1
|
|
|
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ |
2
|
|
|
/* AES implementation in JavaScript (c) Chris Veness 2005-2016 */ |
3
|
|
|
/* MIT Licence */ |
4
|
|
|
/* www.movable-type.co.uk/scripts/aes.html */ |
5
|
|
|
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ |
6
|
|
|
|
7
|
|
|
'use strict'; |
8
|
|
|
|
9
|
|
|
|
10
|
|
|
/** |
11
|
|
|
* AES (Rijndael cipher) encryption routines, |
12
|
|
|
* |
13
|
|
|
* Reference implementation of FIPS-197 http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf. |
14
|
|
|
* |
15
|
|
|
* @namespace |
16
|
|
|
*/ |
17
|
|
|
var Aes = {}; |
18
|
|
|
|
19
|
|
|
|
20
|
|
|
/** |
21
|
|
|
* AES Cipher function: encrypt 'input' state with Rijndael algorithm [§5.1]; |
22
|
|
|
* applies Nr rounds (10/12/14) using key schedule w for 'add round key' stage. |
23
|
|
|
* |
24
|
|
|
* @param {number[]} input - 16-byte (128-bit) input state array. |
25
|
|
|
* @param {number[][]} w - Key schedule as 2D byte-array (Nr+1 x Nb bytes). |
26
|
|
|
* @returns {number[]} Encrypted output state array. |
27
|
|
|
*/ |
28
|
|
|
Aes.cipher = function(input, w) { |
29
|
|
|
var Nb = 4; // block size (in words): no of columns in state (fixed at 4 for AES) |
30
|
|
|
var Nr = w.length/Nb - 1; // no of rounds: 10/12/14 for 128/192/256-bit keys |
31
|
|
|
|
32
|
|
|
var state = [ [], [], [], [] ]; // initialise 4xNb byte-array 'state' with input [§3.4] |
33
|
|
|
for (var i=0; i<4*Nb; i++) state[i%4][Math.floor(i/4)] = input[i]; |
34
|
|
|
|
35
|
|
|
state = Aes.addRoundKey(state, w, 0, Nb); |
36
|
|
|
|
37
|
|
|
for (var round=1; round<Nr; round++) { |
38
|
|
|
state = Aes.subBytes(state, Nb); |
39
|
|
|
state = Aes.shiftRows(state, Nb); |
40
|
|
|
state = Aes.mixColumns(state, Nb); |
41
|
|
|
state = Aes.addRoundKey(state, w, round, Nb); |
42
|
|
|
} |
43
|
|
|
|
44
|
|
|
state = Aes.subBytes(state, Nb); |
45
|
|
|
state = Aes.shiftRows(state, Nb); |
46
|
|
|
state = Aes.addRoundKey(state, w, Nr, Nb); |
47
|
|
|
|
48
|
|
|
var output = new Array(4*Nb); // convert state to 1-d array before returning [§3.4] |
49
|
|
|
for (var i=0; i<4*Nb; i++) output[i] = state[i%4][Math.floor(i/4)]; |
50
|
|
|
|
51
|
|
|
return output; |
52
|
|
|
}; |
53
|
|
|
|
54
|
|
|
|
55
|
|
|
/** |
56
|
|
|
* Perform key expansion to generate a key schedule from a cipher key [§5.2]. |
57
|
|
|
* |
58
|
|
|
* @param {number[]} key - Cipher key as 16/24/32-byte array. |
59
|
|
|
* @returns {number[][]} Expanded key schedule as 2D byte-array (Nr+1 x Nb bytes). |
60
|
|
|
*/ |
61
|
|
|
Aes.keyExpansion = function(key) { |
62
|
|
|
var Nb = 4; // block size (in words): no of columns in state (fixed at 4 for AES) |
63
|
|
|
var Nk = key.length/4; // key length (in words): 4/6/8 for 128/192/256-bit keys |
64
|
|
|
var Nr = Nk + 6; // no of rounds: 10/12/14 for 128/192/256-bit keys |
65
|
|
|
|
66
|
|
|
var w = new Array(Nb*(Nr+1)); |
67
|
|
|
var temp = new Array(4); |
68
|
|
|
|
69
|
|
|
// initialise first Nk words of expanded key with cipher key |
70
|
|
|
for (var i=0; i<Nk; i++) { |
71
|
|
|
var r = [ key[4*i], key[4*i+1], key[4*i+2], key[4*i+3] ]; |
72
|
|
|
w[i] = r; |
73
|
|
|
} |
74
|
|
|
|
75
|
|
|
// expand the key into the remainder of the schedule |
76
|
|
|
for (var i=Nk; i<(Nb*(Nr+1)); i++) { |
77
|
|
|
w[i] = new Array(4); |
78
|
|
|
for (var t=0; t<4; t++) temp[t] = w[i-1][t]; |
79
|
|
|
// each Nk'th word has extra transformation |
80
|
|
|
if (i % Nk == 0) { |
81
|
|
|
temp = Aes.subWord(Aes.rotWord(temp)); |
82
|
|
|
for (var t=0; t<4; t++) temp[t] ^= Aes.rCon[i/Nk][t]; |
83
|
|
|
} |
84
|
|
|
// 256-bit key has subWord applied every 4th word |
85
|
|
|
else if (Nk > 6 && i%Nk == 4) { |
86
|
|
|
temp = Aes.subWord(temp); |
87
|
|
|
} |
88
|
|
|
// xor w[i] with w[i-1] and w[i-Nk] |
89
|
|
|
for (var t=0; t<4; t++) w[i][t] = w[i-Nk][t] ^ temp[t]; |
90
|
|
|
} |
91
|
|
|
|
92
|
|
|
return w; |
93
|
|
|
}; |
94
|
|
|
|
95
|
|
|
|
96
|
|
|
/** |
97
|
|
|
* Apply SBox to state S [§5.1.1] |
98
|
|
|
* @private |
99
|
|
|
*/ |
100
|
|
|
Aes.subBytes = function(s, Nb) { |
101
|
|
|
for (var r=0; r<4; r++) { |
102
|
|
|
for (var c=0; c<Nb; c++) s[r][c] = Aes.sBox[s[r][c]]; |
103
|
|
|
} |
104
|
|
|
return s; |
105
|
|
|
}; |
106
|
|
|
|
107
|
|
|
|
108
|
|
|
/** |
109
|
|
|
* Shift row r of state S left by r bytes [§5.1.2] |
110
|
|
|
* @private |
111
|
|
|
*/ |
112
|
|
|
Aes.shiftRows = function(s, Nb) { |
113
|
|
|
var t = new Array(4); |
114
|
|
|
for (var r=1; r<4; r++) { |
115
|
|
|
for (var c=0; c<4; c++) t[c] = s[r][(c+r)%Nb]; // shift into temp copy |
116
|
|
|
for (var c=0; c<4; c++) s[r][c] = t[c]; // and copy back |
117
|
|
|
} // note that this will work for Nb=4,5,6, but not 7,8 (always 4 for AES): |
118
|
|
|
return s; // see asmaes.sourceforge.net/rijndael/rijndaelImplementation.pdf |
119
|
|
|
}; |
120
|
|
|
|
121
|
|
|
|
122
|
|
|
/** |
123
|
|
|
* Combine bytes of each col of state S [§5.1.3] |
124
|
|
|
* @private |
125
|
|
|
*/ |
126
|
|
|
Aes.mixColumns = function(s, Nb) { |
127
|
|
|
for (var c=0; c<4; c++) { |
128
|
|
|
var a = new Array(4); // 'a' is a copy of the current column from 's' |
129
|
|
|
var b = new Array(4); // 'b' is a•{02} in GF(2^8) |
130
|
|
|
for (var i=0; i<4; i++) { |
131
|
|
|
a[i] = s[i][c]; |
132
|
|
|
b[i] = s[i][c]&0x80 ? s[i][c]<<1 ^ 0x011b : s[i][c]<<1; |
133
|
|
|
} |
134
|
|
|
// a[n] ^ b[n] is a•{03} in GF(2^8) |
135
|
|
|
s[0][c] = b[0] ^ a[1] ^ b[1] ^ a[2] ^ a[3]; // {02}•a0 + {03}•a1 + a2 + a3 |
136
|
|
|
s[1][c] = a[0] ^ b[1] ^ a[2] ^ b[2] ^ a[3]; // a0 • {02}•a1 + {03}•a2 + a3 |
137
|
|
|
s[2][c] = a[0] ^ a[1] ^ b[2] ^ a[3] ^ b[3]; // a0 + a1 + {02}•a2 + {03}•a3 |
138
|
|
|
s[3][c] = a[0] ^ b[0] ^ a[1] ^ a[2] ^ b[3]; // {03}•a0 + a1 + a2 + {02}•a3 |
139
|
|
|
} |
140
|
|
|
return s; |
141
|
|
|
}; |
142
|
|
|
|
143
|
|
|
|
144
|
|
|
/** |
145
|
|
|
* Xor Round Key into state S [§5.1.4] |
146
|
|
|
* @private |
147
|
|
|
*/ |
148
|
|
|
Aes.addRoundKey = function(state, w, rnd, Nb) { |
149
|
|
|
for (var r=0; r<4; r++) { |
150
|
|
|
for (var c=0; c<Nb; c++) state[r][c] ^= w[rnd*4+c][r]; |
151
|
|
|
} |
152
|
|
|
return state; |
153
|
|
|
}; |
154
|
|
|
|
155
|
|
|
|
156
|
|
|
/** |
157
|
|
|
* Apply SBox to 4-byte word w |
158
|
|
|
* @private |
159
|
|
|
*/ |
160
|
|
|
Aes.subWord = function(w) { |
161
|
|
|
for (var i=0; i<4; i++) w[i] = Aes.sBox[w[i]]; |
162
|
|
|
return w; |
163
|
|
|
}; |
164
|
|
|
|
165
|
|
|
|
166
|
|
|
/** |
167
|
|
|
* Rotate 4-byte word w left by one byte |
168
|
|
|
* @private |
169
|
|
|
*/ |
170
|
|
|
Aes.rotWord = function(w) { |
171
|
|
|
var tmp = w[0]; |
172
|
|
|
for (var i=0; i<3; i++) w[i] = w[i+1]; |
173
|
|
|
w[3] = tmp; |
174
|
|
|
return w; |
175
|
|
|
}; |
176
|
|
|
|
177
|
|
|
|
178
|
|
|
// sBox is pre-computed multiplicative inverse in GF(2^8) used in subBytes and keyExpansion [§5.1.1] |
179
|
|
|
Aes.sBox = [ 0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76, |
180
|
|
|
0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0, |
181
|
|
|
0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15, |
182
|
|
|
0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75, |
183
|
|
|
0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84, |
184
|
|
|
0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf, |
185
|
|
|
0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8, |
186
|
|
|
0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2, |
187
|
|
|
0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73, |
188
|
|
|
0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb, |
189
|
|
|
0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79, |
190
|
|
|
0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08, |
191
|
|
|
0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a, |
192
|
|
|
0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e, |
193
|
|
|
0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf, |
194
|
|
|
0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16 ]; |
195
|
|
|
|
196
|
|
|
|
197
|
|
|
// rCon is Round Constant used for the Key Expansion [1st col is 2^(r-1) in GF(2^8)] [§5.2] |
198
|
|
|
Aes.rCon = [ [ 0x00, 0x00, 0x00, 0x00 ], |
199
|
|
|
[ 0x01, 0x00, 0x00, 0x00 ], |
200
|
|
|
[ 0x02, 0x00, 0x00, 0x00 ], |
201
|
|
|
[ 0x04, 0x00, 0x00, 0x00 ], |
202
|
|
|
[ 0x08, 0x00, 0x00, 0x00 ], |
203
|
|
|
[ 0x10, 0x00, 0x00, 0x00 ], |
204
|
|
|
[ 0x20, 0x00, 0x00, 0x00 ], |
205
|
|
|
[ 0x40, 0x00, 0x00, 0x00 ], |
206
|
|
|
[ 0x80, 0x00, 0x00, 0x00 ], |
207
|
|
|
[ 0x1b, 0x00, 0x00, 0x00 ], |
208
|
|
|
[ 0x36, 0x00, 0x00, 0x00 ] ]; |
209
|
|
|
|
210
|
|
|
|
211
|
|
|
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ |
212
|
|
|
if (typeof module != 'undefined' && module.exports) module.exports = Aes; // ≡ export default Aes |
213
|
|
|
|