeincrement[tk]) |
2031
|
|
|
+ self.intra_storage_delta[n, p, k, g] |
2032
|
|
|
) |
2033
|
|
|
rhs = self.total[n, p] * n.max_storage_level[t] |
2034
|
|
|
self.storage_inter_maximum_level.add( |
2035
|
|
|
(n, p, i, g), lhs <= rhs |
2036
|
|
|
) |
2037
|
|
|
|
2038
|
|
|
self.storage_inter_maximum_level = Constraint( |
2039
|
|
|
self.INVESTSTORAGES, m.TIMEINDEX_CLUSTER, noruleinit=True |
2040
|
|
|
) |
2041
|
|
|
|
2042
|
|
|
self.storage_inter_maximum_level_build = BuildAction( |
2043
|
|
|
rule=_storage_inter_maximum_level_rule |
2044
|
|
|
) |
2045
|
|
|
|
2046
|
|
View Code Duplication |
def _storage_inter_minimum_level_rule(block): |
|
|
|
|
2047
|
|
|
# See FINE implementation at |
2048
|
|
|
# https://github.com/FZJ-IEK3-VSA/FINE/blob/ |
2049
|
|
|
# 57ec32561fb95e746c505760bd0d61c97d2fd2fb/FINE/storage.py#L1329 |
2050
|
|
|
for n in self.INVESTSTORAGES: |
2051
|
|
|
for p, i, g in m.TIMEINDEX_CLUSTER: |
2052
|
|
|
t = m.get_timestep_from_tsam_timestep(p, i, g) |
2053
|
|
|
lhs = self.total[n, p] * n.min_storage_level[t] |
2054
|
|
|
k = m.es.tsa_parameters[p]["order"][i] |
2055
|
|
|
tk = m.get_timestep_from_tsam_timestep(p, k, g) |
2056
|
|
|
inter_i = ( |
2057
|
|
|
sum( |
2058
|
|
|
len(m.es.tsa_parameters[ip]["order"]) |
2059
|
|
|
for ip in range(p) |
2060
|
|
|
) |
2061
|
|
|
+ i |
2062
|
|
|
) |
2063
|
|
|
rhs = ( |
2064
|
|
|
self.inter_storage_content[n, inter_i] |
2065
|
|
|
* (1 - n.loss_rate[t]) ** (g * m.timeincrement[tk]) |
2066
|
|
|
+ self.intra_storage_delta[n, p, k, g] |
2067
|
|
|
) |
2068
|
|
|
self.storage_inter_minimum_level.add( |
2069
|
|
|
(n, p, i, g), lhs <= rhs |
2070
|
|
|
) |
2071
|
|
|
|
2072
|
|
|
self.storage_inter_minimum_level = Constraint( |
2073
|
|
|
self.INVESTSTORAGES, m.TIMEINDEX_CLUSTER, noruleinit=True |
2074
|
|
|
) |
2075
|
|
|
|
2076
|
|
|
self.storage_inter_minimum_level_build = BuildAction( |
2077
|
|
|
rule=_storage_inter_minimum_level_rule |
2078
|
|
|
) |
2079
|
|
|
|
2080
|
|
|
def _objective_expression(self): |
2081
|
|
|
"""Objective expression with fixed and investment costs.""" |
2082
|
|
|
m = self.parent_block() |
2083
|
|
|
|
2084
|
|
|
investment_costs = 0 |
2085
|
|
|
storage_costs = 0 |
2086
|
|
|
period_investment_costs = {p: 0 for p in m.PERIODS} |
2087
|
|
|
fixed_costs = 0 |
2088
|
|
|
|
2089
|
|
|
if m.es.periods is None: |
2090
|
|
|
for n in self.CONVEX_INVESTSTORAGES: |
2091
|
|
|
for p in m.PERIODS: |
2092
|
|
|
investment_costs += ( |
2093
|
|
|
self.invest[n, p] * n.investment.ep_costs[p] |
2094
|
|
|
) |
2095
|
|
|
for n in self.NON_CONVEX_INVESTSTORAGES: |
2096
|
|
|
for p in m.PERIODS: |
2097
|
|
|
investment_costs += ( |
2098
|
|
|
self.invest[n, p] * n.investment.ep_costs[p] |
2099
|
|
|
+ self.invest_status[n, p] * n.investment.offset[p] |
2100
|
|
|
) |
2101
|
|
|
|
2102
|
|
|
else: |
2103
|
|
|
msg = ( |
2104
|
|
|
"You did not specify an interest rate.\n" |
2105
|
|
|
"It will be set equal to the discount_rate of {} " |
2106
|
|
|
"of the model as a default.\nThis corresponds to a " |
2107
|
|
|
"social planner point of view and does not reflect " |
2108
|
|
|
"microeconomic interest requirements." |
2109
|
|
|
) |
2110
|
|
|
for n in self.CONVEX_INVESTSTORAGES: |
2111
|
|
|
lifetime = n.investment.lifetime |
2112
|
|
|
interest = 0 |
2113
|
|
|
if interest == 0: |
2114
|
|
|
warn( |
2115
|
|
|
msg.format(m.discount_rate), |
2116
|
|
|
debugging.SuspiciousUsageWarning, |
2117
|
|
|
) |
2118
|
|
|
interest = m.discount_rate |
2119
|
|
|
for p in m.PERIODS: |
2120
|
|
|
annuity = economics.annuity( |
2121
|
|
|
capex=n.investment.ep_costs[p], |
2122
|
|
|
n=lifetime, |
2123
|
|
|
wacc=interest, |
2124
|
|
|
) |
2125
|
|
|
duration = min( |
2126
|
|
|
m.es.end_year_of_optimization - m.es.periods_years[p], |
2127
|
|
|
lifetime, |
2128
|
|
|
) |
2129
|
|
|
present_value_factor = 1 / economics.annuity( |
2130
|
|
|
capex=1, n=duration, wacc=interest |
2131
|
|
|
) |
2132
|
|
|
investment_costs_increment = ( |
2133
|
|
|
self.invest[n, p] * annuity * present_value_factor |
2134
|
|
|
) |
2135
|
|
|
remaining_value_difference = ( |
2136
|
|
|
self._evaluate_remaining_value_difference( |
2137
|
|
|
m, |
2138
|
|
|
p, |
2139
|
|
|
n, |
2140
|
|
|
m.es.end_year_of_optimization, |
2141
|
|
|
lifetime, |
2142
|
|
|
interest, |
2143
|
|
|
) |
2144
|
|
|
) |
2145
|
|
|
investment_costs += ( |
2146
|
|
|
investment_costs_increment + remaining_value_difference |
2147
|
|
|
) |
2148
|
|
|
period_investment_costs[p] += investment_costs_increment |
2149
|
|
|
|
2150
|
|
|
for n in self.NON_CONVEX_INVESTSTORAGES: |
2151
|
|
|
lifetime = n.investment.lifetime |
2152
|
|
|
interest = 0 |
2153
|
|
|
if interest == 0: |
2154
|
|
|
warn( |
2155
|
|
|
msg.format(m.discount_rate), |
2156
|
|
|
debugging.SuspiciousUsageWarning, |
2157
|
|
|
) |
2158
|
|
|
interest = m.discount_rate |
2159
|
|
|
for p in m.PERIODS: |
2160
|
|
|
annuity = economics.annuity( |
2161
|
|
|
capex=n.investment.ep_costs[p], |
2162
|
|
|
n=lifetime, |
2163
|
|
|
wacc=interest, |
2164
|
|
|
) |
2165
|
|
|
duration = min( |
2166
|
|
|
m.es.end_year_of_optimization - m.es.periods_years[p], |
2167
|
|
|
lifetime, |
2168
|
|
|
) |
2169
|
|
|
present_value_factor = 1 / economics.annuity( |
2170
|
|
|
capex=1, n=duration, wacc=interest |
2171
|
|
|
) |
2172
|
|
|
investment_costs_increment = ( |
2173
|
|
|
self.invest[n, p] * annuity * present_value_factor |
2174
|
|
|
+ self.invest_status[n, p] * n.investment.offset[p] |
2175
|
|
|
) |
2176
|
|
|
remaining_value_difference = ( |
2177
|
|
|
self._evaluate_remaining_value_difference( |
2178
|
|
|
m, |
2179
|
|
|
p, |
2180
|
|
|
n, |
2181
|
|
|
m.es.end_year_of_optimization, |
2182
|
|
|
lifetime, |
2183
|
|
|
interest, |
2184
|
|
|
nonconvex=True, |
2185
|
|
|
) |
2186
|
|
|
) |
2187
|
|
|
investment_costs += ( |
2188
|
|
|
investment_costs_increment + remaining_value_difference |
2189
|
|
|
) |
2190
|
|
|
period_investment_costs[p] += investment_costs_increment |
2191
|
|
|
|
2192
|
|
|
for n in self.INVESTSTORAGES: |
2193
|
|
|
if valid_sequence(n.investment.fixed_costs, len(m.PERIODS)): |
2194
|
|
|
lifetime = n.investment.lifetime |
2195
|
|
|
for p in m.PERIODS: |
2196
|
|
|
range_limit = min( |
2197
|
|
|
m.es.end_year_of_optimization, |
2198
|
|
|
m.es.periods_years[p] + lifetime, |
2199
|
|
|
) |
2200
|
|
|
fixed_costs += sum( |
2201
|
|
|
self.invest[n, p] * n.investment.fixed_costs[pp] |
2202
|
|
|
for pp in range( |
2203
|
|
|
m.es.periods_years[p], |
2204
|
|
|
range_limit, |
2205
|
|
|
) |
2206
|
|
|
) |
2207
|
|
|
|
2208
|
|
|
for n in self.EXISTING_INVESTSTORAGES: |
2209
|
|
|
if valid_sequence(n.investment.fixed_costs, len(m.PERIODS)): |
2210
|
|
|
lifetime = n.investment.lifetime |
2211
|
|
|
age = n.investment.age |
2212
|
|
|
range_limit = min( |
2213
|
|
|
m.es.end_year_of_optimization, lifetime - age |
2214
|
|
|
) |
2215
|
|
|
fixed_costs += sum( |
2216
|
|
|
n.investment.existing * n.investment.fixed_costs[pp] |
2217
|
|
|
for pp in range(range_limit) |
2218
|
|
|
) |
2219
|
|
|
|
2220
|
|
|
for n in self.INVESTSTORAGES: |
2221
|
|
View Code Duplication |
if valid_sequence(n.storage_costs, len(m.TIMESTEPS)): |
|
|
|
|
2222
|
|
|
# We actually want to iterate over all TIMEPOINTS except the |
2223
|
|
|
# 0th. As integers are used for the index, this is equicalent |
2224
|
|
|
# to iterating over the TIMESTEPS with one offset. |
2225
|
|
|
if not m.TSAM_MODE: |
2226
|
|
|
for t in m.TIMESTEPS: |
2227
|
|
|
storage_costs += ( |
2228
|
|
|
self.storage_content[n, t + 1] * n.storage_costs[t] |
2229
|
|
|
) |
2230
|
|
|
else: |
2231
|
|
|
for t in m.TIMESTEPS_ORIGINAL: |
2232
|
|
|
storage_costs += ( |
2233
|
|
|
self.storage_content[n, t + 1] |
2234
|
|
|
* n.storage_costs[t + 1] |
2235
|
|
|
) |
2236
|
|
|
|
2237
|
|
|
self.storage_costs = Expression(expr=storage_costs) |
2238
|
|
|
|
2239
|
|
|
self.investment_costs = Expression(expr=investment_costs) |
2240
|
|
|
self.period_investment_costs = period_investment_costs |
2241
|
|
|
self.fixed_costs = Expression(expr=fixed_costs) |
2242
|
|
|
self.costs = Expression( |
2243
|
|
|
expr=investment_costs + fixed_costs + storage_costs |
2244
|
|
|
) |
2245
|
|
|
|
2246
|
|
|
return self.costs |
2247
|
|
|
|
2248
|
|
|
def _evaluate_remaining_value_difference( |
2249
|
|
|
self, |
2250
|
|
|
m, |
2251
|
|
|
p, |
2252
|
|
|
n, |
2253
|
|
|
end_year_of_optimization, |
2254
|
|
|
lifetime, |
2255
|
|
|
interest, |
2256
|
|
|
nonconvex=False, |
2257
|
|
|
): |
2258
|
|
|
"""Evaluate and return the remaining value difference of an investment |
2259
|
|
|
|
2260
|
|
|
The remaining value difference in the net present values if the asset |
2261
|
|
|
was to be liquidated at the end of the optimization horizon and the |
2262
|
|
|
net present value using the original investment expenses. |
2263
|
|
|
|
2264
|
|
|
Parameters |
2265
|
|
|
---------- |
2266
|
|
|
m : oemof.solph.models.Model |
2267
|
|
|
Optimization model |
2268
|
|
|
|
2269
|
|
|
p : int |
2270
|
|
|
Period in which investment occurs |
2271
|
|
|
|
2272
|
|
|
n : oemof.solph.components.GenericStorage |
2273
|
|
|
storage unit |
2274
|
|
|
|
2275
|
|
|
end_year_of_optimization : int |
2276
|
|
|
Last year of the optimization horizon |
2277
|
|
|
|
2278
|
|
|
lifetime : int |
2279
|
|
|
lifetime of investment considered |
2280
|
|
|
|
2281
|
|
|
interest : float |
2282
|
|
|
Demanded interest rate for investment |
2283
|
|
|
|
2284
|
|
|
nonconvex : bool |
2285
|
|
|
Indicating whether considered flow is nonconvex. |
2286
|
|
|
""" |
2287
|
|
|
if m.es.use_remaining_value: |
2288
|
|
|
if end_year_of_optimization - m.es.periods_years[p] < lifetime: |
2289
|
|
|
remaining_lifetime = lifetime - ( |
2290
|
|
|
end_year_of_optimization - m.es.periods_years[p] |
2291
|
|
|
) |
2292
|
|
|
remaining_annuity = economics.annuity( |
2293
|
|
|
capex=n.investment.ep_costs[-1], |
2294
|
|
|
n=remaining_lifetime, |
2295
|
|
|
wacc=interest, |
2296
|
|
|
) |
2297
|
|
|
original_annuity = economics.annuity( |
2298
|
|
|
capex=n.investment.ep_costs[p], |
2299
|
|
|
n=remaining_lifetime, |
2300
|
|
|
wacc=interest, |
2301
|
|
|
) |
2302
|
|
|
present_value_factor_remaining = 1 / economics.annuity( |
2303
|
|
|
capex=1, n=remaining_lifetime, wacc=interest |
2304
|
|
|
) |
2305
|
|
|
convex_investment_costs = ( |
2306
|
|
|
self.invest[n, p] |
2307
|
|
|
* (remaining_annuity - original_annuity) |
2308
|
|
|
* present_value_factor_remaining |
2309
|
|
|
) |
2310
|
|
|
if nonconvex: |
2311
|
|
|
return convex_investment_costs + self.invest_status[ |
2312
|
|
|
n, p |
2313
|
|
|
] * (n.investment.offset[-1] - n.investment.offset[p]) |
2314
|
|
|
else: |
2315
|
|
|
return convex_investment_costs |
2316
|
|
|
else: |
2317
|
|
|
return 0 |
2318
|
|
|
else: |
2319
|
|
|
return 0 |
2320
|
|
|
|