Passed
Push — master ( dc4cf6...d9c3b0 )
by Guangyu
02:47 queued 10s
created

combinedequipmentstatistics.Reporting.on_get()   F

Complexity

Conditions 98

Size

Total Lines 533
Code Lines 410

Duplication

Lines 533
Ratio 100 %

Importance

Changes 0
Metric Value
eloc 410
dl 533
loc 533
rs 0
c 0
b 0
f 0
cc 98
nop 2

How to fix   Long Method    Complexity   

Long Method

Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.

For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.

Commonly applied refactorings include:

Complexity

Complex classes like combinedequipmentstatistics.Reporting.on_get() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.

Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.

1
import falcon
2
import simplejson as json
3
import mysql.connector
4
import config
5
from datetime import datetime, timedelta, timezone
6
import utilities
7
from decimal import *
8
9
10 View Code Duplication
class Reporting:
0 ignored issues
show
Duplication introduced by
This code seems to be duplicated in your project.
Loading history...
11
    @staticmethod
12
    def __init__():
13
        pass
14
15
    @staticmethod
16
    def on_options(req, resp):
17
        resp.status = falcon.HTTP_200
18
19
    ####################################################################################################################
20
    # PROCEDURES
21
    # Step 1: valid parameters
22
    # Step 2: query the combined equipment
23
    # Step 3: query energy categories
24
    # Step 4: query associated points
25
    # Step 5: query base period energy input
26
    # Step 6: query reporting period energy input
27
    # Step 7: query tariff data
28
    # Step 8: query associated points data
29
    # Step 9: construct the report
30
    ####################################################################################################################
31
    @staticmethod
32
    def on_get(req, resp):
33
        print(req.params)
34
        combined_equipment_id = req.params.get('combinedequipmentid')
35
        period_type = req.params.get('periodtype')
36
        base_start_datetime_local = req.params.get('baseperiodstartdatetime')
37
        base_end_datetime_local = req.params.get('baseperiodenddatetime')
38
        reporting_start_datetime_local = req.params.get('reportingperiodstartdatetime')
39
        reporting_end_datetime_local = req.params.get('reportingperiodenddatetime')
40
41
        ################################################################################################################
42
        # Step 1: valid parameters
43
        ################################################################################################################
44
        if combined_equipment_id is None:
45
            raise falcon.HTTPError(falcon.HTTP_400,
46
                                   title='API.BAD_REQUEST',
47
                                   description='API.INVALID_COMBINED_EQUIPMENT_ID')
48
        else:
49
            combined_equipment_id = str.strip(combined_equipment_id)
50
            if not combined_equipment_id.isdigit() or int(combined_equipment_id) <= 0:
51
                raise falcon.HTTPError(falcon.HTTP_400,
52
                                       title='API.BAD_REQUEST',
53
                                       description='API.INVALID_COMBINED_EQUIPMENT_ID')
54
55
        if period_type is None:
56
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE')
57
        else:
58
            period_type = str.strip(period_type)
59
            if period_type not in ['hourly', 'daily', 'monthly', 'yearly']:
60
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE')
61
62
        timezone_offset = int(config.utc_offset[1:3]) * 60 + int(config.utc_offset[4:6])
63
        if config.utc_offset[0] == '-':
64
            timezone_offset = -timezone_offset
65
66
        base_start_datetime_utc = None
67
        if base_start_datetime_local is not None and len(str.strip(base_start_datetime_local)) > 0:
68
            base_start_datetime_local = str.strip(base_start_datetime_local)
69
            try:
70
                base_start_datetime_utc = datetime.strptime(base_start_datetime_local,
71
                                                            '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \
72
                    timedelta(minutes=timezone_offset)
73
            except ValueError:
74
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
75
                                       description="API.INVALID_BASE_PERIOD_BEGINS_DATETIME")
76
77
        base_end_datetime_utc = None
78
        if base_end_datetime_local is not None and len(str.strip(base_end_datetime_local)) > 0:
79
            base_end_datetime_local = str.strip(base_end_datetime_local)
80
            try:
81
                base_end_datetime_utc = datetime.strptime(base_end_datetime_local,
82
                                                          '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \
83
                    timedelta(minutes=timezone_offset)
84
            except ValueError:
85
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
86
                                       description="API.INVALID_BASE_PERIOD_ENDS_DATETIME")
87
88
        if base_start_datetime_utc is not None and base_end_datetime_utc is not None and \
89
                base_start_datetime_utc >= base_end_datetime_utc:
90
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
91
                                   description='API.INVALID_BASE_PERIOD_ENDS_DATETIME')
92
93
        if reporting_start_datetime_local is None:
94
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
95
                                   description="API.INVALID_REPORTING_PERIOD_BEGINS_DATETIME")
96
        else:
97
            reporting_start_datetime_local = str.strip(reporting_start_datetime_local)
98
            try:
99
                reporting_start_datetime_utc = datetime.strptime(reporting_start_datetime_local,
100
                                                                 '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \
101
                    timedelta(minutes=timezone_offset)
102
            except ValueError:
103
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
104
                                       description="API.INVALID_REPORTING_PERIOD_BEGINS_DATETIME")
105
106
        if reporting_end_datetime_local is None:
107
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
108
                                   description="API.INVALID_REPORTING_PERIOD_ENDS_DATETIME")
109
        else:
110
            reporting_end_datetime_local = str.strip(reporting_end_datetime_local)
111
            try:
112
                reporting_end_datetime_utc = datetime.strptime(reporting_end_datetime_local,
113
                                                               '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \
114
                    timedelta(minutes=timezone_offset)
115
            except ValueError:
116
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
117
                                       description="API.INVALID_REPORTING_PERIOD_ENDS_DATETIME")
118
119
        if reporting_start_datetime_utc >= reporting_end_datetime_utc:
120
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
121
                                   description='API.INVALID_REPORTING_PERIOD_ENDS_DATETIME')
122
123
        ################################################################################################################
124
        # Step 2: query the combined equipment
125
        ################################################################################################################
126
        cnx_system = mysql.connector.connect(**config.myems_system_db)
127
        cursor_system = cnx_system.cursor()
128
129
        cnx_energy = mysql.connector.connect(**config.myems_energy_db)
130
        cursor_energy = cnx_energy.cursor()
131
132
        cnx_historical = mysql.connector.connect(**config.myems_historical_db)
133
        cursor_historical = cnx_historical.cursor()
134
135
        cursor_system.execute(" SELECT id, name, cost_center_id "
136
                              " FROM tbl_combined_equipments "
137
                              " WHERE id = %s ", (combined_equipment_id,))
138
        row_combined_equipment = cursor_system.fetchone()
139
        if row_combined_equipment is None:
140
            if cursor_system:
141
                cursor_system.close()
142
            if cnx_system:
143
                cnx_system.disconnect()
144
145
            if cursor_energy:
146
                cursor_energy.close()
147
            if cnx_energy:
148
                cnx_energy.disconnect()
149
150
            if cnx_historical:
151
                cnx_historical.close()
152
            if cursor_historical:
153
                cursor_historical.disconnect()
154
            raise falcon.HTTPError(falcon.HTTP_404,
155
                                   title='API.NOT_FOUND',
156
                                   description='API.COMBINED_EQUIPMENT_NOT_FOUND')
157
158
        combined_equipment = dict()
159
        combined_equipment['id'] = row_combined_equipment[0]
160
        combined_equipment['name'] = row_combined_equipment[1]
161
        combined_equipment['cost_center_id'] = row_combined_equipment[2]
162
163
        ################################################################################################################
164
        # Step 3: query energy categories
165
        ################################################################################################################
166
        energy_category_set = set()
167
        # query energy categories in base period
168
        cursor_energy.execute(" SELECT DISTINCT(energy_category_id) "
169
                              " FROM tbl_combined_equipment_input_category_hourly "
170
                              " WHERE combined_equipment_id = %s "
171
                              "     AND start_datetime_utc >= %s "
172
                              "     AND start_datetime_utc < %s ",
173
                              (combined_equipment['id'], base_start_datetime_utc, base_end_datetime_utc))
174
        rows_energy_categories = cursor_energy.fetchall()
175
        if rows_energy_categories is not None or len(rows_energy_categories) > 0:
176
            for row_energy_category in rows_energy_categories:
177
                energy_category_set.add(row_energy_category[0])
178
179
        # query energy categories in reporting period
180
        cursor_energy.execute(" SELECT DISTINCT(energy_category_id) "
181
                              " FROM tbl_combined_equipment_input_category_hourly "
182
                              " WHERE combined_equipment_id = %s "
183
                              "     AND start_datetime_utc >= %s "
184
                              "     AND start_datetime_utc < %s ",
185
                              (combined_equipment['id'], reporting_start_datetime_utc, reporting_end_datetime_utc))
186
        rows_energy_categories = cursor_energy.fetchall()
187
        if rows_energy_categories is not None or len(rows_energy_categories) > 0:
188
            for row_energy_category in rows_energy_categories:
189
                energy_category_set.add(row_energy_category[0])
190
191
        # query all energy categories in base period and reporting period
192
        cursor_system.execute(" SELECT id, name, unit_of_measure, kgce, kgco2e "
193
                              " FROM tbl_energy_categories "
194
                              " ORDER BY id ", )
195
        rows_energy_categories = cursor_system.fetchall()
196
        if rows_energy_categories is None or len(rows_energy_categories) == 0:
197
            if cursor_system:
198
                cursor_system.close()
199
            if cnx_system:
200
                cnx_system.disconnect()
201
202
            if cursor_energy:
203
                cursor_energy.close()
204
            if cnx_energy:
205
                cnx_energy.disconnect()
206
207
            if cnx_historical:
208
                cnx_historical.close()
209
            if cursor_historical:
210
                cursor_historical.disconnect()
211
            raise falcon.HTTPError(falcon.HTTP_404,
212
                                   title='API.NOT_FOUND',
213
                                   description='API.ENERGY_CATEGORY_NOT_FOUND')
214
        energy_category_dict = dict()
215
        for row_energy_category in rows_energy_categories:
216
            if row_energy_category[0] in energy_category_set:
217
                energy_category_dict[row_energy_category[0]] = {"name": row_energy_category[1],
218
                                                                "unit_of_measure": row_energy_category[2],
219
                                                                "kgce": row_energy_category[3],
220
                                                                "kgco2e": row_energy_category[4]}
221
222
        ################################################################################################################
223
        # Step 4: query associated points
224
        ################################################################################################################
225
        point_list = list()
226
        cursor_system.execute(" SELECT p.id, p.name, p.units, p.object_type  "
227
                              " FROM tbl_combined_equipments e, tbl_combined_equipments_parameters ep, tbl_points p "
228
                              " WHERE e.id = %s AND e.id = ep.combined_equipment_id AND ep.parameter_type = 'point' "
229
                              "       AND ep.point_id = p.id "
230
                              " ORDER BY p.id ", (combined_equipment['id'],))
231
        rows_points = cursor_system.fetchall()
232
        if rows_points is not None and len(rows_points) > 0:
233
            for row in rows_points:
234
                point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]})
235
236
        ################################################################################################################
237
        # Step 5: query base period energy input
238
        ################################################################################################################
239
        base = dict()
240
        if energy_category_set is not None and len(energy_category_set) > 0:
241
            for energy_category_id in energy_category_set:
242
                base[energy_category_id] = dict()
243
                base[energy_category_id]['timestamps'] = list()
244
                base[energy_category_id]['values'] = list()
245
                base[energy_category_id]['subtotal'] = Decimal(0.0)
246
                base[energy_category_id]['mean'] = None
247
                base[energy_category_id]['median'] = None
248
                base[energy_category_id]['minimum'] = None
249
                base[energy_category_id]['maximum'] = None
250
                base[energy_category_id]['stdev'] = None
251
                base[energy_category_id]['variance'] = None
252
253
                cursor_energy.execute(" SELECT start_datetime_utc, actual_value "
254
                                      " FROM tbl_combined_equipment_input_category_hourly "
255
                                      " WHERE combined_equipment_id = %s "
256
                                      "     AND energy_category_id = %s "
257
                                      "     AND start_datetime_utc >= %s "
258
                                      "     AND start_datetime_utc < %s "
259
                                      " ORDER BY start_datetime_utc ",
260
                                      (combined_equipment['id'],
261
                                       energy_category_id,
262
                                       base_start_datetime_utc,
263
                                       base_end_datetime_utc))
264
                rows_combined_equipment_hourly = cursor_energy.fetchall()
265
266
                rows_combined_equipment_periodically, \
267
                    base[energy_category_id]['mean'], \
268
                    base[energy_category_id]['median'], \
269
                    base[energy_category_id]['minimum'], \
270
                    base[energy_category_id]['maximum'], \
271
                    base[energy_category_id]['stdev'], \
272
                    base[energy_category_id]['variance'] = \
273
                    utilities.statistics_hourly_data_by_period(rows_combined_equipment_hourly,
274
                                                               base_start_datetime_utc,
275
                                                               base_end_datetime_utc,
276
                                                               period_type)
277
278
                for row_combined_equipment_periodically in rows_combined_equipment_periodically:
279
                    current_datetime_local = row_combined_equipment_periodically[0].replace(tzinfo=timezone.utc) + \
280
                                             timedelta(minutes=timezone_offset)
281
                    if period_type == 'hourly':
282
                        current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S')
283
                    elif period_type == 'daily':
284
                        current_datetime = current_datetime_local.strftime('%Y-%m-%d')
285
                    elif period_type == 'monthly':
286
                        current_datetime = current_datetime_local.strftime('%Y-%m')
287
                    elif period_type == 'yearly':
288
                        current_datetime = current_datetime_local.strftime('%Y')
289
290
                    actual_value = Decimal(0.0) if row_combined_equipment_periodically[1] is None \
291
                        else row_combined_equipment_periodically[1]
292
                    base[energy_category_id]['timestamps'].append(current_datetime)
0 ignored issues
show
introduced by
The variable current_datetime does not seem to be defined for all execution paths.
Loading history...
293
                    base[energy_category_id]['values'].append(actual_value)
294
                    base[energy_category_id]['subtotal'] += actual_value
295
296
        ################################################################################################################
297
        # Step 6: query reporting period energy input
298
        ################################################################################################################
299
        reporting = dict()
300
        if energy_category_set is not None and len(energy_category_set) > 0:
301
            for energy_category_id in energy_category_set:
302
                reporting[energy_category_id] = dict()
303
                reporting[energy_category_id]['timestamps'] = list()
304
                reporting[energy_category_id]['values'] = list()
305
                reporting[energy_category_id]['subtotal'] = Decimal(0.0)
306
                reporting[energy_category_id]['mean'] = None
307
                reporting[energy_category_id]['median'] = None
308
                reporting[energy_category_id]['minimum'] = None
309
                reporting[energy_category_id]['maximum'] = None
310
                reporting[energy_category_id]['stdev'] = None
311
                reporting[energy_category_id]['variance'] = None
312
313
                cursor_energy.execute(" SELECT start_datetime_utc, actual_value "
314
                                      " FROM tbl_combined_equipment_input_category_hourly "
315
                                      " WHERE combined_equipment_id = %s "
316
                                      "     AND energy_category_id = %s "
317
                                      "     AND start_datetime_utc >= %s "
318
                                      "     AND start_datetime_utc < %s "
319
                                      " ORDER BY start_datetime_utc ",
320
                                      (combined_equipment['id'],
321
                                       energy_category_id,
322
                                       reporting_start_datetime_utc,
323
                                       reporting_end_datetime_utc))
324
                rows_combined_equipment_hourly = cursor_energy.fetchall()
325
326
                rows_combined_equipment_periodically, \
327
                    reporting[energy_category_id]['mean'], \
328
                    reporting[energy_category_id]['median'], \
329
                    reporting[energy_category_id]['minimum'], \
330
                    reporting[energy_category_id]['maximum'], \
331
                    reporting[energy_category_id]['stdev'], \
332
                    reporting[energy_category_id]['variance'] = \
333
                    utilities.statistics_hourly_data_by_period(rows_combined_equipment_hourly,
334
                                                               reporting_start_datetime_utc,
335
                                                               reporting_end_datetime_utc,
336
                                                               period_type)
337
338
                for row_combined_equipment_periodically in rows_combined_equipment_periodically:
339
                    current_datetime_local = row_combined_equipment_periodically[0].replace(tzinfo=timezone.utc) + \
340
                                             timedelta(minutes=timezone_offset)
341
                    if period_type == 'hourly':
342
                        current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S')
343
                    elif period_type == 'daily':
344
                        current_datetime = current_datetime_local.strftime('%Y-%m-%d')
345
                    elif period_type == 'monthly':
346
                        current_datetime = current_datetime_local.strftime('%Y-%m')
347
                    elif period_type == 'yearly':
348
                        current_datetime = current_datetime_local.strftime('%Y')
349
350
                    actual_value = Decimal(0.0) if row_combined_equipment_periodically[1] is None \
351
                        else row_combined_equipment_periodically[1]
352
                    reporting[energy_category_id]['timestamps'].append(current_datetime)
353
                    reporting[energy_category_id]['values'].append(actual_value)
354
                    reporting[energy_category_id]['subtotal'] += actual_value
355
356
        ################################################################################################################
357
        # Step 7: query tariff data
358
        ################################################################################################################
359
        parameters_data = dict()
360
        parameters_data['names'] = list()
361
        parameters_data['timestamps'] = list()
362
        parameters_data['values'] = list()
363
        if energy_category_set is not None and len(energy_category_set) > 0:
364
            for energy_category_id in energy_category_set:
365
                energy_category_tariff_dict = \
366
                    utilities.get_energy_category_tariffs(combined_equipment['cost_center_id'],
367
                                                          energy_category_id,
368
                                                          reporting_start_datetime_utc,
369
                                                          reporting_end_datetime_utc)
370
                tariff_timestamp_list = list()
371
                tariff_value_list = list()
372
                for k, v in energy_category_tariff_dict.items():
373
                    # convert k from utc to local
374
                    k = k + timedelta(minutes=timezone_offset)
375
                    tariff_timestamp_list.append(k.isoformat()[0:19][0:19])
376
                    tariff_value_list.append(v)
377
378
                parameters_data['names'].append('TARIFF-' + energy_category_dict[energy_category_id]['name'])
379
                parameters_data['timestamps'].append(tariff_timestamp_list)
380
                parameters_data['values'].append(tariff_value_list)
381
382
        ################################################################################################################
383
        # Step 8: query associated points data
384
        ################################################################################################################
385
        for point in point_list:
386
            point_values = []
387
            point_timestamps = []
388
            if point['object_type'] == 'ANALOG_VALUE':
389
                query = (" SELECT utc_date_time, actual_value "
390
                         " FROM tbl_analog_value "
391
                         " WHERE point_id = %s "
392
                         "       AND utc_date_time BETWEEN %s AND %s "
393
                         " ORDER BY utc_date_time ")
394
                cursor_historical.execute(query, (point['id'],
395
                                                  reporting_start_datetime_utc,
396
                                                  reporting_end_datetime_utc))
397
                rows = cursor_historical.fetchall()
398
399
                if rows is not None and len(rows) > 0:
400
                    for row in rows:
401
                        current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \
402
                                                 timedelta(minutes=timezone_offset)
403
                        current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S')
404
                        point_timestamps.append(current_datetime)
405
                        point_values.append(row[1])
406
407
            elif point['object_type'] == 'ENERGY_VALUE':
408
                query = (" SELECT utc_date_time, actual_value "
409
                         " FROM tbl_energy_value "
410
                         " WHERE point_id = %s "
411
                         "       AND utc_date_time BETWEEN %s AND %s "
412
                         " ORDER BY utc_date_time ")
413
                cursor_historical.execute(query, (point['id'],
414
                                                  reporting_start_datetime_utc,
415
                                                  reporting_end_datetime_utc))
416
                rows = cursor_historical.fetchall()
417
418
                if rows is not None and len(rows) > 0:
419
                    for row in rows:
420
                        current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \
421
                                                 timedelta(minutes=timezone_offset)
422
                        current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S')
423
                        point_timestamps.append(current_datetime)
424
                        point_values.append(row[1])
425
            elif point['object_type'] == 'DIGITAL_VALUE':
426
                query = (" SELECT utc_date_time, actual_value "
427
                         " FROM tbl_digital_value "
428
                         " WHERE point_id = %s "
429
                         "       AND utc_date_time BETWEEN %s AND %s ")
430
                cursor_historical.execute(query, (point['id'],
431
                                                  reporting_start_datetime_utc,
432
                                                  reporting_end_datetime_utc))
433
                rows = cursor_historical.fetchall()
434
435
                if rows is not None and len(rows) > 0:
436
                    for row in rows:
437
                        current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \
438
                                                 timedelta(minutes=timezone_offset)
439
                        current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S')
440
                        point_timestamps.append(current_datetime)
441
                        point_values.append(row[1])
442
443
            parameters_data['names'].append(point['name'] + ' (' + point['units'] + ')')
444
            parameters_data['timestamps'].append(point_timestamps)
445
            parameters_data['values'].append(point_values)
446
447
        ################################################################################################################
448
        # Step 9: construct the report
449
        ################################################################################################################
450
        if cursor_system:
451
            cursor_system.close()
452
        if cnx_system:
453
            cnx_system.disconnect()
454
455
        if cursor_energy:
456
            cursor_energy.close()
457
        if cnx_energy:
458
            cnx_energy.disconnect()
459
460
        result = dict()
461
462
        result['combined_equipment'] = dict()
463
        result['combined_equipment']['name'] = combined_equipment['name']
464
465
        result['base_period'] = dict()
466
        result['base_period']['names'] = list()
467
        result['base_period']['units'] = list()
468
        result['base_period']['timestamps'] = list()
469
        result['base_period']['values'] = list()
470
        result['base_period']['subtotals'] = list()
471
        result['base_period']['means'] = list()
472
        result['base_period']['medians'] = list()
473
        result['base_period']['minimums'] = list()
474
        result['base_period']['maximums'] = list()
475
        result['base_period']['stdevs'] = list()
476
        result['base_period']['variances'] = list()
477
478
        if energy_category_set is not None and len(energy_category_set) > 0:
479
            for energy_category_id in energy_category_set:
480
                result['base_period']['names'].append(energy_category_dict[energy_category_id]['name'])
481
                result['base_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure'])
482
                result['base_period']['timestamps'].append(base[energy_category_id]['timestamps'])
483
                result['base_period']['values'].append(base[energy_category_id]['values'])
484
                result['base_period']['subtotals'].append(base[energy_category_id]['subtotal'])
485
                result['base_period']['means'].append(base[energy_category_id]['mean'])
486
                result['base_period']['medians'].append(base[energy_category_id]['median'])
487
                result['base_period']['minimums'].append(base[energy_category_id]['minimum'])
488
                result['base_period']['maximums'].append(base[energy_category_id]['maximum'])
489
                result['base_period']['stdevs'].append(base[energy_category_id]['stdev'])
490
                result['base_period']['variances'].append(base[energy_category_id]['variance'])
491
492
        result['reporting_period'] = dict()
493
        result['reporting_period']['names'] = list()
494
        result['reporting_period']['energy_category_ids'] = list()
495
        result['reporting_period']['units'] = list()
496
        result['reporting_period']['timestamps'] = list()
497
        result['reporting_period']['values'] = list()
498
        result['reporting_period']['subtotals'] = list()
499
        result['reporting_period']['means'] = list()
500
        result['reporting_period']['means_increment_rate'] = list()
501
        result['reporting_period']['medians'] = list()
502
        result['reporting_period']['medians_increment_rate'] = list()
503
        result['reporting_period']['minimums'] = list()
504
        result['reporting_period']['minimums_increment_rate'] = list()
505
        result['reporting_period']['maximums'] = list()
506
        result['reporting_period']['maximums_increment_rate'] = list()
507
        result['reporting_period']['stdevs'] = list()
508
        result['reporting_period']['stdevs_increment_rate'] = list()
509
        result['reporting_period']['variances'] = list()
510
        result['reporting_period']['variances_increment_rate'] = list()
511
512
        if energy_category_set is not None and len(energy_category_set) > 0:
513
            for energy_category_id in energy_category_set:
514
                result['reporting_period']['names'].append(energy_category_dict[energy_category_id]['name'])
515
                result['reporting_period']['energy_category_ids'].append(energy_category_id)
516
                result['reporting_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure'])
517
                result['reporting_period']['timestamps'].append(reporting[energy_category_id]['timestamps'])
518
                result['reporting_period']['values'].append(reporting[energy_category_id]['values'])
519
                result['reporting_period']['subtotals'].append(reporting[energy_category_id]['subtotal'])
520
                result['reporting_period']['means'].append(reporting[energy_category_id]['mean'])
521
                result['reporting_period']['means_increment_rate'].append(
522
                    (reporting[energy_category_id]['mean'] - base[energy_category_id]['mean']) /
523
                    base[energy_category_id]['mean'] if (base[energy_category_id]['mean'] is not None and
524
                                                         base[energy_category_id]['mean'] > Decimal(0.0))
525
                    else None)
526
                result['reporting_period']['medians'].append(reporting[energy_category_id]['median'])
527
                result['reporting_period']['medians_increment_rate'].append(
528
                    (reporting[energy_category_id]['median'] - base[energy_category_id]['median']) /
529
                    base[energy_category_id]['median'] if (base[energy_category_id]['median'] is not None and
530
                                                           base[energy_category_id]['median'] > Decimal(0.0))
531
                    else None)
532
                result['reporting_period']['minimums'].append(reporting[energy_category_id]['minimum'])
533
                result['reporting_period']['minimums_increment_rate'].append(
534
                    (reporting[energy_category_id]['minimum'] - base[energy_category_id]['minimum']) /
535
                    base[energy_category_id]['minimum'] if (base[energy_category_id]['minimum'] is not None and
536
                                                            base[energy_category_id]['minimum'] > Decimal(0.0))
537
                    else None)
538
                result['reporting_period']['maximums'].append(reporting[energy_category_id]['maximum'])
539
                result['reporting_period']['maximums_increment_rate'].append(
540
                    (reporting[energy_category_id]['maximum'] - base[energy_category_id]['maximum']) /
541
                    base[energy_category_id]['maximum'] if (base[energy_category_id]['maximum'] is not None and
542
                                                            base[energy_category_id]['maximum'] > Decimal(0.0))
543
                    else None)
544
                result['reporting_period']['stdevs'].append(reporting[energy_category_id]['stdev'])
545
                result['reporting_period']['stdevs_increment_rate'].append(
546
                    (reporting[energy_category_id]['stdev'] - base[energy_category_id]['stdev']) /
547
                    base[energy_category_id]['stdev'] if (base[energy_category_id]['stdev'] is not None and
548
                                                          base[energy_category_id]['stdev'] > Decimal(0.0))
549
                    else None)
550
                result['reporting_period']['variances'].append(reporting[energy_category_id]['variance'])
551
                result['reporting_period']['variances_increment_rate'].append(
552
                    (reporting[energy_category_id]['variance'] - base[energy_category_id]['variance']) /
553
                    base[energy_category_id]['variance'] if (base[energy_category_id]['variance'] is not None and
554
                                                             base[energy_category_id]['variance'] > Decimal(0.0))
555
                    else None)
556
557
        result['parameters'] = {
558
            "names": parameters_data['names'],
559
            "timestamps": parameters_data['timestamps'],
560
            "values": parameters_data['values']
561
        }
562
563
        resp.body = json.dumps(result)
564