Conditions | 110 |
Total Lines | 382 |
Code Lines | 256 |
Lines | 44 |
Ratio | 11.52 % |
Changes | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
Complex classes like virtualmeter.worker() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | import time |
||
94 | def worker(virtual_meter): |
||
95 | cnx_energy_db = None |
||
96 | cursor_energy_db = None |
||
97 | |||
98 | try: |
||
99 | cnx_energy_db = mysql.connector.connect(**config.myems_energy_db) |
||
100 | cursor_energy_db = cnx_energy_db.cursor() |
||
101 | except Exception as e: |
||
102 | if cursor_energy_db: |
||
103 | cursor_energy_db.close() |
||
104 | if cnx_energy_db: |
||
105 | cnx_energy_db.close() |
||
106 | return "Error in step 1.1 of virtual meter worker " + str(e) + " for '" + virtual_meter['name'] + "'" |
||
107 | |||
108 | print("Start to process virtual meter: " + "'" + virtual_meter['name']+"'") |
||
109 | |||
110 | #################################################################################################################### |
||
111 | # step 1: get start datetime and end datetime |
||
112 | # get latest timestamp from energy database in tbl_virtual_meter_hourly |
||
113 | #################################################################################################################### |
||
114 | |||
115 | try: |
||
116 | query = (" SELECT MAX(start_datetime_utc) " |
||
117 | " FROM tbl_virtual_meter_hourly " |
||
118 | " WHERE virtual_meter_id = %s ") |
||
119 | cursor_energy_db.execute(query, (virtual_meter['id'],)) |
||
120 | row_datetime = cursor_energy_db.fetchone() |
||
121 | except Exception as e: |
||
122 | if cursor_energy_db: |
||
123 | cursor_energy_db.close() |
||
124 | if cnx_energy_db: |
||
125 | cnx_energy_db.close() |
||
126 | return "Error in step 1.2 of virtual meter worker " + str(e) + " for '" + virtual_meter['name'] + "'" |
||
127 | |||
128 | start_datetime_utc = datetime.strptime(config.start_datetime_utc, '%Y-%m-%d %H:%M:%S') |
||
129 | start_datetime_utc = start_datetime_utc.replace(minute=0, second=0, microsecond=0, tzinfo=None) |
||
130 | |||
131 | if row_datetime is not None and len(row_datetime) > 0 and isinstance(row_datetime[0], datetime): |
||
132 | # replace second and microsecond with 0 |
||
133 | # note: do not replace minute in case of calculating in half hourly |
||
134 | start_datetime_utc = row_datetime[0].replace(second=0, microsecond=0, tzinfo=None) |
||
135 | # start from the next time slot |
||
136 | start_datetime_utc += timedelta(minutes=config.minutes_to_count) |
||
137 | |||
138 | end_datetime_utc = datetime.utcnow().replace() |
||
139 | end_datetime_utc = end_datetime_utc.replace(second=0, microsecond=0, tzinfo=None) |
||
140 | |||
141 | time_difference = end_datetime_utc - start_datetime_utc |
||
142 | time_difference_in_minutes = time_difference / timedelta(minutes=1) |
||
143 | if time_difference_in_minutes < config.minutes_to_count: |
||
144 | if cursor_energy_db: |
||
145 | cursor_energy_db.close() |
||
146 | if cnx_energy_db: |
||
147 | cnx_energy_db.close() |
||
148 | return "it's too early to calculate" + " for '" + virtual_meter['name'] + "'" |
||
149 | |||
150 | # trim end_datetime_utc |
||
151 | trimmed_end_datetime_utc = start_datetime_utc + timedelta(minutes=config.minutes_to_count) |
||
152 | while trimmed_end_datetime_utc <= end_datetime_utc: |
||
153 | trimmed_end_datetime_utc += timedelta(minutes=config.minutes_to_count) |
||
154 | |||
155 | end_datetime_utc = trimmed_end_datetime_utc - timedelta(minutes=config.minutes_to_count) |
||
156 | |||
157 | if end_datetime_utc <= start_datetime_utc: |
||
158 | if cursor_energy_db: |
||
159 | cursor_energy_db.close() |
||
160 | if cnx_energy_db: |
||
161 | cnx_energy_db.close() |
||
162 | return "it's too early to calculate" + " for '" + virtual_meter['name'] + "'" |
||
163 | |||
164 | print("start_datetime_utc: " + start_datetime_utc.isoformat()[0:19] |
||
165 | + "end_datetime_utc: " + end_datetime_utc.isoformat()[0:19]) |
||
166 | |||
167 | ############################################################################################################ |
||
168 | # Step 2: parse the expression and get all meters, virtual meters, and |
||
169 | # offline meters associated with the expression |
||
170 | ############################################################################################################ |
||
171 | cnx_factory_db = None |
||
172 | cursor_factory_db = None |
||
173 | try: |
||
174 | cnx_factory_db = mysql.connector.connect(**config.myems_system_db) |
||
175 | cursor_factory_db = cnx_factory_db.cursor() |
||
176 | except Exception as e: |
||
177 | if cursor_factory_db: |
||
178 | cursor_factory_db.close() |
||
179 | if cnx_factory_db: |
||
180 | cnx_factory_db.close() |
||
181 | if cursor_energy_db: |
||
182 | cursor_energy_db.close() |
||
183 | if cnx_energy_db: |
||
184 | cnx_energy_db.close() |
||
185 | return "Error in step 2.1 of virtual meter worker " + str(e) + " for '" + virtual_meter['name'] + "'" |
||
186 | |||
187 | meter_list_in_expression = list() |
||
188 | virtual_meter_list_in_expression = list() |
||
189 | offline_meter_list_in_expression = list() |
||
190 | try: |
||
191 | ######################################################################################################## |
||
192 | # get all meters associated with the expression |
||
193 | ######################################################################################################## |
||
194 | |||
195 | cursor_factory_db.execute(" SELECT m.id as meter_id, v.name as variable_name " |
||
196 | " FROM tbl_meters m, tbl_variables v " |
||
197 | " WHERE m.id = v.meter_id " |
||
198 | " AND v.meter_type = 'meter' " |
||
199 | " AND v.expression_id = %s ", |
||
200 | (virtual_meter['expression_id'], )) |
||
201 | rows = cursor_factory_db.fetchall() |
||
202 | if rows is not None and len(rows) > 0: |
||
203 | for row in rows: |
||
204 | meter_list_in_expression.append({"meter_id": row[0], "variable_name": row[1].lower()}) |
||
205 | |||
206 | ######################################################################################################## |
||
207 | # get all virtual meters associated with the expression |
||
208 | ######################################################################################################## |
||
209 | |||
210 | cursor_factory_db.execute(" SELECT m.id as virtual_meter_id, v.name as variable_name " |
||
211 | " FROM tbl_virtual_meters m, tbl_variables v " |
||
212 | " WHERE m.id = v.meter_id " |
||
213 | " AND v.meter_type = 'virtual_meter' " |
||
214 | " AND v.expression_id = %s ", |
||
215 | (virtual_meter['expression_id'],)) |
||
216 | rows = cursor_factory_db.fetchall() |
||
217 | if rows is not None and len(rows) > 0: |
||
218 | for row in rows: |
||
219 | virtual_meter_list_in_expression.append({"virtual_meter_id": row[0], |
||
220 | "variable_name": row[1].lower()}) |
||
221 | |||
222 | ######################################################################################################## |
||
223 | # get all offline meters associated with the expression |
||
224 | ######################################################################################################## |
||
225 | |||
226 | cursor_factory_db.execute(" SELECT m.id as offline_meter_id, v.name as variable_name " |
||
227 | " FROM tbl_offline_meters m, tbl_variables v " |
||
228 | " WHERE m.id = v.meter_id " |
||
229 | " AND v.meter_type = 'offline_meter' " |
||
230 | " AND v.expression_id = %s ", |
||
231 | (virtual_meter['expression_id'],)) |
||
232 | rows = cursor_factory_db.fetchall() |
||
233 | if rows is not None and len(rows) > 0: |
||
234 | for row in rows: |
||
235 | offline_meter_list_in_expression.append({"offline_meter_id": row[0], |
||
236 | "variable_name": row[1].lower()}) |
||
237 | except Exception as e: |
||
238 | if cursor_energy_db: |
||
239 | cursor_energy_db.close() |
||
240 | if cnx_energy_db: |
||
241 | cnx_energy_db.close() |
||
242 | return "Error in step 2.2 of virtual meter worker " + str(e) + " for '" + virtual_meter['name'] + "'" |
||
243 | finally: |
||
244 | if cursor_factory_db: |
||
245 | cursor_factory_db.close() |
||
246 | if cnx_factory_db: |
||
247 | cnx_factory_db.close() |
||
248 | |||
249 | ############################################################################################################ |
||
250 | # Step 3: query energy consumption values from table meter hourly, virtual meter hourly |
||
251 | # and offline meter hourly |
||
252 | ############################################################################################################ |
||
253 | |||
254 | print("getting energy consumption values from myems_energy_db.tbl_meter_hourly...") |
||
255 | energy_meter_hourly = dict() |
||
256 | if meter_list_in_expression is not None and len(meter_list_in_expression) > 0: |
||
257 | try: |
||
258 | for meter_in_expression in meter_list_in_expression: |
||
259 | meter_id = str(meter_in_expression['meter_id']) |
||
260 | query = (" SELECT start_datetime_utc, actual_value " |
||
261 | " FROM tbl_meter_hourly " |
||
262 | " WHERE meter_id = %s AND start_datetime_utc >= %s AND start_datetime_utc < %s " |
||
263 | " ORDER BY start_datetime_utc ") |
||
264 | cursor_energy_db.execute(query, (meter_id, start_datetime_utc, end_datetime_utc, )) |
||
265 | rows_energy_values = cursor_energy_db.fetchall() |
||
266 | if rows_energy_values is None or len(rows_energy_values) == 0: |
||
267 | energy_meter_hourly[meter_id] = None |
||
268 | else: |
||
269 | energy_meter_hourly[meter_id] = dict() |
||
270 | for row_energy_value in rows_energy_values: |
||
271 | energy_meter_hourly[meter_id][row_energy_value[0]] = row_energy_value[1] |
||
272 | except Exception as e: |
||
273 | if cursor_energy_db: |
||
274 | cursor_energy_db.close() |
||
275 | if cnx_energy_db: |
||
276 | cnx_energy_db.close() |
||
277 | return "Error in step 3.2 virtual meter worker " + str(e) + " for '" + virtual_meter['name'] + "'" |
||
278 | |||
279 | print("getting energy consumption values from myems_energy_db.tbl_virtual_meter_hourly...") |
||
280 | energy_virtual_meter_hourly = dict() |
||
281 | if virtual_meter_list_in_expression is not None and len(virtual_meter_list_in_expression) > 0: |
||
282 | try: |
||
283 | for virtual_meter_in_expression in virtual_meter_list_in_expression: |
||
284 | virtual_meter_id = str(virtual_meter_in_expression['virtual_meter_id']) |
||
285 | query = (" SELECT start_datetime_utc, actual_value " |
||
286 | " FROM tbl_virtual_meter_hourly " |
||
287 | " WHERE virtual_meter_id = %s " |
||
288 | " AND start_datetime_utc >= %s AND start_datetime_utc < %s " |
||
289 | " ORDER BY start_datetime_utc ") |
||
290 | cursor_energy_db.execute(query, (virtual_meter_id, start_datetime_utc, end_datetime_utc,)) |
||
291 | rows_energy_values = cursor_energy_db.fetchall() |
||
292 | if rows_energy_values is None or len(rows_energy_values) == 0: |
||
293 | energy_virtual_meter_hourly[virtual_meter_id] = None |
||
294 | else: |
||
295 | energy_virtual_meter_hourly[virtual_meter_id] = dict() |
||
296 | for row_energy_value in rows_energy_values: |
||
297 | energy_virtual_meter_hourly[virtual_meter_id][row_energy_value[0]] = row_energy_value[1] |
||
298 | except Exception as e: |
||
299 | if cursor_energy_db: |
||
300 | cursor_energy_db.close() |
||
301 | if cnx_energy_db: |
||
302 | cnx_energy_db.close() |
||
303 | return "Error in step 3.3 virtual meter worker " + str(e) + " for '" + virtual_meter['name'] + "'" |
||
304 | |||
305 | print("getting energy consumption values from myems_energy_db.tbl_offline_meter_hourly...") |
||
306 | energy_offline_meter_hourly = dict() |
||
307 | if offline_meter_list_in_expression is not None and len(offline_meter_list_in_expression) > 0: |
||
308 | try: |
||
309 | for offline_meter_in_expression in offline_meter_list_in_expression: |
||
310 | offline_meter_id = str(offline_meter_in_expression['offline_meter_id']) |
||
311 | query = (" SELECT start_datetime_utc, actual_value " |
||
312 | " FROM tbl_offline_meter_hourly " |
||
313 | " WHERE offline_meter_id = %s " |
||
314 | " AND start_datetime_utc >= %s AND start_datetime_utc < %s " |
||
315 | " ORDER BY start_datetime_utc ") |
||
316 | cursor_energy_db.execute(query, (offline_meter_id, start_datetime_utc, end_datetime_utc,)) |
||
317 | rows_energy_values = cursor_energy_db.fetchall() |
||
318 | if rows_energy_values is None or len(rows_energy_values) == 0: |
||
319 | energy_offline_meter_hourly[offline_meter_id] = None |
||
320 | else: |
||
321 | energy_offline_meter_hourly[offline_meter_id] = dict() |
||
322 | for row_energy_value in rows_energy_values: |
||
323 | energy_offline_meter_hourly[offline_meter_id][row_energy_value[0]] = row_energy_value[1] |
||
324 | except Exception as e: |
||
325 | if cursor_energy_db: |
||
326 | cursor_energy_db.close() |
||
327 | if cnx_energy_db: |
||
328 | cnx_energy_db.close() |
||
329 | return "Error in step 3.4 virtual meter worker " + str(e) + " for '" + virtual_meter['name'] + "'" |
||
330 | |||
331 | ############################################################################################################ |
||
332 | # Step 4: evaluate the equation with variables values from previous step |
||
333 | # and save to table virtual meter hourly |
||
334 | ############################################################################################################ |
||
335 | |||
336 | print("getting common time slot of energy values for all meters...") |
||
337 | common_start_datetime_utc = start_datetime_utc |
||
338 | common_end_datetime_utc = end_datetime_utc |
||
339 | if energy_meter_hourly is not None and len(energy_meter_hourly) > 0: |
||
340 | for meter_id, energy_hourly in energy_meter_hourly.items(): |
||
341 | if energy_hourly is None or len(energy_hourly) == 0: |
||
342 | common_start_datetime_utc = None |
||
343 | common_end_datetime_utc = None |
||
344 | break |
||
345 | else: |
||
346 | if common_start_datetime_utc < min(energy_hourly.keys()): |
||
347 | common_start_datetime_utc = min(energy_hourly.keys()) |
||
348 | if common_end_datetime_utc > max(energy_hourly.keys()): |
||
349 | common_end_datetime_utc = max(energy_hourly.keys()) |
||
350 | |||
351 | print("getting common time slot of energy values for all virtual meters...") |
||
352 | View Code Duplication | if common_start_datetime_utc is not None and common_start_datetime_utc is not None: |
|
|
|||
353 | if energy_virtual_meter_hourly is not None and len(energy_virtual_meter_hourly) > 0: |
||
354 | for meter_id, energy_hourly in energy_virtual_meter_hourly.items(): |
||
355 | if energy_hourly is None or len(energy_hourly) == 0: |
||
356 | common_start_datetime_utc = None |
||
357 | common_end_datetime_utc = None |
||
358 | break |
||
359 | else: |
||
360 | if common_start_datetime_utc < min(energy_hourly.keys()): |
||
361 | common_start_datetime_utc = min(energy_hourly.keys()) |
||
362 | if common_end_datetime_utc > max(energy_hourly.keys()): |
||
363 | common_end_datetime_utc = max(energy_hourly.keys()) |
||
364 | |||
365 | print("getting common time slot of energy values for all offline meters...") |
||
366 | View Code Duplication | if common_start_datetime_utc is not None and common_start_datetime_utc is not None: |
|
367 | if energy_offline_meter_hourly is not None and len(energy_offline_meter_hourly) > 0: |
||
368 | for meter_id, energy_hourly in energy_offline_meter_hourly.items(): |
||
369 | if energy_hourly is None or len(energy_hourly) == 0: |
||
370 | common_start_datetime_utc = None |
||
371 | common_end_datetime_utc = None |
||
372 | break |
||
373 | else: |
||
374 | if common_start_datetime_utc < min(energy_hourly.keys()): |
||
375 | common_start_datetime_utc = min(energy_hourly.keys()) |
||
376 | if common_end_datetime_utc > max(energy_hourly.keys()): |
||
377 | common_end_datetime_utc = max(energy_hourly.keys()) |
||
378 | |||
379 | print("evaluating the equation with SymPy...") |
||
380 | normalized_values = list() |
||
381 | |||
382 | ############################################################################################################ |
||
383 | # Converting Strings to SymPy Expressions |
||
384 | # The sympify function(that’s sympify, not to be confused with simplify) can be used to |
||
385 | # convert strings into SymPy expressions. |
||
386 | ############################################################################################################ |
||
387 | try: |
||
388 | expr = sympify(virtual_meter['equation'].lower()) |
||
389 | print("the expression to be evaluated: " + str(expr)) |
||
390 | current_datetime_utc = common_start_datetime_utc |
||
391 | print("common_start_datetime_utc: " + str(common_start_datetime_utc)) |
||
392 | print("common_end_datetime_utc: " + str(common_end_datetime_utc)) |
||
393 | while common_start_datetime_utc is not None \ |
||
394 | and common_end_datetime_utc is not None \ |
||
395 | and current_datetime_utc <= common_end_datetime_utc: |
||
396 | meta_data = dict() |
||
397 | meta_data['start_datetime_utc'] = current_datetime_utc |
||
398 | |||
399 | #################################################################################################### |
||
400 | # create a dictionary of Symbol: point pairs |
||
401 | #################################################################################################### |
||
402 | |||
403 | subs = dict() |
||
404 | |||
405 | #################################################################################################### |
||
406 | # Evaluating the expression at current_datetime_utc |
||
407 | #################################################################################################### |
||
408 | |||
409 | if meter_list_in_expression is not None and len(meter_list_in_expression) > 0: |
||
410 | for meter_in_expression in meter_list_in_expression: |
||
411 | meter_id = str(meter_in_expression['meter_id']) |
||
412 | actual_value = energy_meter_hourly[meter_id].get(current_datetime_utc, 0.0) |
||
413 | subs[meter_in_expression['variable_name']] = actual_value |
||
414 | |||
415 | if virtual_meter_list_in_expression is not None and len(virtual_meter_list_in_expression) > 0: |
||
416 | for virtual_meter_in_expression in virtual_meter_list_in_expression: |
||
417 | virtual_meter_id = str(virtual_meter_in_expression['virtual_meter_id']) |
||
418 | actual_value = energy_virtual_meter_hourly[virtual_meter_id].get(current_datetime_utc, 0.0) |
||
419 | subs[virtual_meter_in_expression['variable_name']] = actual_value |
||
420 | |||
421 | if offline_meter_list_in_expression is not None and len(offline_meter_list_in_expression) > 0: |
||
422 | for offline_meter_in_expression in offline_meter_list_in_expression: |
||
423 | offline_meter_id = str(offline_meter_in_expression['offline_meter_id']) |
||
424 | actual_value = energy_offline_meter_hourly[offline_meter_id].get(current_datetime_utc, 0.0) |
||
425 | subs[offline_meter_in_expression['variable_name']] = actual_value |
||
426 | |||
427 | #################################################################################################### |
||
428 | # To numerically evaluate an expression with a Symbol at a point, |
||
429 | # we might use subs followed by evalf, |
||
430 | # but it is more efficient and numerically stable to pass the substitution to evalf |
||
431 | # using the subs flag, which takes a dictionary of Symbol: point pairs. |
||
432 | #################################################################################################### |
||
433 | |||
434 | meta_data['actual_value'] = expr.evalf(subs=subs) |
||
435 | |||
436 | normalized_values.append(meta_data) |
||
437 | |||
438 | current_datetime_utc += timedelta(minutes=config.minutes_to_count) |
||
439 | |||
440 | except Exception as e: |
||
441 | if cursor_energy_db: |
||
442 | cursor_energy_db.close() |
||
443 | if cnx_energy_db: |
||
444 | cnx_energy_db.close() |
||
445 | return "Error in step 4.1 virtual meter worker " + str(e) + " for '" + virtual_meter['name'] + "'" |
||
446 | |||
447 | print("saving energy values to table virtual meter hourly...") |
||
448 | |||
449 | View Code Duplication | if len(normalized_values) > 0: |
|
450 | try: |
||
451 | add_values = (" INSERT INTO tbl_virtual_meter_hourly " |
||
452 | " (virtual_meter_id, start_datetime_utc, actual_value) " |
||
453 | " VALUES ") |
||
454 | |||
455 | for meta_data in normalized_values: |
||
456 | add_values += " (" + str(virtual_meter['id']) + "," |
||
457 | add_values += "'" + meta_data['start_datetime_utc'].isoformat()[0:19] + "'," |
||
458 | add_values += str(meta_data['actual_value']) + "), " |
||
459 | print("add_values:" + add_values) |
||
460 | # trim ", " at the end of string and then execute |
||
461 | cursor_energy_db.execute(add_values[:-2]) |
||
462 | cnx_energy_db.commit() |
||
463 | except Exception as e: |
||
464 | if cursor_energy_db: |
||
465 | cursor_energy_db.close() |
||
466 | if cnx_energy_db: |
||
467 | cnx_energy_db.close() |
||
468 | return "Error in step 4.2 virtual meter worker " + str(e) + " for '" + virtual_meter['name'] + "'" |
||
469 | |||
470 | if cursor_energy_db: |
||
471 | cursor_energy_db.close() |
||
472 | if cnx_energy_db: |
||
473 | cnx_energy_db.close() |
||
474 | |||
475 | return None |
||
476 |