1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
|
3
|
|
|
"""Solph Optimization Models. |
4
|
|
|
|
5
|
|
|
SPDX-FileCopyrightText: Uwe Krien <[email protected]> |
6
|
|
|
SPDX-FileCopyrightText: Simon Hilpert |
7
|
|
|
SPDX-FileCopyrightText: Cord Kaldemeyer |
8
|
|
|
SPDX-FileCopyrightText: gplssm |
9
|
|
|
SPDX-FileCopyrightText: Patrik Schönfeldt |
10
|
|
|
SPDX-FileCopyrightText: Saeed Sayadi |
11
|
|
|
SPDX-FileCopyrightText: Johannes Kochems |
12
|
|
|
SPDX-FileCopyrightText: Lennart Schürmann |
13
|
|
|
|
14
|
|
|
SPDX-License-Identifier: MIT |
15
|
|
|
|
16
|
|
|
""" |
17
|
|
|
import logging |
18
|
|
|
import warnings |
19
|
|
|
from logging import getLogger |
20
|
|
|
|
21
|
|
|
from oemof.tools import debugging |
22
|
|
|
from pyomo import environ as po |
23
|
|
|
from pyomo.core.plugins.transform.relax_integrality import RelaxIntegrality |
24
|
|
|
from pyomo.opt import SolverFactory |
25
|
|
|
|
26
|
|
|
from oemof.solph import processing |
27
|
|
|
from oemof.solph.buses._bus import BusBlock |
28
|
|
|
from oemof.solph.components._converter import ConverterBlock |
29
|
|
|
from oemof.solph.flows._invest_non_convex_flow_block import ( |
30
|
|
|
InvestNonConvexFlowBlock, |
31
|
|
|
) |
32
|
|
|
from oemof.solph.flows._investment_flow_block import InvestmentFlowBlock |
33
|
|
|
from oemof.solph.flows._non_convex_flow_block import NonConvexFlowBlock |
34
|
|
|
from oemof.solph.flows._simple_flow_block import SimpleFlowBlock |
35
|
|
|
|
36
|
|
|
|
37
|
|
|
class LoggingError(BaseException): |
38
|
|
|
"""Raised when the wrong logging level is used.""" |
39
|
|
|
|
40
|
|
|
pass |
41
|
|
|
|
42
|
|
|
|
43
|
|
|
class Model(po.ConcreteModel): |
44
|
|
|
"""An energy system model for operational and/or investment |
45
|
|
|
optimization. |
46
|
|
|
|
47
|
|
|
Parameters |
48
|
|
|
---------- |
49
|
|
|
energysystem : EnergySystem object |
50
|
|
|
Object that holds the nodes of an oemof energy system graph. |
51
|
|
|
constraint_groups : list |
52
|
|
|
Solph looks for these groups in the given energy system and uses them |
53
|
|
|
to create the constraints of the optimization problem. |
54
|
|
|
Defaults to `Model.CONSTRAINT_GROUPS` |
55
|
|
|
objective_weighting : array like (optional) |
56
|
|
|
Weights used for temporal objective function |
57
|
|
|
expressions. If nothing is passed, `timeincrement` will be used which |
58
|
|
|
is calculated from the freq length of the energy system timeindex or |
59
|
|
|
can be directly passed as a sequence. |
60
|
|
|
auto_construct : boolean |
61
|
|
|
If this value is true, the set, variables, constraints, etc. are added, |
62
|
|
|
automatically when instantiating the model. For sequential model |
63
|
|
|
building process set this value to False |
64
|
|
|
and use methods `_add_parent_block_sets`, |
65
|
|
|
`_add_parent_block_variables`, `_add_blocks`, `_add_objective` |
66
|
|
|
|
67
|
|
|
Attributes |
68
|
|
|
---------- |
69
|
|
|
timeincrement : sequence |
70
|
|
|
Time increments |
71
|
|
|
flows : dict |
72
|
|
|
Flows of the model |
73
|
|
|
name : str |
74
|
|
|
Name of the model |
75
|
|
|
es : solph.EnergySystem |
76
|
|
|
Energy system of the model |
77
|
|
|
meta : `pyomo.opt.results.results_.SolverResults` or None |
78
|
|
|
Solver results |
79
|
|
|
dual : `pyomo.core.base.suffix.Suffix` or None |
80
|
|
|
Store the dual variables of the model if pyomo suffix is set to IMPORT |
81
|
|
|
rc : `pyomo.core.base.suffix.Suffix` or None |
82
|
|
|
Store the reduced costs of the model if pyomo suffix is set to IMPORT |
83
|
|
|
|
84
|
|
|
|
85
|
|
|
**The following basic sets are created**: |
86
|
|
|
|
87
|
|
|
NODES |
88
|
|
|
A set with all nodes of the given energy system. |
89
|
|
|
|
90
|
|
|
TIMESTEPS |
91
|
|
|
A set with all timesteps of the given time horizon. |
92
|
|
|
|
93
|
|
|
PERIODS |
94
|
|
|
A set with all investment periods of the given time horizon. |
95
|
|
|
|
96
|
|
|
TIMEINDEX |
97
|
|
|
A set with all time indices of the given time horizon, whereby |
98
|
|
|
time indices are defined as a tuple consisting of the period and the |
99
|
|
|
timestep. E.g. (2, 10) would be timestep 10 (which is exactly the same |
100
|
|
|
as in the TIMESTEPS set) and which is in period 2. |
101
|
|
|
|
102
|
|
|
FLOWS |
103
|
|
|
A 2 dimensional set with all flows. Index: `(source, target)` |
104
|
|
|
|
105
|
|
|
**The following basic variables are created**: |
106
|
|
|
|
107
|
|
|
flow |
108
|
|
|
Flow from source to target indexed by FLOWS, TIMEINDEX. |
109
|
|
|
Note: Bounds of this variable are set depending on attributes of |
110
|
|
|
the corresponding flow object. |
111
|
|
|
|
112
|
|
|
""" |
113
|
|
|
|
114
|
|
|
CONSTRAINT_GROUPS = [ |
115
|
|
|
BusBlock, |
116
|
|
|
ConverterBlock, |
117
|
|
|
InvestmentFlowBlock, |
118
|
|
|
SimpleFlowBlock, |
119
|
|
|
NonConvexFlowBlock, |
120
|
|
|
InvestNonConvexFlowBlock, |
121
|
|
|
] |
122
|
|
|
|
123
|
|
|
def __init__(self, energysystem, **kwargs): |
124
|
|
|
super().__init__() |
125
|
|
|
|
126
|
|
|
# Check root logger. Due to a problem with pyomo the building of the |
127
|
|
|
# model will take up to a 100 times longer if the root logger is set |
128
|
|
|
# to DEBUG |
129
|
|
|
|
130
|
|
|
if getLogger().level <= 10 and kwargs.get("debug", False) is False: |
131
|
|
|
msg = ( |
132
|
|
|
"The root logger level is 'DEBUG'.\nDue to a communication " |
133
|
|
|
"problem between solph and the pyomo package,\nusing the " |
134
|
|
|
"DEBUG level will slow down the modelling process by the " |
135
|
|
|
"factor ~100.\nIf you need the debug-logging you can " |
136
|
|
|
"initialise the Model with 'debug=True`\nYou should only do " |
137
|
|
|
"this for small models. To avoid the slow-down use the " |
138
|
|
|
"logger\nfunction of oemof.tools (read docstring) or " |
139
|
|
|
"change the level of the root logger:\n\nimport logging\n" |
140
|
|
|
"logging.getLogger().setLevel(logging.INFO)" |
141
|
|
|
) |
142
|
|
|
raise LoggingError(msg) |
143
|
|
|
|
144
|
|
|
# ######################## Arguments ################################# |
145
|
|
|
|
146
|
|
|
self.name = kwargs.get("name", type(self).__name__) |
147
|
|
|
|
148
|
|
|
self.es = energysystem |
149
|
|
|
|
150
|
|
|
if kwargs.get("timeincrement"): |
151
|
|
|
msg = "Resetting timeincrement from EnergySystem in Model." |
152
|
|
|
warnings.warn(msg, debugging.SuspiciousUsageWarning) |
153
|
|
|
|
154
|
|
|
self.timeincrement = kwargs.get("timeincrement") |
155
|
|
|
else: |
156
|
|
|
self.timeincrement = self.es.timeincrement |
157
|
|
|
|
158
|
|
|
self.objective_weighting = kwargs.get( |
159
|
|
|
"objective_weighting", self.timeincrement |
160
|
|
|
) |
161
|
|
|
|
162
|
|
|
self._constraint_groups = type(self).CONSTRAINT_GROUPS + kwargs.get( |
163
|
|
|
"constraint_groups", [] |
164
|
|
|
) |
165
|
|
|
|
166
|
|
|
self._constraint_groups += [ |
167
|
|
|
i |
168
|
|
|
for i in self.es.groups |
169
|
|
|
if hasattr(i, "CONSTRAINT_GROUP") |
170
|
|
|
and i not in self._constraint_groups |
171
|
|
|
] |
172
|
|
|
|
173
|
|
|
self.flows = self.es.flows() |
174
|
|
|
|
175
|
|
|
self.solver_results = None |
176
|
|
|
self.dual = None |
177
|
|
|
self.rc = None |
178
|
|
|
|
179
|
|
|
if energysystem.periods is not None: |
180
|
|
|
self._set_discount_rate_with_warning() |
181
|
|
|
else: |
182
|
|
|
pass |
183
|
|
|
|
184
|
|
|
if kwargs.get("auto_construct", True): |
185
|
|
|
self._construct() |
186
|
|
|
|
187
|
|
|
def _construct(self): |
188
|
|
|
"""Construct a Model by adding parent block sets and variables |
189
|
|
|
as well as child blocks and variables to it. |
190
|
|
|
""" |
191
|
|
|
self._add_parent_block_sets() |
192
|
|
|
self._add_parent_block_variables() |
193
|
|
|
self._add_child_blocks() |
194
|
|
|
self._add_objective() |
195
|
|
|
|
196
|
|
|
def _set_discount_rate_with_warning(self): |
197
|
|
|
""" |
198
|
|
|
Sets the discount rate to the standard value and raises a warning. |
199
|
|
|
""" |
200
|
|
|
self.discount_rate = 0.02 |
201
|
|
|
msg = ( |
202
|
|
|
f"By default, a discount_rate of {self.discount_rate} " |
203
|
|
|
f"is used for a multi-period model. " |
204
|
|
|
f"If you want to use another value, " |
205
|
|
|
f"you have to specify the `discount_rate` attribute." |
206
|
|
|
) |
207
|
|
|
warnings.warn(msg, debugging.SuspiciousUsageWarning) |
208
|
|
|
|
209
|
|
|
def _add_parent_block_sets(self): |
210
|
|
|
"""Add all basic sets to the model, i.e. NODES, TIMESTEPS and FLOWS. |
211
|
|
|
Also create sets PERIODS and TIMEINDEX used for multi-period models. |
212
|
|
|
""" |
213
|
|
|
self.nodes = list(self.es.nodes) |
214
|
|
|
|
215
|
|
|
# create set with all nodes |
216
|
|
|
self.NODES = po.Set(initialize=[n for n in self.nodes]) |
217
|
|
|
|
218
|
|
|
if self.es.timeincrement is None: |
219
|
|
|
msg = ( |
220
|
|
|
"The EnergySystem needs to have a valid 'timeincrement' " |
221
|
|
|
"attribute to build a model." |
222
|
|
|
) |
223
|
|
|
raise AttributeError(msg) |
224
|
|
|
|
225
|
|
|
# pyomo set for timesteps of optimization problem |
226
|
|
|
self.TIMESTEPS = po.Set( |
227
|
|
|
initialize=range(len(self.es.timeincrement)), ordered=True |
228
|
|
|
) |
229
|
|
|
self.TIMEPOINTS = po.Set( |
230
|
|
|
initialize=range(len(self.es.timeincrement) + 1), ordered=True |
231
|
|
|
) |
232
|
|
|
|
233
|
|
|
if self.es.periods is None: |
234
|
|
|
self.TIMEINDEX = po.Set( |
235
|
|
|
initialize=list( |
236
|
|
|
zip( |
237
|
|
|
[0] * len(self.es.timeincrement), |
238
|
|
|
range(len(self.es.timeincrement)), |
239
|
|
|
) |
240
|
|
|
), |
241
|
|
|
ordered=True, |
242
|
|
|
) |
243
|
|
|
self.PERIODS = po.Set(initialize=[0]) |
244
|
|
|
else: |
245
|
|
|
nested_list = [ |
246
|
|
|
[k] * len(self.es.periods[k]) |
247
|
|
|
for k in range(len(self.es.periods)) |
248
|
|
|
] |
249
|
|
|
flattened_list = [ |
250
|
|
|
item for sublist in nested_list for item in sublist |
251
|
|
|
] |
252
|
|
|
self.TIMEINDEX = po.Set( |
253
|
|
|
initialize=list( |
254
|
|
|
zip(flattened_list, range(len(self.es.timeincrement))) |
255
|
|
|
), |
256
|
|
|
ordered=True, |
257
|
|
|
) |
258
|
|
|
self.PERIODS = po.Set( |
259
|
|
|
initialize=sorted(list(set(range(len(self.es.periods))))) |
260
|
|
|
) |
261
|
|
|
|
262
|
|
|
# (Re-)Map timesteps to periods |
263
|
|
|
timesteps_in_period = {p: [] for p in self.PERIODS} |
264
|
|
|
for p, t in self.TIMEINDEX: |
265
|
|
|
timesteps_in_period[p].append(t) |
266
|
|
|
self.TIMESTEPS_IN_PERIOD = timesteps_in_period |
267
|
|
|
|
268
|
|
|
# Set up disaggregated timesteps from original timeseries |
269
|
|
|
self.TSAM_MODE = False |
270
|
|
|
if self.es.tsa_parameters is None: |
271
|
|
|
self.tsam_weighting = [1] * len(self.timeincrement) |
272
|
|
|
else: |
273
|
|
|
self.TSAM_MODE = True |
274
|
|
|
|
275
|
|
|
# Construct weighting from occurrences and order |
276
|
|
|
self.tsam_weighting = list( |
277
|
|
|
self.es.tsa_parameters[p]["occurrences"][k] |
278
|
|
|
for p in self.PERIODS |
279
|
|
|
for k in range(len(self.es.tsa_parameters[p]["occurrences"])) |
280
|
|
|
for _ in range(self.es.tsa_parameters[p]["timesteps"]) |
281
|
|
|
) |
282
|
|
|
self.CLUSTERS = po.Set( |
283
|
|
|
initialize=list( |
284
|
|
|
range( |
285
|
|
|
sum( |
286
|
|
|
len(self.es.tsa_parameters[p]["order"]) |
287
|
|
|
for p in self.PERIODS |
288
|
|
|
) |
289
|
|
|
) |
290
|
|
|
) |
291
|
|
|
) |
292
|
|
|
self.CLUSTERS_OFFSET = po.Set( |
293
|
|
|
initialize=list( |
294
|
|
|
range( |
295
|
|
|
sum( |
296
|
|
|
len(self.es.tsa_parameters[p]["order"]) |
297
|
|
|
for p in self.PERIODS |
298
|
|
|
) |
299
|
|
|
+ 1 |
300
|
|
|
) |
301
|
|
|
) |
302
|
|
|
) |
303
|
|
|
self.TYPICAL_CLUSTERS = po.Set( |
304
|
|
|
initialize=[ |
305
|
|
|
(p, i) |
306
|
|
|
for p in self.PERIODS |
307
|
|
|
for i in range( |
308
|
|
|
len(self.es.tsa_parameters[p]["occurrences"]) |
309
|
|
|
) |
310
|
|
|
] |
311
|
|
|
) |
312
|
|
|
|
313
|
|
|
self.TIMEINDEX_CLUSTER = self.get_cluster_index("order", 0) |
314
|
|
|
self.TIMEINDEX_TYPICAL_CLUSTER = self.get_cluster_index( |
315
|
|
|
"occurrences", 0 |
316
|
|
|
) |
317
|
|
|
self.TIMEINDEX_TYPICAL_CLUSTER_OFFSET = self.get_cluster_index( |
318
|
|
|
"occurrences", 1 |
319
|
|
|
) |
320
|
|
|
|
321
|
|
|
# previous timesteps |
322
|
|
|
previous_timesteps = [x - 1 for x in self.TIMESTEPS] |
323
|
|
|
previous_timesteps[0] = self.TIMESTEPS.last() |
324
|
|
|
|
325
|
|
|
self.previous_timesteps = dict(zip(self.TIMESTEPS, previous_timesteps)) |
326
|
|
|
|
327
|
|
|
# pyomo set for all flows in the energy system graph |
328
|
|
|
self.FLOWS = po.Set( |
329
|
|
|
initialize=self.flows.keys(), ordered=True, dimen=2 |
330
|
|
|
) |
331
|
|
|
|
332
|
|
|
self.BIDIRECTIONAL_FLOWS = po.Set( |
333
|
|
|
initialize=[k for (k, v) in self.flows.items() if v.bidirectional], |
334
|
|
|
ordered=True, |
335
|
|
|
dimen=2, |
336
|
|
|
within=self.FLOWS, |
337
|
|
|
) |
338
|
|
|
|
339
|
|
|
self.UNIDIRECTIONAL_FLOWS = po.Set( |
340
|
|
|
initialize=[ |
341
|
|
|
k for (k, v) in self.flows.items() if not v.bidirectional |
342
|
|
|
], |
343
|
|
|
ordered=True, |
344
|
|
|
dimen=2, |
345
|
|
|
within=self.FLOWS, |
346
|
|
|
) |
347
|
|
|
|
348
|
|
|
def _add_parent_block_variables(self): |
349
|
|
|
"""Add the parent block variables, which is the `flow` variable, |
350
|
|
|
indexed by FLOWS and TIMEINDEX.""" |
351
|
|
|
self.flow = po.Var(self.FLOWS, self.TIMESTEPS, within=po.Reals) |
352
|
|
|
|
353
|
|
|
for o, i in self.FLOWS: |
354
|
|
|
if self.flows[o, i].nominal_capacity is not None: |
355
|
|
|
if self.flows[o, i].fix[self.TIMESTEPS.at(1)] is not None: |
356
|
|
|
for t in self.TIMESTEPS: |
357
|
|
|
self.flow[o, i, t].value = ( |
358
|
|
|
self.flows[o, i].fix[t] |
359
|
|
|
* self.flows[o, i].nominal_capacity |
360
|
|
|
) |
361
|
|
|
self.flow[o, i, t].fix() |
362
|
|
|
else: |
363
|
|
|
for t in self.TIMESTEPS: |
364
|
|
|
self.flow[o, i, t].setub( |
365
|
|
|
self.flows[o, i].max[t] |
366
|
|
|
* self.flows[o, i].nominal_capacity |
367
|
|
|
) |
368
|
|
|
if not self.flows[o, i].nonconvex: |
369
|
|
|
for t in self.TIMESTEPS: |
370
|
|
|
self.flow[o, i, t].setlb( |
371
|
|
|
self.flows[o, i].min[t] |
372
|
|
|
* self.flows[o, i].nominal_capacity |
373
|
|
|
) |
374
|
|
|
elif (o, i) in self.UNIDIRECTIONAL_FLOWS: |
375
|
|
|
for t in self.TIMESTEPS: |
376
|
|
|
self.flow[o, i, t].setlb(0) |
377
|
|
|
else: |
378
|
|
|
if (o, i) in self.UNIDIRECTIONAL_FLOWS: |
379
|
|
|
for t in self.TIMESTEPS: |
380
|
|
|
self.flow[o, i, t].setlb(0) |
381
|
|
|
|
382
|
|
|
def _add_child_blocks(self): |
383
|
|
|
"""Method to add the defined child blocks for components that have |
384
|
|
|
been grouped in the defined constraint groups. This collects all the |
385
|
|
|
constraints from the buses, components and flows blocks |
386
|
|
|
and adds them to the model. |
387
|
|
|
""" |
388
|
|
|
for group in self._constraint_groups: |
389
|
|
|
block = group() |
390
|
|
|
self.add_component(str(block), block) |
391
|
|
|
|
392
|
|
|
# create constraints etc. related with block for all nodes |
393
|
|
|
# in the group |
394
|
|
|
block._create(group=self.es.groups.get(group)) |
395
|
|
|
|
396
|
|
|
def _add_objective(self, sense=po.minimize, update=False): |
397
|
|
|
"""Method to sum up all objective expressions from the child blocks |
398
|
|
|
that have been created. This method looks for `_objective_expression` |
399
|
|
|
attribute in the block definition and will call this method to add |
400
|
|
|
their return value to the objective function. |
401
|
|
|
""" |
402
|
|
|
if update: |
403
|
|
|
self.del_component("objective") |
404
|
|
|
|
405
|
|
|
expr = 0 |
406
|
|
|
|
407
|
|
|
for block in self.component_data_objects(): |
408
|
|
|
if hasattr(block, "_objective_expression"): |
409
|
|
|
expr += block._objective_expression() |
410
|
|
|
|
411
|
|
|
self.objective = po.Objective(sense=sense, expr=expr) |
412
|
|
|
|
413
|
|
|
def receive_duals(self): |
414
|
|
|
"""Method sets solver suffix to extract information about dual |
415
|
|
|
variables from solver. Shadow prices (duals) and reduced costs (rc) are |
416
|
|
|
set as attributes of the model. |
417
|
|
|
""" |
418
|
|
|
# shadow prices |
419
|
|
|
self.dual = po.Suffix(direction=po.Suffix.IMPORT) |
420
|
|
|
# reduced costs |
421
|
|
|
self.rc = po.Suffix(direction=po.Suffix.IMPORT) |
422
|
|
|
|
423
|
|
|
def results(self): |
424
|
|
|
"""Returns a nested dictionary of the results of this optimization. |
425
|
|
|
See the processing module for more information on results extraction. |
426
|
|
|
""" |
427
|
|
|
return processing.results(self) |
428
|
|
|
|
429
|
|
|
def solve( |
430
|
|
|
self, solver="cbc", solver_io="lp", allow_nonoptimal=False, **kwargs |
431
|
|
|
): |
432
|
|
|
r"""Takes care of communication with solver to solve the model. |
433
|
|
|
|
434
|
|
|
Parameters |
435
|
|
|
---------- |
436
|
|
|
solver : string |
437
|
|
|
solver to be used e.g. "cbc", "glpk", "gurobi", "cplex" |
438
|
|
|
solver_io : string |
439
|
|
|
pyomo solver interface file format: "lp", "python", "nl", etc. |
440
|
|
|
allow_nonoptimal : bool |
441
|
|
|
False: If no optimal solution is found, an error will be risen. |
442
|
|
|
True: If no optimal solution is found, there will be a warning. |
443
|
|
|
\**kwargs : keyword arguments |
444
|
|
|
Possible keys can be set see below: |
445
|
|
|
|
446
|
|
|
Other Parameters |
447
|
|
|
---------------- |
448
|
|
|
solve_kwargs : dict |
449
|
|
|
Other arguments for the pyomo.opt.SolverFactory.solve() method |
450
|
|
|
Example : {"tee":True} |
451
|
|
|
cmdline_options : dict |
452
|
|
|
Dictionary with command line options for solver e.g. |
453
|
|
|
{"mipgap":"0.01"} results in "--mipgap 0.01" |
454
|
|
|
\{"interior":" "} results in "--interior" |
455
|
|
|
\Gurobi solver takes numeric parameter values such as |
456
|
|
|
{"method": 2} |
457
|
|
|
""" |
458
|
|
|
solve_kwargs = kwargs.get("solve_kwargs", {}) |
459
|
|
|
solver_cmdline_options = kwargs.get("cmdline_options", {}) |
460
|
|
|
opt = SolverFactory(solver, solver_io=solver_io) |
461
|
|
|
|
462
|
|
|
# set command line options |
463
|
|
|
options = opt.options |
464
|
|
|
for k in solver_cmdline_options: |
465
|
|
|
options[k] = solver_cmdline_options[k] |
466
|
|
|
|
467
|
|
|
solver_results = opt.solve(self, **solve_kwargs) |
468
|
|
|
|
469
|
|
|
status = solver_results.Solver.Status |
470
|
|
|
termination_condition = solver_results.Solver.Termination_condition |
471
|
|
|
|
472
|
|
|
self.es.results = solver_results |
473
|
|
|
self.solver_results = solver_results |
474
|
|
|
|
475
|
|
|
if status == "ok" and termination_condition == "optimal": |
476
|
|
|
logging.info("Optimization successful...") |
477
|
|
|
else: |
478
|
|
|
msg = ( |
479
|
|
|
f"The solver did not return an optimal solution. " |
480
|
|
|
f"Instead the optimization ended with\n " |
481
|
|
|
f" - status: {status}\n" |
482
|
|
|
f" - termination condition: {termination_condition}" |
483
|
|
|
) |
484
|
|
|
|
485
|
|
|
if allow_nonoptimal: |
486
|
|
|
warnings.warn( |
487
|
|
|
msg.format(status, termination_condition), UserWarning |
488
|
|
|
) |
489
|
|
|
else: |
490
|
|
|
raise RuntimeError(msg) |
491
|
|
|
|
492
|
|
|
return solver_results |
493
|
|
|
|
494
|
|
|
def relax_problem(self): |
495
|
|
|
"""Relaxes integer variables to reals of optimization model self.""" |
496
|
|
|
relaxer = RelaxIntegrality() |
497
|
|
|
relaxer._apply_to(self) |
498
|
|
|
|
499
|
|
|
return self |
500
|
|
|
|
501
|
|
|
def get_timestep_from_tsam_timestep(self, p, ik, g): |
502
|
|
|
"""Return original timestep from cluster-based timestep""" |
503
|
|
|
t = ( |
504
|
|
|
p * len(self.TIMESTEPS_IN_PERIOD[p]) |
505
|
|
|
+ ik * self.es.tsa_parameters[p]["timesteps"] |
506
|
|
|
+ g |
507
|
|
|
) |
508
|
|
|
return t |
509
|
|
|
|
510
|
|
|
def get_cluster_index(self, cluster_type, offset): |
511
|
|
|
""" |
512
|
|
|
Return cluster index for original or typical periods with or |
513
|
|
|
without offset |
514
|
|
|
""" |
515
|
|
|
return [ |
516
|
|
|
(p, k, t) |
517
|
|
|
for p in range(len(self.es.tsa_parameters)) |
518
|
|
|
for k in range(len(self.es.tsa_parameters[p][cluster_type])) |
519
|
|
|
for t in range(self.es.tsa_parameters[p]["timesteps"] + offset) |
520
|
|
|
] |
521
|
|
|
|