@@ 10-614 (lines=605) @@ | ||
7 | from decimal import * |
|
8 | ||
9 | ||
10 | class Reporting: |
|
11 | @staticmethod |
|
12 | def __init__(): |
|
13 | pass |
|
14 | ||
15 | @staticmethod |
|
16 | def on_options(req, resp): |
|
17 | resp.status = falcon.HTTP_200 |
|
18 | ||
19 | #################################################################################################################### |
|
20 | # PROCEDURES |
|
21 | # Step 1: valid parameters |
|
22 | # Step 2: query the shopfloor |
|
23 | # Step 3: query energy categories |
|
24 | # Step 4: query associated sensors |
|
25 | # Step 5: query associated points |
|
26 | # Step 6: query base period energy input |
|
27 | # Step 7: query reporting period energy input |
|
28 | # Step 8: query tariff data |
|
29 | # Step 9: query associated sensors and points data |
|
30 | # Step 10: construct the report |
|
31 | #################################################################################################################### |
|
32 | @staticmethod |
|
33 | def on_get(req, resp): |
|
34 | print(req.params) |
|
35 | shopfloor_id = req.params.get('shopfloorid') |
|
36 | period_type = req.params.get('periodtype') |
|
37 | base_start_datetime_local = req.params.get('baseperiodstartdatetime') |
|
38 | base_end_datetime_local = req.params.get('baseperiodenddatetime') |
|
39 | reporting_start_datetime_local = req.params.get('reportingperiodstartdatetime') |
|
40 | reporting_end_datetime_local = req.params.get('reportingperiodenddatetime') |
|
41 | ||
42 | ################################################################################################################ |
|
43 | # Step 1: valid parameters |
|
44 | ################################################################################################################ |
|
45 | if shopfloor_id is None: |
|
46 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_SHOPFLOOR_ID') |
|
47 | else: |
|
48 | shopfloor_id = str.strip(shopfloor_id) |
|
49 | if not shopfloor_id.isdigit() or int(shopfloor_id) <= 0: |
|
50 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_SHOPFLOOR_ID') |
|
51 | ||
52 | if period_type is None: |
|
53 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE') |
|
54 | else: |
|
55 | period_type = str.strip(period_type) |
|
56 | if period_type not in ['hourly', 'daily', 'monthly', 'yearly']: |
|
57 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE') |
|
58 | ||
59 | timezone_offset = int(config.utc_offset[1:3]) * 60 + int(config.utc_offset[4:6]) |
|
60 | if config.utc_offset[0] == '-': |
|
61 | timezone_offset = -timezone_offset |
|
62 | ||
63 | base_start_datetime_utc = None |
|
64 | if base_start_datetime_local is not None and len(str.strip(base_start_datetime_local)) > 0: |
|
65 | base_start_datetime_local = str.strip(base_start_datetime_local) |
|
66 | try: |
|
67 | base_start_datetime_utc = datetime.strptime(base_start_datetime_local, |
|
68 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
|
69 | timedelta(minutes=timezone_offset) |
|
70 | except ValueError: |
|
71 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
72 | description="API.INVALID_BASE_PERIOD_BEGINS_DATETIME") |
|
73 | ||
74 | base_end_datetime_utc = None |
|
75 | if base_end_datetime_local is not None and len(str.strip(base_end_datetime_local)) > 0: |
|
76 | base_end_datetime_local = str.strip(base_end_datetime_local) |
|
77 | try: |
|
78 | base_end_datetime_utc = datetime.strptime(base_end_datetime_local, |
|
79 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
|
80 | timedelta(minutes=timezone_offset) |
|
81 | except ValueError: |
|
82 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
83 | description="API.INVALID_BASE_PERIOD_ENDS_DATETIME") |
|
84 | ||
85 | if base_start_datetime_utc is not None and base_end_datetime_utc is not None and \ |
|
86 | base_start_datetime_utc >= base_end_datetime_utc: |
|
87 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
88 | description='API.INVALID_BASE_PERIOD_ENDS_DATETIME') |
|
89 | ||
90 | if reporting_start_datetime_local is None: |
|
91 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
92 | description="API.INVALID_REPORTING_PERIOD_BEGINS_DATETIME") |
|
93 | else: |
|
94 | reporting_start_datetime_local = str.strip(reporting_start_datetime_local) |
|
95 | try: |
|
96 | reporting_start_datetime_utc = datetime.strptime(reporting_start_datetime_local, |
|
97 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
|
98 | timedelta(minutes=timezone_offset) |
|
99 | except ValueError: |
|
100 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
101 | description="API.INVALID_REPORTING_PERIOD_BEGINS_DATETIME") |
|
102 | ||
103 | if reporting_end_datetime_local is None: |
|
104 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
105 | description="API.INVALID_REPORTING_PERIOD_ENDS_DATETIME") |
|
106 | else: |
|
107 | reporting_end_datetime_local = str.strip(reporting_end_datetime_local) |
|
108 | try: |
|
109 | reporting_end_datetime_utc = datetime.strptime(reporting_end_datetime_local, |
|
110 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
|
111 | timedelta(minutes=timezone_offset) |
|
112 | except ValueError: |
|
113 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
114 | description="API.INVALID_REPORTING_PERIOD_ENDS_DATETIME") |
|
115 | ||
116 | if reporting_start_datetime_utc >= reporting_end_datetime_utc: |
|
117 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
118 | description='API.INVALID_REPORTING_PERIOD_ENDS_DATETIME') |
|
119 | ||
120 | ################################################################################################################ |
|
121 | # Step 2: query the shopfloor |
|
122 | ################################################################################################################ |
|
123 | cnx_system = mysql.connector.connect(**config.myems_system_db) |
|
124 | cursor_system = cnx_system.cursor() |
|
125 | ||
126 | cnx_energy = mysql.connector.connect(**config.myems_energy_db) |
|
127 | cursor_energy = cnx_energy.cursor() |
|
128 | ||
129 | cnx_historical = mysql.connector.connect(**config.myems_historical_db) |
|
130 | cursor_historical = cnx_historical.cursor() |
|
131 | ||
132 | cursor_system.execute(" SELECT id, name, area, cost_center_id " |
|
133 | " FROM tbl_shopfloors " |
|
134 | " WHERE id = %s ", (shopfloor_id,)) |
|
135 | row_shopfloor = cursor_system.fetchone() |
|
136 | if row_shopfloor is None: |
|
137 | if cursor_system: |
|
138 | cursor_system.close() |
|
139 | if cnx_system: |
|
140 | cnx_system.disconnect() |
|
141 | ||
142 | if cursor_energy: |
|
143 | cursor_energy.close() |
|
144 | if cnx_energy: |
|
145 | cnx_energy.disconnect() |
|
146 | ||
147 | if cnx_historical: |
|
148 | cnx_historical.close() |
|
149 | if cursor_historical: |
|
150 | cursor_historical.disconnect() |
|
151 | raise falcon.HTTPError(falcon.HTTP_404, title='API.NOT_FOUND', description='API.SHOPFLOOR_NOT_FOUND') |
|
152 | ||
153 | shopfloor = dict() |
|
154 | shopfloor['id'] = row_shopfloor[0] |
|
155 | shopfloor['name'] = row_shopfloor[1] |
|
156 | shopfloor['area'] = row_shopfloor[2] |
|
157 | shopfloor['cost_center_id'] = row_shopfloor[3] |
|
158 | ||
159 | ################################################################################################################ |
|
160 | # Step 3: query energy categories |
|
161 | ################################################################################################################ |
|
162 | energy_category_set = set() |
|
163 | # query energy categories in base period |
|
164 | cursor_energy.execute(" SELECT DISTINCT(energy_category_id) " |
|
165 | " FROM tbl_shopfloor_input_category_hourly " |
|
166 | " WHERE shopfloor_id = %s " |
|
167 | " AND start_datetime_utc >= %s " |
|
168 | " AND start_datetime_utc < %s ", |
|
169 | (shopfloor['id'], base_start_datetime_utc, base_end_datetime_utc)) |
|
170 | rows_energy_categories = cursor_energy.fetchall() |
|
171 | if rows_energy_categories is not None or len(rows_energy_categories) > 0: |
|
172 | for row_energy_category in rows_energy_categories: |
|
173 | energy_category_set.add(row_energy_category[0]) |
|
174 | ||
175 | # query energy categories in reporting period |
|
176 | cursor_energy.execute(" SELECT DISTINCT(energy_category_id) " |
|
177 | " FROM tbl_shopfloor_input_category_hourly " |
|
178 | " WHERE shopfloor_id = %s " |
|
179 | " AND start_datetime_utc >= %s " |
|
180 | " AND start_datetime_utc < %s ", |
|
181 | (shopfloor['id'], reporting_start_datetime_utc, reporting_end_datetime_utc)) |
|
182 | rows_energy_categories = cursor_energy.fetchall() |
|
183 | if rows_energy_categories is not None or len(rows_energy_categories) > 0: |
|
184 | for row_energy_category in rows_energy_categories: |
|
185 | energy_category_set.add(row_energy_category[0]) |
|
186 | ||
187 | # query all energy categories in base period and reporting period |
|
188 | cursor_system.execute(" SELECT id, name, unit_of_measure, kgce, kgco2e " |
|
189 | " FROM tbl_energy_categories " |
|
190 | " ORDER BY id ", ) |
|
191 | rows_energy_categories = cursor_system.fetchall() |
|
192 | if rows_energy_categories is None or len(rows_energy_categories) == 0: |
|
193 | if cursor_system: |
|
194 | cursor_system.close() |
|
195 | if cnx_system: |
|
196 | cnx_system.disconnect() |
|
197 | ||
198 | if cursor_energy: |
|
199 | cursor_energy.close() |
|
200 | if cnx_energy: |
|
201 | cnx_energy.disconnect() |
|
202 | ||
203 | if cnx_historical: |
|
204 | cnx_historical.close() |
|
205 | if cursor_historical: |
|
206 | cursor_historical.disconnect() |
|
207 | raise falcon.HTTPError(falcon.HTTP_404, |
|
208 | title='API.NOT_FOUND', |
|
209 | description='API.ENERGY_CATEGORY_NOT_FOUND') |
|
210 | energy_category_dict = dict() |
|
211 | for row_energy_category in rows_energy_categories: |
|
212 | if row_energy_category[0] in energy_category_set: |
|
213 | energy_category_dict[row_energy_category[0]] = {"name": row_energy_category[1], |
|
214 | "unit_of_measure": row_energy_category[2], |
|
215 | "kgce": row_energy_category[3], |
|
216 | "kgco2e": row_energy_category[4]} |
|
217 | ||
218 | ################################################################################################################ |
|
219 | # Step 4: query associated sensors |
|
220 | ################################################################################################################ |
|
221 | point_list = list() |
|
222 | cursor_system.execute(" SELECT p.id, p.name, p.units, p.object_type " |
|
223 | " FROM tbl_shopfloors st, tbl_sensors se, tbl_shopfloors_sensors ss, " |
|
224 | " tbl_points p, tbl_sensors_points sp " |
|
225 | " WHERE st.id = %s AND st.id = ss.shopfloor_id AND ss.sensor_id = se.id " |
|
226 | " AND se.id = sp.sensor_id AND sp.point_id = p.id " |
|
227 | " ORDER BY p.id ", (shopfloor['id'],)) |
|
228 | rows_points = cursor_system.fetchall() |
|
229 | if rows_points is not None and len(rows_points) > 0: |
|
230 | for row in rows_points: |
|
231 | point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]}) |
|
232 | ||
233 | ################################################################################################################ |
|
234 | # Step 5: query associated points |
|
235 | ################################################################################################################ |
|
236 | cursor_system.execute(" SELECT p.id, p.name, p.units, p.object_type " |
|
237 | " FROM tbl_shopfloors s, tbl_shopfloors_points sp, tbl_points p " |
|
238 | " WHERE s.id = %s AND s.id = sp.shopfloor_id AND sp.point_id = p.id " |
|
239 | " ORDER BY p.id ", (shopfloor['id'],)) |
|
240 | rows_points = cursor_system.fetchall() |
|
241 | if rows_points is not None and len(rows_points) > 0: |
|
242 | for row in rows_points: |
|
243 | point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]}) |
|
244 | ||
245 | ################################################################################################################ |
|
246 | # Step 6: query base period energy input |
|
247 | ################################################################################################################ |
|
248 | base = dict() |
|
249 | if energy_category_set is not None and len(energy_category_set) > 0: |
|
250 | for energy_category_id in energy_category_set: |
|
251 | base[energy_category_id] = dict() |
|
252 | base[energy_category_id]['timestamps'] = list() |
|
253 | base[energy_category_id]['values'] = list() |
|
254 | base[energy_category_id]['subtotal'] = Decimal(0.0) |
|
255 | base[energy_category_id]['mean'] = None |
|
256 | base[energy_category_id]['median'] = None |
|
257 | base[energy_category_id]['minimum'] = None |
|
258 | base[energy_category_id]['maximum'] = None |
|
259 | base[energy_category_id]['stdev'] = None |
|
260 | base[energy_category_id]['variance'] = None |
|
261 | ||
262 | cursor_energy.execute(" SELECT start_datetime_utc, actual_value " |
|
263 | " FROM tbl_shopfloor_input_category_hourly " |
|
264 | " WHERE shopfloor_id = %s " |
|
265 | " AND energy_category_id = %s " |
|
266 | " AND start_datetime_utc >= %s " |
|
267 | " AND start_datetime_utc < %s " |
|
268 | " ORDER BY start_datetime_utc ", |
|
269 | (shopfloor['id'], |
|
270 | energy_category_id, |
|
271 | base_start_datetime_utc, |
|
272 | base_end_datetime_utc)) |
|
273 | rows_shopfloor_hourly = cursor_energy.fetchall() |
|
274 | ||
275 | rows_shopfloor_periodically, \ |
|
276 | base[energy_category_id]['mean'], \ |
|
277 | base[energy_category_id]['median'], \ |
|
278 | base[energy_category_id]['minimum'], \ |
|
279 | base[energy_category_id]['maximum'], \ |
|
280 | base[energy_category_id]['stdev'], \ |
|
281 | base[energy_category_id]['variance'] = \ |
|
282 | utilities.statistics_hourly_data_by_period(rows_shopfloor_hourly, |
|
283 | base_start_datetime_utc, |
|
284 | base_end_datetime_utc, |
|
285 | period_type) |
|
286 | ||
287 | for row_shopfloor_periodically in rows_shopfloor_periodically: |
|
288 | current_datetime_local = row_shopfloor_periodically[0].replace(tzinfo=timezone.utc) + \ |
|
289 | timedelta(minutes=timezone_offset) |
|
290 | if period_type == 'hourly': |
|
291 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
|
292 | elif period_type == 'daily': |
|
293 | current_datetime = current_datetime_local.strftime('%Y-%m-%d') |
|
294 | elif period_type == 'monthly': |
|
295 | current_datetime = current_datetime_local.strftime('%Y-%m') |
|
296 | elif period_type == 'yearly': |
|
297 | current_datetime = current_datetime_local.strftime('%Y') |
|
298 | ||
299 | actual_value = Decimal(0.0) if row_shopfloor_periodically[1] is None \ |
|
300 | else row_shopfloor_periodically[1] |
|
301 | base[energy_category_id]['timestamps'].append(current_datetime) |
|
302 | base[energy_category_id]['values'].append(actual_value) |
|
303 | base[energy_category_id]['subtotal'] += actual_value |
|
304 | ||
305 | ################################################################################################################ |
|
306 | # Step 7: query reporting period energy input |
|
307 | ################################################################################################################ |
|
308 | reporting = dict() |
|
309 | if energy_category_set is not None and len(energy_category_set) > 0: |
|
310 | for energy_category_id in energy_category_set: |
|
311 | reporting[energy_category_id] = dict() |
|
312 | reporting[energy_category_id]['timestamps'] = list() |
|
313 | reporting[energy_category_id]['values'] = list() |
|
314 | reporting[energy_category_id]['subtotal'] = Decimal(0.0) |
|
315 | reporting[energy_category_id]['mean'] = None |
|
316 | reporting[energy_category_id]['median'] = None |
|
317 | reporting[energy_category_id]['minimum'] = None |
|
318 | reporting[energy_category_id]['maximum'] = None |
|
319 | reporting[energy_category_id]['stdev'] = None |
|
320 | reporting[energy_category_id]['variance'] = None |
|
321 | ||
322 | cursor_energy.execute(" SELECT start_datetime_utc, actual_value " |
|
323 | " FROM tbl_shopfloor_input_category_hourly " |
|
324 | " WHERE shopfloor_id = %s " |
|
325 | " AND energy_category_id = %s " |
|
326 | " AND start_datetime_utc >= %s " |
|
327 | " AND start_datetime_utc < %s " |
|
328 | " ORDER BY start_datetime_utc ", |
|
329 | (shopfloor['id'], |
|
330 | energy_category_id, |
|
331 | reporting_start_datetime_utc, |
|
332 | reporting_end_datetime_utc)) |
|
333 | rows_shopfloor_hourly = cursor_energy.fetchall() |
|
334 | ||
335 | rows_shopfloor_periodically, \ |
|
336 | reporting[energy_category_id]['mean'], \ |
|
337 | reporting[energy_category_id]['median'], \ |
|
338 | reporting[energy_category_id]['minimum'], \ |
|
339 | reporting[energy_category_id]['maximum'], \ |
|
340 | reporting[energy_category_id]['stdev'], \ |
|
341 | reporting[energy_category_id]['variance'] = \ |
|
342 | utilities.statistics_hourly_data_by_period(rows_shopfloor_hourly, |
|
343 | reporting_start_datetime_utc, |
|
344 | reporting_end_datetime_utc, |
|
345 | period_type) |
|
346 | ||
347 | for row_shopfloor_periodically in rows_shopfloor_periodically: |
|
348 | current_datetime_local = row_shopfloor_periodically[0].replace(tzinfo=timezone.utc) + \ |
|
349 | timedelta(minutes=timezone_offset) |
|
350 | if period_type == 'hourly': |
|
351 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
|
352 | elif period_type == 'daily': |
|
353 | current_datetime = current_datetime_local.strftime('%Y-%m-%d') |
|
354 | elif period_type == 'monthly': |
|
355 | current_datetime = current_datetime_local.strftime('%Y-%m') |
|
356 | elif period_type == 'yearly': |
|
357 | current_datetime = current_datetime_local.strftime('%Y') |
|
358 | ||
359 | actual_value = Decimal(0.0) if row_shopfloor_periodically[1] is None \ |
|
360 | else row_shopfloor_periodically[1] |
|
361 | reporting[energy_category_id]['timestamps'].append(current_datetime) |
|
362 | reporting[energy_category_id]['values'].append(actual_value) |
|
363 | reporting[energy_category_id]['subtotal'] += actual_value |
|
364 | ||
365 | ################################################################################################################ |
|
366 | # Step 8: query tariff data |
|
367 | ################################################################################################################ |
|
368 | parameters_data = dict() |
|
369 | parameters_data['names'] = list() |
|
370 | parameters_data['timestamps'] = list() |
|
371 | parameters_data['values'] = list() |
|
372 | if energy_category_set is not None and len(energy_category_set) > 0: |
|
373 | for energy_category_id in energy_category_set: |
|
374 | energy_category_tariff_dict = utilities.get_energy_category_tariffs(shopfloor['cost_center_id'], |
|
375 | energy_category_id, |
|
376 | reporting_start_datetime_utc, |
|
377 | reporting_end_datetime_utc) |
|
378 | tariff_timestamp_list = list() |
|
379 | tariff_value_list = list() |
|
380 | for k, v in energy_category_tariff_dict.items(): |
|
381 | # convert k from utc to local |
|
382 | k = k + timedelta(minutes=timezone_offset) |
|
383 | tariff_timestamp_list.append(k.isoformat()[0:19][0:19]) |
|
384 | tariff_value_list.append(v) |
|
385 | ||
386 | parameters_data['names'].append('TARIFF-' + energy_category_dict[energy_category_id]['name']) |
|
387 | parameters_data['timestamps'].append(tariff_timestamp_list) |
|
388 | parameters_data['values'].append(tariff_value_list) |
|
389 | ||
390 | ################################################################################################################ |
|
391 | # Step 9: query associated sensors and points data |
|
392 | ################################################################################################################ |
|
393 | for point in point_list: |
|
394 | point_values = [] |
|
395 | point_timestamps = [] |
|
396 | if point['object_type'] == 'ANALOG_VALUE': |
|
397 | query = (" SELECT utc_date_time, actual_value " |
|
398 | " FROM tbl_analog_value " |
|
399 | " WHERE point_id = %s " |
|
400 | " AND utc_date_time BETWEEN %s AND %s " |
|
401 | " ORDER BY utc_date_time ") |
|
402 | cursor_historical.execute(query, (point['id'], |
|
403 | reporting_start_datetime_utc, |
|
404 | reporting_end_datetime_utc)) |
|
405 | rows = cursor_historical.fetchall() |
|
406 | ||
407 | if rows is not None and len(rows) > 0: |
|
408 | for row in rows: |
|
409 | current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
|
410 | timedelta(minutes=timezone_offset) |
|
411 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
|
412 | point_timestamps.append(current_datetime) |
|
413 | point_values.append(row[1]) |
|
414 | ||
415 | elif point['object_type'] == 'ENERGY_VALUE': |
|
416 | query = (" SELECT utc_date_time, actual_value " |
|
417 | " FROM tbl_energy_value " |
|
418 | " WHERE point_id = %s " |
|
419 | " AND utc_date_time BETWEEN %s AND %s " |
|
420 | " ORDER BY utc_date_time ") |
|
421 | cursor_historical.execute(query, (point['id'], |
|
422 | reporting_start_datetime_utc, |
|
423 | reporting_end_datetime_utc)) |
|
424 | rows = cursor_historical.fetchall() |
|
425 | ||
426 | if rows is not None and len(rows) > 0: |
|
427 | for row in rows: |
|
428 | current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
|
429 | timedelta(minutes=timezone_offset) |
|
430 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
|
431 | point_timestamps.append(current_datetime) |
|
432 | point_values.append(row[1]) |
|
433 | elif point['object_type'] == 'DIGITAL_VALUE': |
|
434 | query = (" SELECT utc_date_time, actual_value " |
|
435 | " FROM tbl_digital_value " |
|
436 | " WHERE point_id = %s " |
|
437 | " AND utc_date_time BETWEEN %s AND %s ") |
|
438 | cursor_historical.execute(query, (point['id'], |
|
439 | reporting_start_datetime_utc, |
|
440 | reporting_end_datetime_utc)) |
|
441 | rows = cursor_historical.fetchall() |
|
442 | ||
443 | if rows is not None and len(rows) > 0: |
|
444 | for row in rows: |
|
445 | current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
|
446 | timedelta(minutes=timezone_offset) |
|
447 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
|
448 | point_timestamps.append(current_datetime) |
|
449 | point_values.append(row[1]) |
|
450 | ||
451 | parameters_data['names'].append(point['name'] + ' (' + point['units'] + ')') |
|
452 | parameters_data['timestamps'].append(point_timestamps) |
|
453 | parameters_data['values'].append(point_values) |
|
454 | ||
455 | ################################################################################################################ |
|
456 | # Step 10: construct the report |
|
457 | ################################################################################################################ |
|
458 | if cursor_system: |
|
459 | cursor_system.close() |
|
460 | if cnx_system: |
|
461 | cnx_system.disconnect() |
|
462 | ||
463 | if cursor_energy: |
|
464 | cursor_energy.close() |
|
465 | if cnx_energy: |
|
466 | cnx_energy.disconnect() |
|
467 | ||
468 | result = dict() |
|
469 | ||
470 | result['shopfloor'] = dict() |
|
471 | result['shopfloor']['name'] = shopfloor['name'] |
|
472 | result['shopfloor']['area'] = shopfloor['area'] |
|
473 | ||
474 | result['base_period'] = dict() |
|
475 | result['base_period']['names'] = list() |
|
476 | result['base_period']['units'] = list() |
|
477 | result['base_period']['timestamps'] = list() |
|
478 | result['base_period']['values'] = list() |
|
479 | result['base_period']['subtotals'] = list() |
|
480 | result['base_period']['means'] = list() |
|
481 | result['base_period']['medians'] = list() |
|
482 | result['base_period']['minimums'] = list() |
|
483 | result['base_period']['maximums'] = list() |
|
484 | result['base_period']['stdevs'] = list() |
|
485 | result['base_period']['variances'] = list() |
|
486 | ||
487 | if energy_category_set is not None and len(energy_category_set) > 0: |
|
488 | for energy_category_id in energy_category_set: |
|
489 | result['base_period']['names'].append(energy_category_dict[energy_category_id]['name']) |
|
490 | result['base_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure']) |
|
491 | result['base_period']['timestamps'].append(base[energy_category_id]['timestamps']) |
|
492 | result['base_period']['values'].append(base[energy_category_id]['values']) |
|
493 | result['base_period']['subtotals'].append(base[energy_category_id]['subtotal']) |
|
494 | result['base_period']['means'].append(base[energy_category_id]['mean']) |
|
495 | result['base_period']['medians'].append(base[energy_category_id]['median']) |
|
496 | result['base_period']['minimums'].append(base[energy_category_id]['minimum']) |
|
497 | result['base_period']['maximums'].append(base[energy_category_id]['maximum']) |
|
498 | result['base_period']['stdevs'].append(base[energy_category_id]['stdev']) |
|
499 | result['base_period']['variances'].append(base[energy_category_id]['variance']) |
|
500 | ||
501 | result['reporting_period'] = dict() |
|
502 | result['reporting_period']['names'] = list() |
|
503 | result['reporting_period']['energy_category_ids'] = list() |
|
504 | result['reporting_period']['units'] = list() |
|
505 | result['reporting_period']['timestamps'] = list() |
|
506 | result['reporting_period']['values'] = list() |
|
507 | result['reporting_period']['subtotals'] = list() |
|
508 | result['reporting_period']['means'] = list() |
|
509 | result['reporting_period']['means_per_unit_area'] = list() |
|
510 | result['reporting_period']['means_increment_rate'] = list() |
|
511 | result['reporting_period']['medians'] = list() |
|
512 | result['reporting_period']['medians_per_unit_area'] = list() |
|
513 | result['reporting_period']['medians_increment_rate'] = list() |
|
514 | result['reporting_period']['minimums'] = list() |
|
515 | result['reporting_period']['minimums_per_unit_area'] = list() |
|
516 | result['reporting_period']['minimums_increment_rate'] = list() |
|
517 | result['reporting_period']['maximums'] = list() |
|
518 | result['reporting_period']['maximums_per_unit_area'] = list() |
|
519 | result['reporting_period']['maximums_increment_rate'] = list() |
|
520 | result['reporting_period']['stdevs'] = list() |
|
521 | result['reporting_period']['stdevs_per_unit_area'] = list() |
|
522 | result['reporting_period']['stdevs_increment_rate'] = list() |
|
523 | result['reporting_period']['variances'] = list() |
|
524 | result['reporting_period']['variances_per_unit_area'] = list() |
|
525 | result['reporting_period']['variances_increment_rate'] = list() |
|
526 | ||
527 | if energy_category_set is not None and len(energy_category_set) > 0: |
|
528 | for energy_category_id in energy_category_set: |
|
529 | result['reporting_period']['names'].append(energy_category_dict[energy_category_id]['name']) |
|
530 | result['reporting_period']['energy_category_ids'].append(energy_category_id) |
|
531 | result['reporting_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure']) |
|
532 | result['reporting_period']['timestamps'].append(reporting[energy_category_id]['timestamps']) |
|
533 | result['reporting_period']['values'].append(reporting[energy_category_id]['values']) |
|
534 | result['reporting_period']['subtotals'].append(reporting[energy_category_id]['subtotal']) |
|
535 | result['reporting_period']['means'].append(reporting[energy_category_id]['mean']) |
|
536 | result['reporting_period']['means_per_unit_area'].append( |
|
537 | reporting[energy_category_id]['mean'] / shopfloor['area'] |
|
538 | if reporting[energy_category_id]['mean'] is not None and |
|
539 | shopfloor['area'] is not None and |
|
540 | shopfloor['area'] > Decimal(0.0) |
|
541 | else None) |
|
542 | result['reporting_period']['means_increment_rate'].append( |
|
543 | (reporting[energy_category_id]['mean'] - base[energy_category_id]['mean']) / |
|
544 | base[energy_category_id]['mean'] if (base[energy_category_id]['mean'] is not None and |
|
545 | base[energy_category_id]['mean'] > Decimal(0.0)) |
|
546 | else None) |
|
547 | result['reporting_period']['medians'].append(reporting[energy_category_id]['median']) |
|
548 | result['reporting_period']['medians_per_unit_area'].append( |
|
549 | reporting[energy_category_id]['median'] / shopfloor['area'] |
|
550 | if reporting[energy_category_id]['median'] is not None and |
|
551 | shopfloor['area'] is not None and |
|
552 | shopfloor['area'] > Decimal(0.0) |
|
553 | else None) |
|
554 | result['reporting_period']['medians_increment_rate'].append( |
|
555 | (reporting[energy_category_id]['median'] - base[energy_category_id]['median']) / |
|
556 | base[energy_category_id]['median'] if (base[energy_category_id]['median'] is not None and |
|
557 | base[energy_category_id]['median'] > Decimal(0.0)) |
|
558 | else None) |
|
559 | result['reporting_period']['minimums'].append(reporting[energy_category_id]['minimum']) |
|
560 | result['reporting_period']['minimums_per_unit_area'].append( |
|
561 | reporting[energy_category_id]['minimum'] / shopfloor['area'] |
|
562 | if reporting[energy_category_id]['minimum'] is not None and |
|
563 | shopfloor['area'] is not None and |
|
564 | shopfloor['area'] > Decimal(0.0) |
|
565 | else None) |
|
566 | result['reporting_period']['minimums_increment_rate'].append( |
|
567 | (reporting[energy_category_id]['minimum'] - base[energy_category_id]['minimum']) / |
|
568 | base[energy_category_id]['minimum'] if (base[energy_category_id]['minimum'] is not None and |
|
569 | base[energy_category_id]['minimum'] > Decimal(0.0)) |
|
570 | else None) |
|
571 | result['reporting_period']['maximums'].append(reporting[energy_category_id]['maximum']) |
|
572 | result['reporting_period']['maximums_per_unit_area'].append( |
|
573 | reporting[energy_category_id]['maximum'] / shopfloor['area'] |
|
574 | if reporting[energy_category_id]['maximum'] is not None and |
|
575 | shopfloor['area'] is not None and |
|
576 | shopfloor['area'] > Decimal(0.0) |
|
577 | else None) |
|
578 | result['reporting_period']['maximums_increment_rate'].append( |
|
579 | (reporting[energy_category_id]['maximum'] - base[energy_category_id]['maximum']) / |
|
580 | base[energy_category_id]['maximum'] if (base[energy_category_id]['maximum'] is not None and |
|
581 | base[energy_category_id]['maximum'] > Decimal(0.0)) |
|
582 | else None) |
|
583 | result['reporting_period']['stdevs'].append(reporting[energy_category_id]['stdev']) |
|
584 | result['reporting_period']['stdevs_per_unit_area'].append( |
|
585 | reporting[energy_category_id]['stdev'] / shopfloor['area'] |
|
586 | if reporting[energy_category_id]['stdev'] is not None and |
|
587 | shopfloor['area'] is not None and |
|
588 | shopfloor['area'] > Decimal(0.0) |
|
589 | else None) |
|
590 | result['reporting_period']['stdevs_increment_rate'].append( |
|
591 | (reporting[energy_category_id]['stdev'] - base[energy_category_id]['stdev']) / |
|
592 | base[energy_category_id]['stdev'] if (base[energy_category_id]['stdev'] is not None and |
|
593 | base[energy_category_id]['stdev'] > Decimal(0.0)) |
|
594 | else None) |
|
595 | result['reporting_period']['variances'].append(reporting[energy_category_id]['variance']) |
|
596 | result['reporting_period']['variances_per_unit_area'].append( |
|
597 | reporting[energy_category_id]['variance'] / shopfloor['area'] |
|
598 | if reporting[energy_category_id]['variance'] is not None and |
|
599 | shopfloor['area'] is not None and |
|
600 | shopfloor['area'] > Decimal(0.0) |
|
601 | else None) |
|
602 | result['reporting_period']['variances_increment_rate'].append( |
|
603 | (reporting[energy_category_id]['variance'] - base[energy_category_id]['variance']) / |
|
604 | base[energy_category_id]['variance'] if (base[energy_category_id]['variance'] is not None and |
|
605 | base[energy_category_id]['variance'] > Decimal(0.0)) |
|
606 | else None) |
|
607 | ||
608 | result['parameters'] = { |
|
609 | "names": parameters_data['names'], |
|
610 | "timestamps": parameters_data['timestamps'], |
|
611 | "values": parameters_data['values'] |
|
612 | } |
|
613 | ||
614 | resp.body = json.dumps(result) |
|
615 |
@@ 10-612 (lines=603) @@ | ||
7 | from decimal import * |
|
8 | ||
9 | ||
10 | class Reporting: |
|
11 | @staticmethod |
|
12 | def __init__(): |
|
13 | pass |
|
14 | ||
15 | @staticmethod |
|
16 | def on_options(req, resp): |
|
17 | resp.status = falcon.HTTP_200 |
|
18 | ||
19 | #################################################################################################################### |
|
20 | # PROCEDURES |
|
21 | # Step 1: valid parameters |
|
22 | # Step 2: query the store |
|
23 | # Step 3: query energy categories |
|
24 | # Step 4: query associated sensors |
|
25 | # Step 5: query associated points |
|
26 | # Step 6: query base period energy input |
|
27 | # Step 7: query reporting period energy input |
|
28 | # Step 8: query tariff data |
|
29 | # Step 9: query associated sensors and points data |
|
30 | # Step 10: construct the report |
|
31 | #################################################################################################################### |
|
32 | @staticmethod |
|
33 | def on_get(req, resp): |
|
34 | print(req.params) |
|
35 | store_id = req.params.get('storeid') |
|
36 | period_type = req.params.get('periodtype') |
|
37 | base_start_datetime_local = req.params.get('baseperiodstartdatetime') |
|
38 | base_end_datetime_local = req.params.get('baseperiodenddatetime') |
|
39 | reporting_start_datetime_local = req.params.get('reportingperiodstartdatetime') |
|
40 | reporting_end_datetime_local = req.params.get('reportingperiodenddatetime') |
|
41 | ||
42 | ################################################################################################################ |
|
43 | # Step 1: valid parameters |
|
44 | ################################################################################################################ |
|
45 | if store_id is None: |
|
46 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_STORE_ID') |
|
47 | else: |
|
48 | store_id = str.strip(store_id) |
|
49 | if not store_id.isdigit() or int(store_id) <= 0: |
|
50 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_STORE_ID') |
|
51 | ||
52 | if period_type is None: |
|
53 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE') |
|
54 | else: |
|
55 | period_type = str.strip(period_type) |
|
56 | if period_type not in ['hourly', 'daily', 'monthly', 'yearly']: |
|
57 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE') |
|
58 | ||
59 | timezone_offset = int(config.utc_offset[1:3]) * 60 + int(config.utc_offset[4:6]) |
|
60 | if config.utc_offset[0] == '-': |
|
61 | timezone_offset = -timezone_offset |
|
62 | ||
63 | base_start_datetime_utc = None |
|
64 | if base_start_datetime_local is not None and len(str.strip(base_start_datetime_local)) > 0: |
|
65 | base_start_datetime_local = str.strip(base_start_datetime_local) |
|
66 | try: |
|
67 | base_start_datetime_utc = datetime.strptime(base_start_datetime_local, |
|
68 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
|
69 | timedelta(minutes=timezone_offset) |
|
70 | except ValueError: |
|
71 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
72 | description="API.INVALID_BASE_PERIOD_BEGINS_DATETIME") |
|
73 | ||
74 | base_end_datetime_utc = None |
|
75 | if base_end_datetime_local is not None and len(str.strip(base_end_datetime_local)) > 0: |
|
76 | base_end_datetime_local = str.strip(base_end_datetime_local) |
|
77 | try: |
|
78 | base_end_datetime_utc = datetime.strptime(base_end_datetime_local, |
|
79 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
|
80 | timedelta(minutes=timezone_offset) |
|
81 | except ValueError: |
|
82 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
83 | description="API.INVALID_BASE_PERIOD_ENDS_DATETIME") |
|
84 | ||
85 | if base_start_datetime_utc is not None and base_end_datetime_utc is not None and \ |
|
86 | base_start_datetime_utc >= base_end_datetime_utc: |
|
87 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
88 | description='API.INVALID_BASE_PERIOD_ENDS_DATETIME') |
|
89 | ||
90 | if reporting_start_datetime_local is None: |
|
91 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
92 | description="API.INVALID_REPORTING_PERIOD_BEGINS_DATETIME") |
|
93 | else: |
|
94 | reporting_start_datetime_local = str.strip(reporting_start_datetime_local) |
|
95 | try: |
|
96 | reporting_start_datetime_utc = datetime.strptime(reporting_start_datetime_local, |
|
97 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
|
98 | timedelta(minutes=timezone_offset) |
|
99 | except ValueError: |
|
100 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
101 | description="API.INVALID_REPORTING_PERIOD_BEGINS_DATETIME") |
|
102 | ||
103 | if reporting_end_datetime_local is None: |
|
104 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
105 | description="API.INVALID_REPORTING_PERIOD_ENDS_DATETIME") |
|
106 | else: |
|
107 | reporting_end_datetime_local = str.strip(reporting_end_datetime_local) |
|
108 | try: |
|
109 | reporting_end_datetime_utc = datetime.strptime(reporting_end_datetime_local, |
|
110 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
|
111 | timedelta(minutes=timezone_offset) |
|
112 | except ValueError: |
|
113 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
114 | description="API.INVALID_REPORTING_PERIOD_ENDS_DATETIME") |
|
115 | ||
116 | if reporting_start_datetime_utc >= reporting_end_datetime_utc: |
|
117 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
118 | description='API.INVALID_REPORTING_PERIOD_ENDS_DATETIME') |
|
119 | ||
120 | ################################################################################################################ |
|
121 | # Step 2: query the store |
|
122 | ################################################################################################################ |
|
123 | cnx_system = mysql.connector.connect(**config.myems_system_db) |
|
124 | cursor_system = cnx_system.cursor() |
|
125 | ||
126 | cnx_energy = mysql.connector.connect(**config.myems_energy_db) |
|
127 | cursor_energy = cnx_energy.cursor() |
|
128 | ||
129 | cnx_historical = mysql.connector.connect(**config.myems_historical_db) |
|
130 | cursor_historical = cnx_historical.cursor() |
|
131 | ||
132 | cursor_system.execute(" SELECT id, name, area, cost_center_id " |
|
133 | " FROM tbl_stores " |
|
134 | " WHERE id = %s ", (store_id,)) |
|
135 | row_store = cursor_system.fetchone() |
|
136 | if row_store is None: |
|
137 | if cursor_system: |
|
138 | cursor_system.close() |
|
139 | if cnx_system: |
|
140 | cnx_system.disconnect() |
|
141 | ||
142 | if cursor_energy: |
|
143 | cursor_energy.close() |
|
144 | if cnx_energy: |
|
145 | cnx_energy.disconnect() |
|
146 | ||
147 | if cnx_historical: |
|
148 | cnx_historical.close() |
|
149 | if cursor_historical: |
|
150 | cursor_historical.disconnect() |
|
151 | raise falcon.HTTPError(falcon.HTTP_404, title='API.NOT_FOUND', description='API.STORE_NOT_FOUND') |
|
152 | ||
153 | store = dict() |
|
154 | store['id'] = row_store[0] |
|
155 | store['name'] = row_store[1] |
|
156 | store['area'] = row_store[2] |
|
157 | store['cost_center_id'] = row_store[3] |
|
158 | ||
159 | ################################################################################################################ |
|
160 | # Step 3: query energy categories |
|
161 | ################################################################################################################ |
|
162 | energy_category_set = set() |
|
163 | # query energy categories in base period |
|
164 | cursor_energy.execute(" SELECT DISTINCT(energy_category_id) " |
|
165 | " FROM tbl_store_input_category_hourly " |
|
166 | " WHERE store_id = %s " |
|
167 | " AND start_datetime_utc >= %s " |
|
168 | " AND start_datetime_utc < %s ", |
|
169 | (store['id'], base_start_datetime_utc, base_end_datetime_utc)) |
|
170 | rows_energy_categories = cursor_energy.fetchall() |
|
171 | if rows_energy_categories is not None or len(rows_energy_categories) > 0: |
|
172 | for row_energy_category in rows_energy_categories: |
|
173 | energy_category_set.add(row_energy_category[0]) |
|
174 | ||
175 | # query energy categories in reporting period |
|
176 | cursor_energy.execute(" SELECT DISTINCT(energy_category_id) " |
|
177 | " FROM tbl_store_input_category_hourly " |
|
178 | " WHERE store_id = %s " |
|
179 | " AND start_datetime_utc >= %s " |
|
180 | " AND start_datetime_utc < %s ", |
|
181 | (store['id'], reporting_start_datetime_utc, reporting_end_datetime_utc)) |
|
182 | rows_energy_categories = cursor_energy.fetchall() |
|
183 | if rows_energy_categories is not None or len(rows_energy_categories) > 0: |
|
184 | for row_energy_category in rows_energy_categories: |
|
185 | energy_category_set.add(row_energy_category[0]) |
|
186 | ||
187 | # query all energy categories in base period and reporting period |
|
188 | cursor_system.execute(" SELECT id, name, unit_of_measure, kgce, kgco2e " |
|
189 | " FROM tbl_energy_categories " |
|
190 | " ORDER BY id ", ) |
|
191 | rows_energy_categories = cursor_system.fetchall() |
|
192 | if rows_energy_categories is None or len(rows_energy_categories) == 0: |
|
193 | if cursor_system: |
|
194 | cursor_system.close() |
|
195 | if cnx_system: |
|
196 | cnx_system.disconnect() |
|
197 | ||
198 | if cursor_energy: |
|
199 | cursor_energy.close() |
|
200 | if cnx_energy: |
|
201 | cnx_energy.disconnect() |
|
202 | ||
203 | if cnx_historical: |
|
204 | cnx_historical.close() |
|
205 | if cursor_historical: |
|
206 | cursor_historical.disconnect() |
|
207 | raise falcon.HTTPError(falcon.HTTP_404, |
|
208 | title='API.NOT_FOUND', |
|
209 | description='API.ENERGY_CATEGORY_NOT_FOUND') |
|
210 | energy_category_dict = dict() |
|
211 | for row_energy_category in rows_energy_categories: |
|
212 | if row_energy_category[0] in energy_category_set: |
|
213 | energy_category_dict[row_energy_category[0]] = {"name": row_energy_category[1], |
|
214 | "unit_of_measure": row_energy_category[2], |
|
215 | "kgce": row_energy_category[3], |
|
216 | "kgco2e": row_energy_category[4]} |
|
217 | ||
218 | ################################################################################################################ |
|
219 | # Step 4: query associated sensors |
|
220 | ################################################################################################################ |
|
221 | point_list = list() |
|
222 | cursor_system.execute(" SELECT p.id, p.name, p.units, p.object_type " |
|
223 | " FROM tbl_stores st, tbl_sensors se, tbl_stores_sensors ss, " |
|
224 | " tbl_points p, tbl_sensors_points sp " |
|
225 | " WHERE st.id = %s AND st.id = ss.store_id AND ss.sensor_id = se.id " |
|
226 | " AND se.id = sp.sensor_id AND sp.point_id = p.id " |
|
227 | " ORDER BY p.id ", (store['id'],)) |
|
228 | rows_points = cursor_system.fetchall() |
|
229 | if rows_points is not None and len(rows_points) > 0: |
|
230 | for row in rows_points: |
|
231 | point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]}) |
|
232 | ||
233 | ################################################################################################################ |
|
234 | # Step 5: query associated points |
|
235 | ################################################################################################################ |
|
236 | cursor_system.execute(" SELECT p.id, p.name, p.units, p.object_type " |
|
237 | " FROM tbl_stores s, tbl_stores_points sp, tbl_points p " |
|
238 | " WHERE s.id = %s AND s.id = sp.store_id AND sp.point_id = p.id " |
|
239 | " ORDER BY p.id ", (store['id'],)) |
|
240 | rows_points = cursor_system.fetchall() |
|
241 | if rows_points is not None and len(rows_points) > 0: |
|
242 | for row in rows_points: |
|
243 | point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]}) |
|
244 | ||
245 | ################################################################################################################ |
|
246 | # Step 6: query base period energy input |
|
247 | ################################################################################################################ |
|
248 | base = dict() |
|
249 | if energy_category_set is not None and len(energy_category_set) > 0: |
|
250 | for energy_category_id in energy_category_set: |
|
251 | base[energy_category_id] = dict() |
|
252 | base[energy_category_id]['timestamps'] = list() |
|
253 | base[energy_category_id]['values'] = list() |
|
254 | base[energy_category_id]['subtotal'] = Decimal(0.0) |
|
255 | base[energy_category_id]['mean'] = None |
|
256 | base[energy_category_id]['median'] = None |
|
257 | base[energy_category_id]['minimum'] = None |
|
258 | base[energy_category_id]['maximum'] = None |
|
259 | base[energy_category_id]['stdev'] = None |
|
260 | base[energy_category_id]['variance'] = None |
|
261 | ||
262 | cursor_energy.execute(" SELECT start_datetime_utc, actual_value " |
|
263 | " FROM tbl_store_input_category_hourly " |
|
264 | " WHERE store_id = %s " |
|
265 | " AND energy_category_id = %s " |
|
266 | " AND start_datetime_utc >= %s " |
|
267 | " AND start_datetime_utc < %s " |
|
268 | " ORDER BY start_datetime_utc ", |
|
269 | (store['id'], |
|
270 | energy_category_id, |
|
271 | base_start_datetime_utc, |
|
272 | base_end_datetime_utc)) |
|
273 | rows_store_hourly = cursor_energy.fetchall() |
|
274 | ||
275 | rows_store_periodically, \ |
|
276 | base[energy_category_id]['mean'], \ |
|
277 | base[energy_category_id]['median'], \ |
|
278 | base[energy_category_id]['minimum'], \ |
|
279 | base[energy_category_id]['maximum'], \ |
|
280 | base[energy_category_id]['stdev'], \ |
|
281 | base[energy_category_id]['variance'] = \ |
|
282 | utilities.statistics_hourly_data_by_period(rows_store_hourly, |
|
283 | base_start_datetime_utc, |
|
284 | base_end_datetime_utc, |
|
285 | period_type) |
|
286 | ||
287 | for row_store_periodically in rows_store_periodically: |
|
288 | current_datetime_local = row_store_periodically[0].replace(tzinfo=timezone.utc) + \ |
|
289 | timedelta(minutes=timezone_offset) |
|
290 | if period_type == 'hourly': |
|
291 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
|
292 | elif period_type == 'daily': |
|
293 | current_datetime = current_datetime_local.strftime('%Y-%m-%d') |
|
294 | elif period_type == 'monthly': |
|
295 | current_datetime = current_datetime_local.strftime('%Y-%m') |
|
296 | elif period_type == 'yearly': |
|
297 | current_datetime = current_datetime_local.strftime('%Y') |
|
298 | ||
299 | actual_value = Decimal(0.0) if row_store_periodically[1] is None else row_store_periodically[1] |
|
300 | base[energy_category_id]['timestamps'].append(current_datetime) |
|
301 | base[energy_category_id]['values'].append(actual_value) |
|
302 | base[energy_category_id]['subtotal'] += actual_value |
|
303 | ||
304 | ################################################################################################################ |
|
305 | # Step 7: query reporting period energy input |
|
306 | ################################################################################################################ |
|
307 | reporting = dict() |
|
308 | if energy_category_set is not None and len(energy_category_set) > 0: |
|
309 | for energy_category_id in energy_category_set: |
|
310 | reporting[energy_category_id] = dict() |
|
311 | reporting[energy_category_id]['timestamps'] = list() |
|
312 | reporting[energy_category_id]['values'] = list() |
|
313 | reporting[energy_category_id]['subtotal'] = Decimal(0.0) |
|
314 | reporting[energy_category_id]['mean'] = None |
|
315 | reporting[energy_category_id]['median'] = None |
|
316 | reporting[energy_category_id]['minimum'] = None |
|
317 | reporting[energy_category_id]['maximum'] = None |
|
318 | reporting[energy_category_id]['stdev'] = None |
|
319 | reporting[energy_category_id]['variance'] = None |
|
320 | ||
321 | cursor_energy.execute(" SELECT start_datetime_utc, actual_value " |
|
322 | " FROM tbl_store_input_category_hourly " |
|
323 | " WHERE store_id = %s " |
|
324 | " AND energy_category_id = %s " |
|
325 | " AND start_datetime_utc >= %s " |
|
326 | " AND start_datetime_utc < %s " |
|
327 | " ORDER BY start_datetime_utc ", |
|
328 | (store['id'], |
|
329 | energy_category_id, |
|
330 | reporting_start_datetime_utc, |
|
331 | reporting_end_datetime_utc)) |
|
332 | rows_store_hourly = cursor_energy.fetchall() |
|
333 | ||
334 | rows_store_periodically, \ |
|
335 | reporting[energy_category_id]['mean'], \ |
|
336 | reporting[energy_category_id]['median'], \ |
|
337 | reporting[energy_category_id]['minimum'], \ |
|
338 | reporting[energy_category_id]['maximum'], \ |
|
339 | reporting[energy_category_id]['stdev'], \ |
|
340 | reporting[energy_category_id]['variance'] = \ |
|
341 | utilities.statistics_hourly_data_by_period(rows_store_hourly, |
|
342 | reporting_start_datetime_utc, |
|
343 | reporting_end_datetime_utc, |
|
344 | period_type) |
|
345 | ||
346 | for row_store_periodically in rows_store_periodically: |
|
347 | current_datetime_local = row_store_periodically[0].replace(tzinfo=timezone.utc) + \ |
|
348 | timedelta(minutes=timezone_offset) |
|
349 | if period_type == 'hourly': |
|
350 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
|
351 | elif period_type == 'daily': |
|
352 | current_datetime = current_datetime_local.strftime('%Y-%m-%d') |
|
353 | elif period_type == 'monthly': |
|
354 | current_datetime = current_datetime_local.strftime('%Y-%m') |
|
355 | elif period_type == 'yearly': |
|
356 | current_datetime = current_datetime_local.strftime('%Y') |
|
357 | ||
358 | actual_value = Decimal(0.0) if row_store_periodically[1] is None else row_store_periodically[1] |
|
359 | reporting[energy_category_id]['timestamps'].append(current_datetime) |
|
360 | reporting[energy_category_id]['values'].append(actual_value) |
|
361 | reporting[energy_category_id]['subtotal'] += actual_value |
|
362 | ||
363 | ################################################################################################################ |
|
364 | # Step 8: query tariff data |
|
365 | ################################################################################################################ |
|
366 | parameters_data = dict() |
|
367 | parameters_data['names'] = list() |
|
368 | parameters_data['timestamps'] = list() |
|
369 | parameters_data['values'] = list() |
|
370 | if energy_category_set is not None and len(energy_category_set) > 0: |
|
371 | for energy_category_id in energy_category_set: |
|
372 | energy_category_tariff_dict = utilities.get_energy_category_tariffs(store['cost_center_id'], |
|
373 | energy_category_id, |
|
374 | reporting_start_datetime_utc, |
|
375 | reporting_end_datetime_utc) |
|
376 | tariff_timestamp_list = list() |
|
377 | tariff_value_list = list() |
|
378 | for k, v in energy_category_tariff_dict.items(): |
|
379 | # convert k from utc to local |
|
380 | k = k + timedelta(minutes=timezone_offset) |
|
381 | tariff_timestamp_list.append(k.isoformat()[0:19][0:19]) |
|
382 | tariff_value_list.append(v) |
|
383 | ||
384 | parameters_data['names'].append('TARIFF-' + energy_category_dict[energy_category_id]['name']) |
|
385 | parameters_data['timestamps'].append(tariff_timestamp_list) |
|
386 | parameters_data['values'].append(tariff_value_list) |
|
387 | ||
388 | ################################################################################################################ |
|
389 | # Step 9: query associated sensors and points data |
|
390 | ################################################################################################################ |
|
391 | for point in point_list: |
|
392 | point_values = [] |
|
393 | point_timestamps = [] |
|
394 | if point['object_type'] == 'ANALOG_VALUE': |
|
395 | query = (" SELECT utc_date_time, actual_value " |
|
396 | " FROM tbl_analog_value " |
|
397 | " WHERE point_id = %s " |
|
398 | " AND utc_date_time BETWEEN %s AND %s " |
|
399 | " ORDER BY utc_date_time ") |
|
400 | cursor_historical.execute(query, (point['id'], |
|
401 | reporting_start_datetime_utc, |
|
402 | reporting_end_datetime_utc)) |
|
403 | rows = cursor_historical.fetchall() |
|
404 | ||
405 | if rows is not None and len(rows) > 0: |
|
406 | for row in rows: |
|
407 | current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
|
408 | timedelta(minutes=timezone_offset) |
|
409 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
|
410 | point_timestamps.append(current_datetime) |
|
411 | point_values.append(row[1]) |
|
412 | ||
413 | elif point['object_type'] == 'ENERGY_VALUE': |
|
414 | query = (" SELECT utc_date_time, actual_value " |
|
415 | " FROM tbl_energy_value " |
|
416 | " WHERE point_id = %s " |
|
417 | " AND utc_date_time BETWEEN %s AND %s " |
|
418 | " ORDER BY utc_date_time ") |
|
419 | cursor_historical.execute(query, (point['id'], |
|
420 | reporting_start_datetime_utc, |
|
421 | reporting_end_datetime_utc)) |
|
422 | rows = cursor_historical.fetchall() |
|
423 | ||
424 | if rows is not None and len(rows) > 0: |
|
425 | for row in rows: |
|
426 | current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
|
427 | timedelta(minutes=timezone_offset) |
|
428 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
|
429 | point_timestamps.append(current_datetime) |
|
430 | point_values.append(row[1]) |
|
431 | elif point['object_type'] == 'DIGITAL_VALUE': |
|
432 | query = (" SELECT utc_date_time, actual_value " |
|
433 | " FROM tbl_digital_value " |
|
434 | " WHERE point_id = %s " |
|
435 | " AND utc_date_time BETWEEN %s AND %s ") |
|
436 | cursor_historical.execute(query, (point['id'], |
|
437 | reporting_start_datetime_utc, |
|
438 | reporting_end_datetime_utc)) |
|
439 | rows = cursor_historical.fetchall() |
|
440 | ||
441 | if rows is not None and len(rows) > 0: |
|
442 | for row in rows: |
|
443 | current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
|
444 | timedelta(minutes=timezone_offset) |
|
445 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
|
446 | point_timestamps.append(current_datetime) |
|
447 | point_values.append(row[1]) |
|
448 | ||
449 | parameters_data['names'].append(point['name'] + ' (' + point['units'] + ')') |
|
450 | parameters_data['timestamps'].append(point_timestamps) |
|
451 | parameters_data['values'].append(point_values) |
|
452 | ||
453 | ################################################################################################################ |
|
454 | # Step 10: construct the report |
|
455 | ################################################################################################################ |
|
456 | if cursor_system: |
|
457 | cursor_system.close() |
|
458 | if cnx_system: |
|
459 | cnx_system.disconnect() |
|
460 | ||
461 | if cursor_energy: |
|
462 | cursor_energy.close() |
|
463 | if cnx_energy: |
|
464 | cnx_energy.disconnect() |
|
465 | ||
466 | result = dict() |
|
467 | ||
468 | result['store'] = dict() |
|
469 | result['store']['name'] = store['name'] |
|
470 | result['store']['area'] = store['area'] |
|
471 | ||
472 | result['base_period'] = dict() |
|
473 | result['base_period']['names'] = list() |
|
474 | result['base_period']['units'] = list() |
|
475 | result['base_period']['timestamps'] = list() |
|
476 | result['base_period']['values'] = list() |
|
477 | result['base_period']['subtotals'] = list() |
|
478 | result['base_period']['means'] = list() |
|
479 | result['base_period']['medians'] = list() |
|
480 | result['base_period']['minimums'] = list() |
|
481 | result['base_period']['maximums'] = list() |
|
482 | result['base_period']['stdevs'] = list() |
|
483 | result['base_period']['variances'] = list() |
|
484 | ||
485 | if energy_category_set is not None and len(energy_category_set) > 0: |
|
486 | for energy_category_id in energy_category_set: |
|
487 | result['base_period']['names'].append(energy_category_dict[energy_category_id]['name']) |
|
488 | result['base_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure']) |
|
489 | result['base_period']['timestamps'].append(base[energy_category_id]['timestamps']) |
|
490 | result['base_period']['values'].append(base[energy_category_id]['values']) |
|
491 | result['base_period']['subtotals'].append(base[energy_category_id]['subtotal']) |
|
492 | result['base_period']['means'].append(base[energy_category_id]['mean']) |
|
493 | result['base_period']['medians'].append(base[energy_category_id]['median']) |
|
494 | result['base_period']['minimums'].append(base[energy_category_id]['minimum']) |
|
495 | result['base_period']['maximums'].append(base[energy_category_id]['maximum']) |
|
496 | result['base_period']['stdevs'].append(base[energy_category_id]['stdev']) |
|
497 | result['base_period']['variances'].append(base[energy_category_id]['variance']) |
|
498 | ||
499 | result['reporting_period'] = dict() |
|
500 | result['reporting_period']['names'] = list() |
|
501 | result['reporting_period']['energy_category_ids'] = list() |
|
502 | result['reporting_period']['units'] = list() |
|
503 | result['reporting_period']['timestamps'] = list() |
|
504 | result['reporting_period']['values'] = list() |
|
505 | result['reporting_period']['subtotals'] = list() |
|
506 | result['reporting_period']['means'] = list() |
|
507 | result['reporting_period']['means_per_unit_area'] = list() |
|
508 | result['reporting_period']['means_increment_rate'] = list() |
|
509 | result['reporting_period']['medians'] = list() |
|
510 | result['reporting_period']['medians_per_unit_area'] = list() |
|
511 | result['reporting_period']['medians_increment_rate'] = list() |
|
512 | result['reporting_period']['minimums'] = list() |
|
513 | result['reporting_period']['minimums_per_unit_area'] = list() |
|
514 | result['reporting_period']['minimums_increment_rate'] = list() |
|
515 | result['reporting_period']['maximums'] = list() |
|
516 | result['reporting_period']['maximums_per_unit_area'] = list() |
|
517 | result['reporting_period']['maximums_increment_rate'] = list() |
|
518 | result['reporting_period']['stdevs'] = list() |
|
519 | result['reporting_period']['stdevs_per_unit_area'] = list() |
|
520 | result['reporting_period']['stdevs_increment_rate'] = list() |
|
521 | result['reporting_period']['variances'] = list() |
|
522 | result['reporting_period']['variances_per_unit_area'] = list() |
|
523 | result['reporting_period']['variances_increment_rate'] = list() |
|
524 | ||
525 | if energy_category_set is not None and len(energy_category_set) > 0: |
|
526 | for energy_category_id in energy_category_set: |
|
527 | result['reporting_period']['names'].append(energy_category_dict[energy_category_id]['name']) |
|
528 | result['reporting_period']['energy_category_ids'].append(energy_category_id) |
|
529 | result['reporting_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure']) |
|
530 | result['reporting_period']['timestamps'].append(reporting[energy_category_id]['timestamps']) |
|
531 | result['reporting_period']['values'].append(reporting[energy_category_id]['values']) |
|
532 | result['reporting_period']['subtotals'].append(reporting[energy_category_id]['subtotal']) |
|
533 | result['reporting_period']['means'].append(reporting[energy_category_id]['mean']) |
|
534 | result['reporting_period']['means_per_unit_area'].append( |
|
535 | reporting[energy_category_id]['mean'] / store['area'] |
|
536 | if reporting[energy_category_id]['mean'] is not None and |
|
537 | store['area'] is not None and |
|
538 | store['area'] > Decimal(0.0) |
|
539 | else None) |
|
540 | result['reporting_period']['means_increment_rate'].append( |
|
541 | (reporting[energy_category_id]['mean'] - base[energy_category_id]['mean']) / |
|
542 | base[energy_category_id]['mean'] if (base[energy_category_id]['mean'] is not None and |
|
543 | base[energy_category_id]['mean'] > Decimal(0.0)) |
|
544 | else None) |
|
545 | result['reporting_period']['medians'].append(reporting[energy_category_id]['median']) |
|
546 | result['reporting_period']['medians_per_unit_area'].append( |
|
547 | reporting[energy_category_id]['median'] / store['area'] |
|
548 | if reporting[energy_category_id]['median'] is not None and |
|
549 | store['area'] is not None and |
|
550 | store['area'] > Decimal(0.0) |
|
551 | else None) |
|
552 | result['reporting_period']['medians_increment_rate'].append( |
|
553 | (reporting[energy_category_id]['median'] - base[energy_category_id]['median']) / |
|
554 | base[energy_category_id]['median'] if (base[energy_category_id]['median'] is not None and |
|
555 | base[energy_category_id]['median'] > Decimal(0.0)) |
|
556 | else None) |
|
557 | result['reporting_period']['minimums'].append(reporting[energy_category_id]['minimum']) |
|
558 | result['reporting_period']['minimums_per_unit_area'].append( |
|
559 | reporting[energy_category_id]['minimum'] / store['area'] |
|
560 | if reporting[energy_category_id]['minimum'] is not None and |
|
561 | store['area'] is not None and |
|
562 | store['area'] > Decimal(0.0) |
|
563 | else None) |
|
564 | result['reporting_period']['minimums_increment_rate'].append( |
|
565 | (reporting[energy_category_id]['minimum'] - base[energy_category_id]['minimum']) / |
|
566 | base[energy_category_id]['minimum'] if (base[energy_category_id]['minimum'] is not None and |
|
567 | base[energy_category_id]['minimum'] > Decimal(0.0)) |
|
568 | else None) |
|
569 | result['reporting_period']['maximums'].append(reporting[energy_category_id]['maximum']) |
|
570 | result['reporting_period']['maximums_per_unit_area'].append( |
|
571 | reporting[energy_category_id]['maximum'] / store['area'] |
|
572 | if reporting[energy_category_id]['maximum'] is not None and |
|
573 | store['area'] is not None and |
|
574 | store['area'] > Decimal(0.0) |
|
575 | else None) |
|
576 | result['reporting_period']['maximums_increment_rate'].append( |
|
577 | (reporting[energy_category_id]['maximum'] - base[energy_category_id]['maximum']) / |
|
578 | base[energy_category_id]['maximum'] if (base[energy_category_id]['maximum'] is not None and |
|
579 | base[energy_category_id]['maximum'] > Decimal(0.0)) |
|
580 | else None) |
|
581 | result['reporting_period']['stdevs'].append(reporting[energy_category_id]['stdev']) |
|
582 | result['reporting_period']['stdevs_per_unit_area'].append( |
|
583 | reporting[energy_category_id]['stdev'] / store['area'] |
|
584 | if reporting[energy_category_id]['stdev'] is not None and |
|
585 | store['area'] is not None and |
|
586 | store['area'] > Decimal(0.0) |
|
587 | else None) |
|
588 | result['reporting_period']['stdevs_increment_rate'].append( |
|
589 | (reporting[energy_category_id]['stdev'] - base[energy_category_id]['stdev']) / |
|
590 | base[energy_category_id]['stdev'] if (base[energy_category_id]['stdev'] is not None and |
|
591 | base[energy_category_id]['stdev'] > Decimal(0.0)) |
|
592 | else None) |
|
593 | result['reporting_period']['variances'].append(reporting[energy_category_id]['variance']) |
|
594 | result['reporting_period']['variances_per_unit_area'].append( |
|
595 | reporting[energy_category_id]['variance'] / store['area'] |
|
596 | if reporting[energy_category_id]['variance'] is not None and |
|
597 | store['area'] is not None and |
|
598 | store['area'] > Decimal(0.0) |
|
599 | else None) |
|
600 | result['reporting_period']['variances_increment_rate'].append( |
|
601 | (reporting[energy_category_id]['variance'] - base[energy_category_id]['variance']) / |
|
602 | base[energy_category_id]['variance'] if (base[energy_category_id]['variance'] is not None and |
|
603 | base[energy_category_id]['variance'] > Decimal(0.0)) |
|
604 | else None) |
|
605 | ||
606 | result['parameters'] = { |
|
607 | "names": parameters_data['names'], |
|
608 | "timestamps": parameters_data['timestamps'], |
|
609 | "values": parameters_data['values'] |
|
610 | } |
|
611 | ||
612 | resp.body = json.dumps(result) |
|
613 |
@@ 10-612 (lines=603) @@ | ||
7 | from decimal import * |
|
8 | ||
9 | ||
10 | class Reporting: |
|
11 | @staticmethod |
|
12 | def __init__(): |
|
13 | pass |
|
14 | ||
15 | @staticmethod |
|
16 | def on_options(req, resp): |
|
17 | resp.status = falcon.HTTP_200 |
|
18 | ||
19 | #################################################################################################################### |
|
20 | # PROCEDURES |
|
21 | # Step 1: valid parameters |
|
22 | # Step 2: query the tenant |
|
23 | # Step 3: query energy categories |
|
24 | # Step 4: query associated sensors |
|
25 | # Step 5: query associated points |
|
26 | # Step 6: query base period energy input |
|
27 | # Step 7: query reporting period energy input |
|
28 | # Step 8: query tariff data |
|
29 | # Step 9: query associated sensors and points data |
|
30 | # Step 10: construct the report |
|
31 | #################################################################################################################### |
|
32 | @staticmethod |
|
33 | def on_get(req, resp): |
|
34 | print(req.params) |
|
35 | tenant_id = req.params.get('tenantid') |
|
36 | period_type = req.params.get('periodtype') |
|
37 | base_start_datetime_local = req.params.get('baseperiodstartdatetime') |
|
38 | base_end_datetime_local = req.params.get('baseperiodenddatetime') |
|
39 | reporting_start_datetime_local = req.params.get('reportingperiodstartdatetime') |
|
40 | reporting_end_datetime_local = req.params.get('reportingperiodenddatetime') |
|
41 | ||
42 | ################################################################################################################ |
|
43 | # Step 1: valid parameters |
|
44 | ################################################################################################################ |
|
45 | if tenant_id is None: |
|
46 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_TENANT_ID') |
|
47 | else: |
|
48 | tenant_id = str.strip(tenant_id) |
|
49 | if not tenant_id.isdigit() or int(tenant_id) <= 0: |
|
50 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_TENANT_ID') |
|
51 | ||
52 | if period_type is None: |
|
53 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE') |
|
54 | else: |
|
55 | period_type = str.strip(period_type) |
|
56 | if period_type not in ['hourly', 'daily', 'monthly', 'yearly']: |
|
57 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE') |
|
58 | ||
59 | timezone_offset = int(config.utc_offset[1:3]) * 60 + int(config.utc_offset[4:6]) |
|
60 | if config.utc_offset[0] == '-': |
|
61 | timezone_offset = -timezone_offset |
|
62 | ||
63 | base_start_datetime_utc = None |
|
64 | if base_start_datetime_local is not None and len(str.strip(base_start_datetime_local)) > 0: |
|
65 | base_start_datetime_local = str.strip(base_start_datetime_local) |
|
66 | try: |
|
67 | base_start_datetime_utc = datetime.strptime(base_start_datetime_local, |
|
68 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
|
69 | timedelta(minutes=timezone_offset) |
|
70 | except ValueError: |
|
71 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
72 | description="API.INVALID_BASE_PERIOD_BEGINS_DATETIME") |
|
73 | ||
74 | base_end_datetime_utc = None |
|
75 | if base_end_datetime_local is not None and len(str.strip(base_end_datetime_local)) > 0: |
|
76 | base_end_datetime_local = str.strip(base_end_datetime_local) |
|
77 | try: |
|
78 | base_end_datetime_utc = datetime.strptime(base_end_datetime_local, |
|
79 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
|
80 | timedelta(minutes=timezone_offset) |
|
81 | except ValueError: |
|
82 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
83 | description="API.INVALID_BASE_PERIOD_ENDS_DATETIME") |
|
84 | ||
85 | if base_start_datetime_utc is not None and base_end_datetime_utc is not None and \ |
|
86 | base_start_datetime_utc >= base_end_datetime_utc: |
|
87 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
88 | description='API.INVALID_BASE_PERIOD_ENDS_DATETIME') |
|
89 | ||
90 | if reporting_start_datetime_local is None: |
|
91 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
92 | description="API.INVALID_REPORTING_PERIOD_BEGINS_DATETIME") |
|
93 | else: |
|
94 | reporting_start_datetime_local = str.strip(reporting_start_datetime_local) |
|
95 | try: |
|
96 | reporting_start_datetime_utc = datetime.strptime(reporting_start_datetime_local, |
|
97 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
|
98 | timedelta(minutes=timezone_offset) |
|
99 | except ValueError: |
|
100 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
101 | description="API.INVALID_REPORTING_PERIOD_BEGINS_DATETIME") |
|
102 | ||
103 | if reporting_end_datetime_local is None: |
|
104 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
105 | description="API.INVALID_REPORTING_PERIOD_ENDS_DATETIME") |
|
106 | else: |
|
107 | reporting_end_datetime_local = str.strip(reporting_end_datetime_local) |
|
108 | try: |
|
109 | reporting_end_datetime_utc = datetime.strptime(reporting_end_datetime_local, |
|
110 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
|
111 | timedelta(minutes=timezone_offset) |
|
112 | except ValueError: |
|
113 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
114 | description="API.INVALID_REPORTING_PERIOD_ENDS_DATETIME") |
|
115 | ||
116 | if reporting_start_datetime_utc >= reporting_end_datetime_utc: |
|
117 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
118 | description='API.INVALID_REPORTING_PERIOD_ENDS_DATETIME') |
|
119 | ||
120 | ################################################################################################################ |
|
121 | # Step 2: query the tenant |
|
122 | ################################################################################################################ |
|
123 | cnx_system = mysql.connector.connect(**config.myems_system_db) |
|
124 | cursor_system = cnx_system.cursor() |
|
125 | ||
126 | cnx_energy = mysql.connector.connect(**config.myems_energy_db) |
|
127 | cursor_energy = cnx_energy.cursor() |
|
128 | ||
129 | cnx_historical = mysql.connector.connect(**config.myems_historical_db) |
|
130 | cursor_historical = cnx_historical.cursor() |
|
131 | ||
132 | cursor_system.execute(" SELECT id, name, area, cost_center_id " |
|
133 | " FROM tbl_tenants " |
|
134 | " WHERE id = %s ", (tenant_id,)) |
|
135 | row_tenant = cursor_system.fetchone() |
|
136 | if row_tenant is None: |
|
137 | if cursor_system: |
|
138 | cursor_system.close() |
|
139 | if cnx_system: |
|
140 | cnx_system.disconnect() |
|
141 | ||
142 | if cursor_energy: |
|
143 | cursor_energy.close() |
|
144 | if cnx_energy: |
|
145 | cnx_energy.disconnect() |
|
146 | ||
147 | if cnx_historical: |
|
148 | cnx_historical.close() |
|
149 | if cursor_historical: |
|
150 | cursor_historical.disconnect() |
|
151 | raise falcon.HTTPError(falcon.HTTP_404, title='API.NOT_FOUND', description='API.TENANT_NOT_FOUND') |
|
152 | ||
153 | tenant = dict() |
|
154 | tenant['id'] = row_tenant[0] |
|
155 | tenant['name'] = row_tenant[1] |
|
156 | tenant['area'] = row_tenant[2] |
|
157 | tenant['cost_center_id'] = row_tenant[3] |
|
158 | ||
159 | ################################################################################################################ |
|
160 | # Step 3: query energy categories |
|
161 | ################################################################################################################ |
|
162 | energy_category_set = set() |
|
163 | # query energy categories in base period |
|
164 | cursor_energy.execute(" SELECT DISTINCT(energy_category_id) " |
|
165 | " FROM tbl_tenant_input_category_hourly " |
|
166 | " WHERE tenant_id = %s " |
|
167 | " AND start_datetime_utc >= %s " |
|
168 | " AND start_datetime_utc < %s ", |
|
169 | (tenant['id'], base_start_datetime_utc, base_end_datetime_utc)) |
|
170 | rows_energy_categories = cursor_energy.fetchall() |
|
171 | if rows_energy_categories is not None or len(rows_energy_categories) > 0: |
|
172 | for row_energy_category in rows_energy_categories: |
|
173 | energy_category_set.add(row_energy_category[0]) |
|
174 | ||
175 | # query energy categories in reporting period |
|
176 | cursor_energy.execute(" SELECT DISTINCT(energy_category_id) " |
|
177 | " FROM tbl_tenant_input_category_hourly " |
|
178 | " WHERE tenant_id = %s " |
|
179 | " AND start_datetime_utc >= %s " |
|
180 | " AND start_datetime_utc < %s ", |
|
181 | (tenant['id'], reporting_start_datetime_utc, reporting_end_datetime_utc)) |
|
182 | rows_energy_categories = cursor_energy.fetchall() |
|
183 | if rows_energy_categories is not None or len(rows_energy_categories) > 0: |
|
184 | for row_energy_category in rows_energy_categories: |
|
185 | energy_category_set.add(row_energy_category[0]) |
|
186 | ||
187 | # query all energy categories in base period and reporting period |
|
188 | cursor_system.execute(" SELECT id, name, unit_of_measure, kgce, kgco2e " |
|
189 | " FROM tbl_energy_categories " |
|
190 | " ORDER BY id ", ) |
|
191 | rows_energy_categories = cursor_system.fetchall() |
|
192 | if rows_energy_categories is None or len(rows_energy_categories) == 0: |
|
193 | if cursor_system: |
|
194 | cursor_system.close() |
|
195 | if cnx_system: |
|
196 | cnx_system.disconnect() |
|
197 | ||
198 | if cursor_energy: |
|
199 | cursor_energy.close() |
|
200 | if cnx_energy: |
|
201 | cnx_energy.disconnect() |
|
202 | ||
203 | if cnx_historical: |
|
204 | cnx_historical.close() |
|
205 | if cursor_historical: |
|
206 | cursor_historical.disconnect() |
|
207 | raise falcon.HTTPError(falcon.HTTP_404, |
|
208 | title='API.NOT_FOUND', |
|
209 | description='API.ENERGY_CATEGORY_NOT_FOUND') |
|
210 | energy_category_dict = dict() |
|
211 | for row_energy_category in rows_energy_categories: |
|
212 | if row_energy_category[0] in energy_category_set: |
|
213 | energy_category_dict[row_energy_category[0]] = {"name": row_energy_category[1], |
|
214 | "unit_of_measure": row_energy_category[2], |
|
215 | "kgce": row_energy_category[3], |
|
216 | "kgco2e": row_energy_category[4]} |
|
217 | ||
218 | ################################################################################################################ |
|
219 | # Step 4: query associated sensors |
|
220 | ################################################################################################################ |
|
221 | point_list = list() |
|
222 | cursor_system.execute(" SELECT p.id, p.name, p.units, p.object_type " |
|
223 | " FROM tbl_tenants t, tbl_sensors s, tbl_tenants_sensors ts, " |
|
224 | " tbl_points p, tbl_sensors_points sp " |
|
225 | " WHERE t.id = %s AND t.id = ts.tenant_id AND ts.sensor_id = s.id " |
|
226 | " AND s.id = sp.sensor_id AND sp.point_id = p.id " |
|
227 | " ORDER BY p.id ", (tenant['id'], )) |
|
228 | rows_points = cursor_system.fetchall() |
|
229 | if rows_points is not None and len(rows_points) > 0: |
|
230 | for row in rows_points: |
|
231 | point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]}) |
|
232 | ||
233 | ################################################################################################################ |
|
234 | # Step 5: query associated points |
|
235 | ################################################################################################################ |
|
236 | cursor_system.execute(" SELECT p.id, p.name, p.units, p.object_type " |
|
237 | " FROM tbl_tenants t, tbl_tenants_points tp, tbl_points p " |
|
238 | " WHERE t.id = %s AND t.id = tp.tenant_id AND tp.point_id = p.id " |
|
239 | " ORDER BY p.id ", (tenant['id'], )) |
|
240 | rows_points = cursor_system.fetchall() |
|
241 | if rows_points is not None and len(rows_points) > 0: |
|
242 | for row in rows_points: |
|
243 | point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]}) |
|
244 | ||
245 | ################################################################################################################ |
|
246 | # Step 6: query base period energy input |
|
247 | ################################################################################################################ |
|
248 | base = dict() |
|
249 | if energy_category_set is not None and len(energy_category_set) > 0: |
|
250 | for energy_category_id in energy_category_set: |
|
251 | base[energy_category_id] = dict() |
|
252 | base[energy_category_id]['timestamps'] = list() |
|
253 | base[energy_category_id]['values'] = list() |
|
254 | base[energy_category_id]['subtotal'] = Decimal(0.0) |
|
255 | base[energy_category_id]['mean'] = None |
|
256 | base[energy_category_id]['median'] = None |
|
257 | base[energy_category_id]['minimum'] = None |
|
258 | base[energy_category_id]['maximum'] = None |
|
259 | base[energy_category_id]['stdev'] = None |
|
260 | base[energy_category_id]['variance'] = None |
|
261 | ||
262 | cursor_energy.execute(" SELECT start_datetime_utc, actual_value " |
|
263 | " FROM tbl_tenant_input_category_hourly " |
|
264 | " WHERE tenant_id = %s " |
|
265 | " AND energy_category_id = %s " |
|
266 | " AND start_datetime_utc >= %s " |
|
267 | " AND start_datetime_utc < %s " |
|
268 | " ORDER BY start_datetime_utc ", |
|
269 | (tenant['id'], |
|
270 | energy_category_id, |
|
271 | base_start_datetime_utc, |
|
272 | base_end_datetime_utc)) |
|
273 | rows_tenant_hourly = cursor_energy.fetchall() |
|
274 | ||
275 | rows_tenant_periodically, \ |
|
276 | base[energy_category_id]['mean'], \ |
|
277 | base[energy_category_id]['median'], \ |
|
278 | base[energy_category_id]['minimum'], \ |
|
279 | base[energy_category_id]['maximum'], \ |
|
280 | base[energy_category_id]['stdev'], \ |
|
281 | base[energy_category_id]['variance'] = \ |
|
282 | utilities.statistics_hourly_data_by_period(rows_tenant_hourly, |
|
283 | base_start_datetime_utc, |
|
284 | base_end_datetime_utc, |
|
285 | period_type) |
|
286 | ||
287 | for row_tenant_periodically in rows_tenant_periodically: |
|
288 | current_datetime_local = row_tenant_periodically[0].replace(tzinfo=timezone.utc) + \ |
|
289 | timedelta(minutes=timezone_offset) |
|
290 | if period_type == 'hourly': |
|
291 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
|
292 | elif period_type == 'daily': |
|
293 | current_datetime = current_datetime_local.strftime('%Y-%m-%d') |
|
294 | elif period_type == 'monthly': |
|
295 | current_datetime = current_datetime_local.strftime('%Y-%m') |
|
296 | elif period_type == 'yearly': |
|
297 | current_datetime = current_datetime_local.strftime('%Y') |
|
298 | ||
299 | actual_value = Decimal(0.0) if row_tenant_periodically[1] is None else row_tenant_periodically[1] |
|
300 | base[energy_category_id]['timestamps'].append(current_datetime) |
|
301 | base[energy_category_id]['values'].append(actual_value) |
|
302 | base[energy_category_id]['subtotal'] += actual_value |
|
303 | ||
304 | ################################################################################################################ |
|
305 | # Step 7: query reporting period energy input |
|
306 | ################################################################################################################ |
|
307 | reporting = dict() |
|
308 | if energy_category_set is not None and len(energy_category_set) > 0: |
|
309 | for energy_category_id in energy_category_set: |
|
310 | reporting[energy_category_id] = dict() |
|
311 | reporting[energy_category_id]['timestamps'] = list() |
|
312 | reporting[energy_category_id]['values'] = list() |
|
313 | reporting[energy_category_id]['subtotal'] = Decimal(0.0) |
|
314 | reporting[energy_category_id]['mean'] = None |
|
315 | reporting[energy_category_id]['median'] = None |
|
316 | reporting[energy_category_id]['minimum'] = None |
|
317 | reporting[energy_category_id]['maximum'] = None |
|
318 | reporting[energy_category_id]['stdev'] = None |
|
319 | reporting[energy_category_id]['variance'] = None |
|
320 | ||
321 | cursor_energy.execute(" SELECT start_datetime_utc, actual_value " |
|
322 | " FROM tbl_tenant_input_category_hourly " |
|
323 | " WHERE tenant_id = %s " |
|
324 | " AND energy_category_id = %s " |
|
325 | " AND start_datetime_utc >= %s " |
|
326 | " AND start_datetime_utc < %s " |
|
327 | " ORDER BY start_datetime_utc ", |
|
328 | (tenant['id'], |
|
329 | energy_category_id, |
|
330 | reporting_start_datetime_utc, |
|
331 | reporting_end_datetime_utc)) |
|
332 | rows_tenant_hourly = cursor_energy.fetchall() |
|
333 | ||
334 | rows_tenant_periodically, \ |
|
335 | reporting[energy_category_id]['mean'], \ |
|
336 | reporting[energy_category_id]['median'], \ |
|
337 | reporting[energy_category_id]['minimum'], \ |
|
338 | reporting[energy_category_id]['maximum'], \ |
|
339 | reporting[energy_category_id]['stdev'], \ |
|
340 | reporting[energy_category_id]['variance'] = \ |
|
341 | utilities.statistics_hourly_data_by_period(rows_tenant_hourly, |
|
342 | reporting_start_datetime_utc, |
|
343 | reporting_end_datetime_utc, |
|
344 | period_type) |
|
345 | ||
346 | for row_tenant_periodically in rows_tenant_periodically: |
|
347 | current_datetime_local = row_tenant_periodically[0].replace(tzinfo=timezone.utc) + \ |
|
348 | timedelta(minutes=timezone_offset) |
|
349 | if period_type == 'hourly': |
|
350 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
|
351 | elif period_type == 'daily': |
|
352 | current_datetime = current_datetime_local.strftime('%Y-%m-%d') |
|
353 | elif period_type == 'monthly': |
|
354 | current_datetime = current_datetime_local.strftime('%Y-%m') |
|
355 | elif period_type == 'yearly': |
|
356 | current_datetime = current_datetime_local.strftime('%Y') |
|
357 | ||
358 | actual_value = Decimal(0.0) if row_tenant_periodically[1] is None else row_tenant_periodically[1] |
|
359 | reporting[energy_category_id]['timestamps'].append(current_datetime) |
|
360 | reporting[energy_category_id]['values'].append(actual_value) |
|
361 | reporting[energy_category_id]['subtotal'] += actual_value |
|
362 | ||
363 | ################################################################################################################ |
|
364 | # Step 8: query tariff data |
|
365 | ################################################################################################################ |
|
366 | parameters_data = dict() |
|
367 | parameters_data['names'] = list() |
|
368 | parameters_data['timestamps'] = list() |
|
369 | parameters_data['values'] = list() |
|
370 | if energy_category_set is not None and len(energy_category_set) > 0: |
|
371 | for energy_category_id in energy_category_set: |
|
372 | energy_category_tariff_dict = utilities.get_energy_category_tariffs(tenant['cost_center_id'], |
|
373 | energy_category_id, |
|
374 | reporting_start_datetime_utc, |
|
375 | reporting_end_datetime_utc) |
|
376 | tariff_timestamp_list = list() |
|
377 | tariff_value_list = list() |
|
378 | for k, v in energy_category_tariff_dict.items(): |
|
379 | # convert k from utc to local |
|
380 | k = k + timedelta(minutes=timezone_offset) |
|
381 | tariff_timestamp_list.append(k.isoformat()[0:19][0:19]) |
|
382 | tariff_value_list.append(v) |
|
383 | ||
384 | parameters_data['names'].append('TARIFF-' + energy_category_dict[energy_category_id]['name']) |
|
385 | parameters_data['timestamps'].append(tariff_timestamp_list) |
|
386 | parameters_data['values'].append(tariff_value_list) |
|
387 | ||
388 | ################################################################################################################ |
|
389 | # Step 9: query associated sensors and points data |
|
390 | ################################################################################################################ |
|
391 | for point in point_list: |
|
392 | point_values = [] |
|
393 | point_timestamps = [] |
|
394 | if point['object_type'] == 'ANALOG_VALUE': |
|
395 | query = (" SELECT utc_date_time, actual_value " |
|
396 | " FROM tbl_analog_value " |
|
397 | " WHERE point_id = %s " |
|
398 | " AND utc_date_time BETWEEN %s AND %s " |
|
399 | " ORDER BY utc_date_time ") |
|
400 | cursor_historical.execute(query, (point['id'], |
|
401 | reporting_start_datetime_utc, |
|
402 | reporting_end_datetime_utc)) |
|
403 | rows = cursor_historical.fetchall() |
|
404 | ||
405 | if rows is not None and len(rows) > 0: |
|
406 | for row in rows: |
|
407 | current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
|
408 | timedelta(minutes=timezone_offset) |
|
409 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
|
410 | point_timestamps.append(current_datetime) |
|
411 | point_values.append(row[1]) |
|
412 | ||
413 | elif point['object_type'] == 'ENERGY_VALUE': |
|
414 | query = (" SELECT utc_date_time, actual_value " |
|
415 | " FROM tbl_energy_value " |
|
416 | " WHERE point_id = %s " |
|
417 | " AND utc_date_time BETWEEN %s AND %s " |
|
418 | " ORDER BY utc_date_time ") |
|
419 | cursor_historical.execute(query, (point['id'], |
|
420 | reporting_start_datetime_utc, |
|
421 | reporting_end_datetime_utc)) |
|
422 | rows = cursor_historical.fetchall() |
|
423 | ||
424 | if rows is not None and len(rows) > 0: |
|
425 | for row in rows: |
|
426 | current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
|
427 | timedelta(minutes=timezone_offset) |
|
428 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
|
429 | point_timestamps.append(current_datetime) |
|
430 | point_values.append(row[1]) |
|
431 | elif point['object_type'] == 'DIGITAL_VALUE': |
|
432 | query = (" SELECT utc_date_time, actual_value " |
|
433 | " FROM tbl_digital_value " |
|
434 | " WHERE point_id = %s " |
|
435 | " AND utc_date_time BETWEEN %s AND %s ") |
|
436 | cursor_historical.execute(query, (point['id'], |
|
437 | reporting_start_datetime_utc, |
|
438 | reporting_end_datetime_utc)) |
|
439 | rows = cursor_historical.fetchall() |
|
440 | ||
441 | if rows is not None and len(rows) > 0: |
|
442 | for row in rows: |
|
443 | current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
|
444 | timedelta(minutes=timezone_offset) |
|
445 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
|
446 | point_timestamps.append(current_datetime) |
|
447 | point_values.append(row[1]) |
|
448 | ||
449 | parameters_data['names'].append(point['name'] + ' (' + point['units'] + ')') |
|
450 | parameters_data['timestamps'].append(point_timestamps) |
|
451 | parameters_data['values'].append(point_values) |
|
452 | ||
453 | ################################################################################################################ |
|
454 | # Step 10: construct the report |
|
455 | ################################################################################################################ |
|
456 | if cursor_system: |
|
457 | cursor_system.close() |
|
458 | if cnx_system: |
|
459 | cnx_system.disconnect() |
|
460 | ||
461 | if cursor_energy: |
|
462 | cursor_energy.close() |
|
463 | if cnx_energy: |
|
464 | cnx_energy.disconnect() |
|
465 | ||
466 | result = dict() |
|
467 | ||
468 | result['tenant'] = dict() |
|
469 | result['tenant']['name'] = tenant['name'] |
|
470 | result['tenant']['area'] = tenant['area'] |
|
471 | ||
472 | result['base_period'] = dict() |
|
473 | result['base_period']['names'] = list() |
|
474 | result['base_period']['units'] = list() |
|
475 | result['base_period']['timestamps'] = list() |
|
476 | result['base_period']['values'] = list() |
|
477 | result['base_period']['subtotals'] = list() |
|
478 | result['base_period']['means'] = list() |
|
479 | result['base_period']['medians'] = list() |
|
480 | result['base_period']['minimums'] = list() |
|
481 | result['base_period']['maximums'] = list() |
|
482 | result['base_period']['stdevs'] = list() |
|
483 | result['base_period']['variances'] = list() |
|
484 | ||
485 | if energy_category_set is not None and len(energy_category_set) > 0: |
|
486 | for energy_category_id in energy_category_set: |
|
487 | result['base_period']['names'].append(energy_category_dict[energy_category_id]['name']) |
|
488 | result['base_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure']) |
|
489 | result['base_period']['timestamps'].append(base[energy_category_id]['timestamps']) |
|
490 | result['base_period']['values'].append(base[energy_category_id]['values']) |
|
491 | result['base_period']['subtotals'].append(base[energy_category_id]['subtotal']) |
|
492 | result['base_period']['means'].append(base[energy_category_id]['mean']) |
|
493 | result['base_period']['medians'].append(base[energy_category_id]['median']) |
|
494 | result['base_period']['minimums'].append(base[energy_category_id]['minimum']) |
|
495 | result['base_period']['maximums'].append(base[energy_category_id]['maximum']) |
|
496 | result['base_period']['stdevs'].append(base[energy_category_id]['stdev']) |
|
497 | result['base_period']['variances'].append(base[energy_category_id]['variance']) |
|
498 | ||
499 | result['reporting_period'] = dict() |
|
500 | result['reporting_period']['names'] = list() |
|
501 | result['reporting_period']['energy_category_ids'] = list() |
|
502 | result['reporting_period']['units'] = list() |
|
503 | result['reporting_period']['timestamps'] = list() |
|
504 | result['reporting_period']['values'] = list() |
|
505 | result['reporting_period']['subtotals'] = list() |
|
506 | result['reporting_period']['means'] = list() |
|
507 | result['reporting_period']['means_per_unit_area'] = list() |
|
508 | result['reporting_period']['means_increment_rate'] = list() |
|
509 | result['reporting_period']['medians'] = list() |
|
510 | result['reporting_period']['medians_per_unit_area'] = list() |
|
511 | result['reporting_period']['medians_increment_rate'] = list() |
|
512 | result['reporting_period']['minimums'] = list() |
|
513 | result['reporting_period']['minimums_per_unit_area'] = list() |
|
514 | result['reporting_period']['minimums_increment_rate'] = list() |
|
515 | result['reporting_period']['maximums'] = list() |
|
516 | result['reporting_period']['maximums_per_unit_area'] = list() |
|
517 | result['reporting_period']['maximums_increment_rate'] = list() |
|
518 | result['reporting_period']['stdevs'] = list() |
|
519 | result['reporting_period']['stdevs_per_unit_area'] = list() |
|
520 | result['reporting_period']['stdevs_increment_rate'] = list() |
|
521 | result['reporting_period']['variances'] = list() |
|
522 | result['reporting_period']['variances_per_unit_area'] = list() |
|
523 | result['reporting_period']['variances_increment_rate'] = list() |
|
524 | ||
525 | if energy_category_set is not None and len(energy_category_set) > 0: |
|
526 | for energy_category_id in energy_category_set: |
|
527 | result['reporting_period']['names'].append(energy_category_dict[energy_category_id]['name']) |
|
528 | result['reporting_period']['energy_category_ids'].append(energy_category_id) |
|
529 | result['reporting_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure']) |
|
530 | result['reporting_period']['timestamps'].append(reporting[energy_category_id]['timestamps']) |
|
531 | result['reporting_period']['values'].append(reporting[energy_category_id]['values']) |
|
532 | result['reporting_period']['subtotals'].append(reporting[energy_category_id]['subtotal']) |
|
533 | result['reporting_period']['means'].append(reporting[energy_category_id]['mean']) |
|
534 | result['reporting_period']['means_per_unit_area'].append( |
|
535 | reporting[energy_category_id]['mean'] / tenant['area'] |
|
536 | if reporting[energy_category_id]['mean'] is not None and |
|
537 | tenant['area'] is not None and |
|
538 | tenant['area'] > Decimal(0.0) |
|
539 | else None) |
|
540 | result['reporting_period']['means_increment_rate'].append( |
|
541 | (reporting[energy_category_id]['mean'] - base[energy_category_id]['mean']) / |
|
542 | base[energy_category_id]['mean'] if (base[energy_category_id]['mean'] is not None and |
|
543 | base[energy_category_id]['mean'] > Decimal(0.0)) |
|
544 | else None) |
|
545 | result['reporting_period']['medians'].append(reporting[energy_category_id]['median']) |
|
546 | result['reporting_period']['medians_per_unit_area'].append( |
|
547 | reporting[energy_category_id]['median'] / tenant['area'] |
|
548 | if reporting[energy_category_id]['median'] is not None and |
|
549 | tenant['area'] is not None and |
|
550 | tenant['area'] > Decimal(0.0) |
|
551 | else None) |
|
552 | result['reporting_period']['medians_increment_rate'].append( |
|
553 | (reporting[energy_category_id]['median'] - base[energy_category_id]['median']) / |
|
554 | base[energy_category_id]['median'] if (base[energy_category_id]['median'] is not None and |
|
555 | base[energy_category_id]['median'] > Decimal(0.0)) |
|
556 | else None) |
|
557 | result['reporting_period']['minimums'].append(reporting[energy_category_id]['minimum']) |
|
558 | result['reporting_period']['minimums_per_unit_area'].append( |
|
559 | reporting[energy_category_id]['minimum'] / tenant['area'] |
|
560 | if reporting[energy_category_id]['minimum'] is not None and |
|
561 | tenant['area'] is not None and |
|
562 | tenant['area'] > Decimal(0.0) |
|
563 | else None) |
|
564 | result['reporting_period']['minimums_increment_rate'].append( |
|
565 | (reporting[energy_category_id]['minimum'] - base[energy_category_id]['minimum']) / |
|
566 | base[energy_category_id]['minimum'] if (base[energy_category_id]['minimum'] is not None and |
|
567 | base[energy_category_id]['minimum'] > Decimal(0.0)) |
|
568 | else None) |
|
569 | result['reporting_period']['maximums'].append(reporting[energy_category_id]['maximum']) |
|
570 | result['reporting_period']['maximums_per_unit_area'].append( |
|
571 | reporting[energy_category_id]['maximum'] / tenant['area'] |
|
572 | if reporting[energy_category_id]['maximum'] is not None and |
|
573 | tenant['area'] is not None and |
|
574 | tenant['area'] > Decimal(0.0) |
|
575 | else None) |
|
576 | result['reporting_period']['maximums_increment_rate'].append( |
|
577 | (reporting[energy_category_id]['maximum'] - base[energy_category_id]['maximum']) / |
|
578 | base[energy_category_id]['maximum'] if (base[energy_category_id]['maximum'] is not None and |
|
579 | base[energy_category_id]['maximum'] > Decimal(0.0)) |
|
580 | else None) |
|
581 | result['reporting_period']['stdevs'].append(reporting[energy_category_id]['stdev']) |
|
582 | result['reporting_period']['stdevs_per_unit_area'].append( |
|
583 | reporting[energy_category_id]['stdev'] / tenant['area'] |
|
584 | if reporting[energy_category_id]['stdev'] is not None and |
|
585 | tenant['area'] is not None and |
|
586 | tenant['area'] > Decimal(0.0) |
|
587 | else None) |
|
588 | result['reporting_period']['stdevs_increment_rate'].append( |
|
589 | (reporting[energy_category_id]['stdev'] - base[energy_category_id]['stdev']) / |
|
590 | base[energy_category_id]['stdev'] if (base[energy_category_id]['stdev'] is not None and |
|
591 | base[energy_category_id]['stdev'] > Decimal(0.0)) |
|
592 | else None) |
|
593 | result['reporting_period']['variances'].append(reporting[energy_category_id]['variance']) |
|
594 | result['reporting_period']['variances_per_unit_area'].append( |
|
595 | reporting[energy_category_id]['variance'] / tenant['area'] |
|
596 | if reporting[energy_category_id]['variance'] is not None and |
|
597 | tenant['area'] is not None and |
|
598 | tenant['area'] > Decimal(0.0) |
|
599 | else None) |
|
600 | result['reporting_period']['variances_increment_rate'].append( |
|
601 | (reporting[energy_category_id]['variance'] - base[energy_category_id]['variance']) / |
|
602 | base[energy_category_id]['variance'] if (base[energy_category_id]['variance'] is not None and |
|
603 | base[energy_category_id]['variance'] > Decimal(0.0)) |
|
604 | else None) |
|
605 | ||
606 | result['parameters'] = { |
|
607 | "names": parameters_data['names'], |
|
608 | "timestamps": parameters_data['timestamps'], |
|
609 | "values": parameters_data['values'] |
|
610 | } |
|
611 | ||
612 | resp.body = json.dumps(result) |
|
613 |
@@ 10-612 (lines=603) @@ | ||
7 | from decimal import * |
|
8 | ||
9 | ||
10 | class Reporting: |
|
11 | @staticmethod |
|
12 | def __init__(): |
|
13 | pass |
|
14 | ||
15 | @staticmethod |
|
16 | def on_options(req, resp): |
|
17 | resp.status = falcon.HTTP_200 |
|
18 | ||
19 | #################################################################################################################### |
|
20 | # PROCEDURES |
|
21 | # Step 1: valid parameters |
|
22 | # Step 2: query the space |
|
23 | # Step 3: query energy categories |
|
24 | # Step 4: query associated sensors |
|
25 | # Step 5: query associated points |
|
26 | # Step 6: query base period energy input |
|
27 | # Step 7: query reporting period energy input |
|
28 | # Step 8: query tariff data |
|
29 | # Step 9: query associated sensors and points data |
|
30 | # Step 10: construct the report |
|
31 | #################################################################################################################### |
|
32 | @staticmethod |
|
33 | def on_get(req, resp): |
|
34 | print(req.params) |
|
35 | space_id = req.params.get('spaceid') |
|
36 | period_type = req.params.get('periodtype') |
|
37 | base_start_datetime_local = req.params.get('baseperiodstartdatetime') |
|
38 | base_end_datetime_local = req.params.get('baseperiodenddatetime') |
|
39 | reporting_start_datetime_local = req.params.get('reportingperiodstartdatetime') |
|
40 | reporting_end_datetime_local = req.params.get('reportingperiodenddatetime') |
|
41 | ||
42 | ################################################################################################################ |
|
43 | # Step 1: valid parameters |
|
44 | ################################################################################################################ |
|
45 | if space_id is None: |
|
46 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_SPACE_ID') |
|
47 | else: |
|
48 | space_id = str.strip(space_id) |
|
49 | if not space_id.isdigit() or int(space_id) <= 0: |
|
50 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_SPACE_ID') |
|
51 | ||
52 | if period_type is None: |
|
53 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE') |
|
54 | else: |
|
55 | period_type = str.strip(period_type) |
|
56 | if period_type not in ['hourly', 'daily', 'monthly', 'yearly']: |
|
57 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE') |
|
58 | ||
59 | timezone_offset = int(config.utc_offset[1:3]) * 60 + int(config.utc_offset[4:6]) |
|
60 | if config.utc_offset[0] == '-': |
|
61 | timezone_offset = -timezone_offset |
|
62 | ||
63 | base_start_datetime_utc = None |
|
64 | if base_start_datetime_local is not None and len(str.strip(base_start_datetime_local)) > 0: |
|
65 | base_start_datetime_local = str.strip(base_start_datetime_local) |
|
66 | try: |
|
67 | base_start_datetime_utc = datetime.strptime(base_start_datetime_local, |
|
68 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
|
69 | timedelta(minutes=timezone_offset) |
|
70 | except ValueError: |
|
71 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
72 | description="API.INVALID_BASE_PERIOD_BEGINS_DATETIME") |
|
73 | ||
74 | base_end_datetime_utc = None |
|
75 | if base_end_datetime_local is not None and len(str.strip(base_end_datetime_local)) > 0: |
|
76 | base_end_datetime_local = str.strip(base_end_datetime_local) |
|
77 | try: |
|
78 | base_end_datetime_utc = datetime.strptime(base_end_datetime_local, |
|
79 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
|
80 | timedelta(minutes=timezone_offset) |
|
81 | except ValueError: |
|
82 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
83 | description="API.INVALID_BASE_PERIOD_ENDS_DATETIME") |
|
84 | ||
85 | if base_start_datetime_utc is not None and base_end_datetime_utc is not None and \ |
|
86 | base_start_datetime_utc >= base_end_datetime_utc: |
|
87 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
88 | description='API.INVALID_BASE_PERIOD_ENDS_DATETIME') |
|
89 | ||
90 | if reporting_start_datetime_local is None: |
|
91 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
92 | description="API.INVALID_REPORTING_PERIOD_BEGINS_DATETIME") |
|
93 | else: |
|
94 | reporting_start_datetime_local = str.strip(reporting_start_datetime_local) |
|
95 | try: |
|
96 | reporting_start_datetime_utc = datetime.strptime(reporting_start_datetime_local, |
|
97 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
|
98 | timedelta(minutes=timezone_offset) |
|
99 | except ValueError: |
|
100 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
101 | description="API.INVALID_REPORTING_PERIOD_BEGINS_DATETIME") |
|
102 | ||
103 | if reporting_end_datetime_local is None: |
|
104 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
105 | description="API.INVALID_REPORTING_PERIOD_ENDS_DATETIME") |
|
106 | else: |
|
107 | reporting_end_datetime_local = str.strip(reporting_end_datetime_local) |
|
108 | try: |
|
109 | reporting_end_datetime_utc = datetime.strptime(reporting_end_datetime_local, |
|
110 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
|
111 | timedelta(minutes=timezone_offset) |
|
112 | except ValueError: |
|
113 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
114 | description="API.INVALID_REPORTING_PERIOD_ENDS_DATETIME") |
|
115 | ||
116 | if reporting_start_datetime_utc >= reporting_end_datetime_utc: |
|
117 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
118 | description='API.INVALID_REPORTING_PERIOD_ENDS_DATETIME') |
|
119 | ||
120 | ################################################################################################################ |
|
121 | # Step 2: query the space |
|
122 | ################################################################################################################ |
|
123 | cnx_system = mysql.connector.connect(**config.myems_system_db) |
|
124 | cursor_system = cnx_system.cursor() |
|
125 | ||
126 | cnx_energy = mysql.connector.connect(**config.myems_energy_db) |
|
127 | cursor_energy = cnx_energy.cursor() |
|
128 | ||
129 | cnx_historical = mysql.connector.connect(**config.myems_historical_db) |
|
130 | cursor_historical = cnx_historical.cursor() |
|
131 | ||
132 | cursor_system.execute(" SELECT id, name, area, cost_center_id " |
|
133 | " FROM tbl_spaces " |
|
134 | " WHERE id = %s ", (space_id,)) |
|
135 | row_space = cursor_system.fetchone() |
|
136 | if row_space is None: |
|
137 | if cursor_system: |
|
138 | cursor_system.close() |
|
139 | if cnx_system: |
|
140 | cnx_system.disconnect() |
|
141 | ||
142 | if cursor_energy: |
|
143 | cursor_energy.close() |
|
144 | if cnx_energy: |
|
145 | cnx_energy.disconnect() |
|
146 | ||
147 | if cnx_historical: |
|
148 | cnx_historical.close() |
|
149 | if cursor_historical: |
|
150 | cursor_historical.disconnect() |
|
151 | raise falcon.HTTPError(falcon.HTTP_404, title='API.NOT_FOUND', description='API.SPACE_NOT_FOUND') |
|
152 | ||
153 | space = dict() |
|
154 | space['id'] = row_space[0] |
|
155 | space['name'] = row_space[1] |
|
156 | space['area'] = row_space[2] |
|
157 | space['cost_center_id'] = row_space[3] |
|
158 | ||
159 | ################################################################################################################ |
|
160 | # Step 3: query energy categories |
|
161 | ################################################################################################################ |
|
162 | energy_category_set = set() |
|
163 | # query energy categories in base period |
|
164 | cursor_energy.execute(" SELECT DISTINCT(energy_category_id) " |
|
165 | " FROM tbl_space_input_category_hourly " |
|
166 | " WHERE space_id = %s " |
|
167 | " AND start_datetime_utc >= %s " |
|
168 | " AND start_datetime_utc < %s ", |
|
169 | (space['id'], base_start_datetime_utc, base_end_datetime_utc)) |
|
170 | rows_energy_categories = cursor_energy.fetchall() |
|
171 | if rows_energy_categories is not None or len(rows_energy_categories) > 0: |
|
172 | for row_energy_category in rows_energy_categories: |
|
173 | energy_category_set.add(row_energy_category[0]) |
|
174 | ||
175 | # query energy categories in reporting period |
|
176 | cursor_energy.execute(" SELECT DISTINCT(energy_category_id) " |
|
177 | " FROM tbl_space_input_category_hourly " |
|
178 | " WHERE space_id = %s " |
|
179 | " AND start_datetime_utc >= %s " |
|
180 | " AND start_datetime_utc < %s ", |
|
181 | (space['id'], reporting_start_datetime_utc, reporting_end_datetime_utc)) |
|
182 | rows_energy_categories = cursor_energy.fetchall() |
|
183 | if rows_energy_categories is not None or len(rows_energy_categories) > 0: |
|
184 | for row_energy_category in rows_energy_categories: |
|
185 | energy_category_set.add(row_energy_category[0]) |
|
186 | ||
187 | # query all energy categories in base period and reporting period |
|
188 | cursor_system.execute(" SELECT id, name, unit_of_measure, kgce, kgco2e " |
|
189 | " FROM tbl_energy_categories " |
|
190 | " ORDER BY id ", ) |
|
191 | rows_energy_categories = cursor_system.fetchall() |
|
192 | if rows_energy_categories is None or len(rows_energy_categories) == 0: |
|
193 | if cursor_system: |
|
194 | cursor_system.close() |
|
195 | if cnx_system: |
|
196 | cnx_system.disconnect() |
|
197 | ||
198 | if cursor_energy: |
|
199 | cursor_energy.close() |
|
200 | if cnx_energy: |
|
201 | cnx_energy.disconnect() |
|
202 | ||
203 | if cnx_historical: |
|
204 | cnx_historical.close() |
|
205 | if cursor_historical: |
|
206 | cursor_historical.disconnect() |
|
207 | raise falcon.HTTPError(falcon.HTTP_404, |
|
208 | title='API.NOT_FOUND', |
|
209 | description='API.ENERGY_CATEGORY_NOT_FOUND') |
|
210 | energy_category_dict = dict() |
|
211 | for row_energy_category in rows_energy_categories: |
|
212 | if row_energy_category[0] in energy_category_set: |
|
213 | energy_category_dict[row_energy_category[0]] = {"name": row_energy_category[1], |
|
214 | "unit_of_measure": row_energy_category[2], |
|
215 | "kgce": row_energy_category[3], |
|
216 | "kgco2e": row_energy_category[4]} |
|
217 | ||
218 | ################################################################################################################ |
|
219 | # Step 4: query associated sensors |
|
220 | ################################################################################################################ |
|
221 | point_list = list() |
|
222 | cursor_system.execute(" SELECT po.id, po.name, po.units, po.object_type " |
|
223 | " FROM tbl_spaces sp, tbl_sensors se, tbl_spaces_sensors spse, " |
|
224 | " tbl_points po, tbl_sensors_points sepo " |
|
225 | " WHERE sp.id = %s AND sp.id = spse.space_id AND spse.sensor_id = se.id " |
|
226 | " AND se.id = sepo.sensor_id AND sepo.point_id = po.id " |
|
227 | " ORDER BY po.id ", (space['id'], )) |
|
228 | rows_points = cursor_system.fetchall() |
|
229 | if rows_points is not None and len(rows_points) > 0: |
|
230 | for row in rows_points: |
|
231 | point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]}) |
|
232 | ||
233 | ################################################################################################################ |
|
234 | # Step 5: query associated points |
|
235 | ################################################################################################################ |
|
236 | cursor_system.execute(" SELECT po.id, po.name, po.units, po.object_type " |
|
237 | " FROM tbl_spaces sp, tbl_spaces_points sppo, tbl_points po " |
|
238 | " WHERE sp.id = %s AND sp.id = sppo.space_id AND sppo.point_id = po.id " |
|
239 | " ORDER BY po.id ", (space['id'], )) |
|
240 | rows_points = cursor_system.fetchall() |
|
241 | if rows_points is not None and len(rows_points) > 0: |
|
242 | for row in rows_points: |
|
243 | point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]}) |
|
244 | ||
245 | ################################################################################################################ |
|
246 | # Step 6: query base period energy input |
|
247 | ################################################################################################################ |
|
248 | base = dict() |
|
249 | if energy_category_set is not None and len(energy_category_set) > 0: |
|
250 | for energy_category_id in energy_category_set: |
|
251 | base[energy_category_id] = dict() |
|
252 | base[energy_category_id]['timestamps'] = list() |
|
253 | base[energy_category_id]['values'] = list() |
|
254 | base[energy_category_id]['subtotal'] = Decimal(0.0) |
|
255 | base[energy_category_id]['mean'] = None |
|
256 | base[energy_category_id]['median'] = None |
|
257 | base[energy_category_id]['minimum'] = None |
|
258 | base[energy_category_id]['maximum'] = None |
|
259 | base[energy_category_id]['stdev'] = None |
|
260 | base[energy_category_id]['variance'] = None |
|
261 | ||
262 | cursor_energy.execute(" SELECT start_datetime_utc, actual_value " |
|
263 | " FROM tbl_space_input_category_hourly " |
|
264 | " WHERE space_id = %s " |
|
265 | " AND energy_category_id = %s " |
|
266 | " AND start_datetime_utc >= %s " |
|
267 | " AND start_datetime_utc < %s " |
|
268 | " ORDER BY start_datetime_utc ", |
|
269 | (space['id'], |
|
270 | energy_category_id, |
|
271 | base_start_datetime_utc, |
|
272 | base_end_datetime_utc)) |
|
273 | rows_space_hourly = cursor_energy.fetchall() |
|
274 | ||
275 | rows_space_periodically, \ |
|
276 | base[energy_category_id]['mean'], \ |
|
277 | base[energy_category_id]['median'], \ |
|
278 | base[energy_category_id]['minimum'], \ |
|
279 | base[energy_category_id]['maximum'], \ |
|
280 | base[energy_category_id]['stdev'], \ |
|
281 | base[energy_category_id]['variance'] = \ |
|
282 | utilities.statistics_hourly_data_by_period(rows_space_hourly, |
|
283 | base_start_datetime_utc, |
|
284 | base_end_datetime_utc, |
|
285 | period_type) |
|
286 | ||
287 | for row_space_periodically in rows_space_periodically: |
|
288 | current_datetime_local = row_space_periodically[0].replace(tzinfo=timezone.utc) + \ |
|
289 | timedelta(minutes=timezone_offset) |
|
290 | if period_type == 'hourly': |
|
291 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
|
292 | elif period_type == 'daily': |
|
293 | current_datetime = current_datetime_local.strftime('%Y-%m-%d') |
|
294 | elif period_type == 'monthly': |
|
295 | current_datetime = current_datetime_local.strftime('%Y-%m') |
|
296 | elif period_type == 'yearly': |
|
297 | current_datetime = current_datetime_local.strftime('%Y') |
|
298 | ||
299 | actual_value = Decimal(0.0) if row_space_periodically[1] is None else row_space_periodically[1] |
|
300 | base[energy_category_id]['timestamps'].append(current_datetime) |
|
301 | base[energy_category_id]['values'].append(actual_value) |
|
302 | base[energy_category_id]['subtotal'] += actual_value |
|
303 | ||
304 | ################################################################################################################ |
|
305 | # Step 7: query reporting period energy input |
|
306 | ################################################################################################################ |
|
307 | reporting = dict() |
|
308 | if energy_category_set is not None and len(energy_category_set) > 0: |
|
309 | for energy_category_id in energy_category_set: |
|
310 | reporting[energy_category_id] = dict() |
|
311 | reporting[energy_category_id]['timestamps'] = list() |
|
312 | reporting[energy_category_id]['values'] = list() |
|
313 | reporting[energy_category_id]['subtotal'] = Decimal(0.0) |
|
314 | reporting[energy_category_id]['mean'] = None |
|
315 | reporting[energy_category_id]['median'] = None |
|
316 | reporting[energy_category_id]['minimum'] = None |
|
317 | reporting[energy_category_id]['maximum'] = None |
|
318 | reporting[energy_category_id]['stdev'] = None |
|
319 | reporting[energy_category_id]['variance'] = None |
|
320 | ||
321 | cursor_energy.execute(" SELECT start_datetime_utc, actual_value " |
|
322 | " FROM tbl_space_input_category_hourly " |
|
323 | " WHERE space_id = %s " |
|
324 | " AND energy_category_id = %s " |
|
325 | " AND start_datetime_utc >= %s " |
|
326 | " AND start_datetime_utc < %s " |
|
327 | " ORDER BY start_datetime_utc ", |
|
328 | (space['id'], |
|
329 | energy_category_id, |
|
330 | reporting_start_datetime_utc, |
|
331 | reporting_end_datetime_utc)) |
|
332 | rows_space_hourly = cursor_energy.fetchall() |
|
333 | ||
334 | rows_space_periodically, \ |
|
335 | reporting[energy_category_id]['mean'], \ |
|
336 | reporting[energy_category_id]['median'], \ |
|
337 | reporting[energy_category_id]['minimum'], \ |
|
338 | reporting[energy_category_id]['maximum'], \ |
|
339 | reporting[energy_category_id]['stdev'], \ |
|
340 | reporting[energy_category_id]['variance'] = \ |
|
341 | utilities.statistics_hourly_data_by_period(rows_space_hourly, |
|
342 | reporting_start_datetime_utc, |
|
343 | reporting_end_datetime_utc, |
|
344 | period_type) |
|
345 | ||
346 | for row_space_periodically in rows_space_periodically: |
|
347 | current_datetime_local = row_space_periodically[0].replace(tzinfo=timezone.utc) + \ |
|
348 | timedelta(minutes=timezone_offset) |
|
349 | if period_type == 'hourly': |
|
350 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
|
351 | elif period_type == 'daily': |
|
352 | current_datetime = current_datetime_local.strftime('%Y-%m-%d') |
|
353 | elif period_type == 'monthly': |
|
354 | current_datetime = current_datetime_local.strftime('%Y-%m') |
|
355 | elif period_type == 'yearly': |
|
356 | current_datetime = current_datetime_local.strftime('%Y') |
|
357 | ||
358 | actual_value = Decimal(0.0) if row_space_periodically[1] is None else row_space_periodically[1] |
|
359 | reporting[energy_category_id]['timestamps'].append(current_datetime) |
|
360 | reporting[energy_category_id]['values'].append(actual_value) |
|
361 | reporting[energy_category_id]['subtotal'] += actual_value |
|
362 | ||
363 | ################################################################################################################ |
|
364 | # Step 8: query tariff data |
|
365 | ################################################################################################################ |
|
366 | parameters_data = dict() |
|
367 | parameters_data['names'] = list() |
|
368 | parameters_data['timestamps'] = list() |
|
369 | parameters_data['values'] = list() |
|
370 | if energy_category_set is not None and len(energy_category_set) > 0: |
|
371 | for energy_category_id in energy_category_set: |
|
372 | energy_category_tariff_dict = utilities.get_energy_category_tariffs(space['cost_center_id'], |
|
373 | energy_category_id, |
|
374 | reporting_start_datetime_utc, |
|
375 | reporting_end_datetime_utc) |
|
376 | tariff_timestamp_list = list() |
|
377 | tariff_value_list = list() |
|
378 | for k, v in energy_category_tariff_dict.items(): |
|
379 | # convert k from utc to local |
|
380 | k = k + timedelta(minutes=timezone_offset) |
|
381 | tariff_timestamp_list.append(k.isoformat()[0:19][0:19]) |
|
382 | tariff_value_list.append(v) |
|
383 | ||
384 | parameters_data['names'].append('TARIFF-' + energy_category_dict[energy_category_id]['name']) |
|
385 | parameters_data['timestamps'].append(tariff_timestamp_list) |
|
386 | parameters_data['values'].append(tariff_value_list) |
|
387 | ||
388 | ################################################################################################################ |
|
389 | # Step 9: query associated sensors and points data |
|
390 | ################################################################################################################ |
|
391 | for point in point_list: |
|
392 | point_values = [] |
|
393 | point_timestamps = [] |
|
394 | if point['object_type'] == 'ANALOG_VALUE': |
|
395 | query = (" SELECT utc_date_time, actual_value " |
|
396 | " FROM tbl_analog_value " |
|
397 | " WHERE point_id = %s " |
|
398 | " AND utc_date_time BETWEEN %s AND %s " |
|
399 | " ORDER BY utc_date_time ") |
|
400 | cursor_historical.execute(query, (point['id'], |
|
401 | reporting_start_datetime_utc, |
|
402 | reporting_end_datetime_utc)) |
|
403 | rows = cursor_historical.fetchall() |
|
404 | ||
405 | if rows is not None and len(rows) > 0: |
|
406 | for row in rows: |
|
407 | current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
|
408 | timedelta(minutes=timezone_offset) |
|
409 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
|
410 | point_timestamps.append(current_datetime) |
|
411 | point_values.append(row[1]) |
|
412 | ||
413 | elif point['object_type'] == 'ENERGY_VALUE': |
|
414 | query = (" SELECT utc_date_time, actual_value " |
|
415 | " FROM tbl_energy_value " |
|
416 | " WHERE point_id = %s " |
|
417 | " AND utc_date_time BETWEEN %s AND %s " |
|
418 | " ORDER BY utc_date_time ") |
|
419 | cursor_historical.execute(query, (point['id'], |
|
420 | reporting_start_datetime_utc, |
|
421 | reporting_end_datetime_utc)) |
|
422 | rows = cursor_historical.fetchall() |
|
423 | ||
424 | if rows is not None and len(rows) > 0: |
|
425 | for row in rows: |
|
426 | current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
|
427 | timedelta(minutes=timezone_offset) |
|
428 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
|
429 | point_timestamps.append(current_datetime) |
|
430 | point_values.append(row[1]) |
|
431 | elif point['object_type'] == 'DIGITAL_VALUE': |
|
432 | query = (" SELECT utc_date_time, actual_value " |
|
433 | " FROM tbl_digital_value " |
|
434 | " WHERE point_id = %s " |
|
435 | " AND utc_date_time BETWEEN %s AND %s ") |
|
436 | cursor_historical.execute(query, (point['id'], |
|
437 | reporting_start_datetime_utc, |
|
438 | reporting_end_datetime_utc)) |
|
439 | rows = cursor_historical.fetchall() |
|
440 | ||
441 | if rows is not None and len(rows) > 0: |
|
442 | for row in rows: |
|
443 | current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
|
444 | timedelta(minutes=timezone_offset) |
|
445 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
|
446 | point_timestamps.append(current_datetime) |
|
447 | point_values.append(row[1]) |
|
448 | ||
449 | parameters_data['names'].append(point['name'] + ' (' + point['units'] + ')') |
|
450 | parameters_data['timestamps'].append(point_timestamps) |
|
451 | parameters_data['values'].append(point_values) |
|
452 | ||
453 | ################################################################################################################ |
|
454 | # Step 10: construct the report |
|
455 | ################################################################################################################ |
|
456 | if cursor_system: |
|
457 | cursor_system.close() |
|
458 | if cnx_system: |
|
459 | cnx_system.disconnect() |
|
460 | ||
461 | if cursor_energy: |
|
462 | cursor_energy.close() |
|
463 | if cnx_energy: |
|
464 | cnx_energy.disconnect() |
|
465 | ||
466 | result = dict() |
|
467 | ||
468 | result['space'] = dict() |
|
469 | result['space']['name'] = space['name'] |
|
470 | result['space']['area'] = space['area'] |
|
471 | ||
472 | result['base_period'] = dict() |
|
473 | result['base_period']['names'] = list() |
|
474 | result['base_period']['units'] = list() |
|
475 | result['base_period']['timestamps'] = list() |
|
476 | result['base_period']['values'] = list() |
|
477 | result['base_period']['subtotals'] = list() |
|
478 | result['base_period']['means'] = list() |
|
479 | result['base_period']['medians'] = list() |
|
480 | result['base_period']['minimums'] = list() |
|
481 | result['base_period']['maximums'] = list() |
|
482 | result['base_period']['stdevs'] = list() |
|
483 | result['base_period']['variances'] = list() |
|
484 | ||
485 | if energy_category_set is not None and len(energy_category_set) > 0: |
|
486 | for energy_category_id in energy_category_set: |
|
487 | result['base_period']['names'].append(energy_category_dict[energy_category_id]['name']) |
|
488 | result['base_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure']) |
|
489 | result['base_period']['timestamps'].append(base[energy_category_id]['timestamps']) |
|
490 | result['base_period']['values'].append(base[energy_category_id]['values']) |
|
491 | result['base_period']['subtotals'].append(base[energy_category_id]['subtotal']) |
|
492 | result['base_period']['means'].append(base[energy_category_id]['mean']) |
|
493 | result['base_period']['medians'].append(base[energy_category_id]['median']) |
|
494 | result['base_period']['minimums'].append(base[energy_category_id]['minimum']) |
|
495 | result['base_period']['maximums'].append(base[energy_category_id]['maximum']) |
|
496 | result['base_period']['stdevs'].append(base[energy_category_id]['stdev']) |
|
497 | result['base_period']['variances'].append(base[energy_category_id]['variance']) |
|
498 | ||
499 | result['reporting_period'] = dict() |
|
500 | result['reporting_period']['names'] = list() |
|
501 | result['reporting_period']['energy_category_ids'] = list() |
|
502 | result['reporting_period']['units'] = list() |
|
503 | result['reporting_period']['timestamps'] = list() |
|
504 | result['reporting_period']['values'] = list() |
|
505 | result['reporting_period']['subtotals'] = list() |
|
506 | result['reporting_period']['means'] = list() |
|
507 | result['reporting_period']['means_per_unit_area'] = list() |
|
508 | result['reporting_period']['means_increment_rate'] = list() |
|
509 | result['reporting_period']['medians'] = list() |
|
510 | result['reporting_period']['medians_per_unit_area'] = list() |
|
511 | result['reporting_period']['medians_increment_rate'] = list() |
|
512 | result['reporting_period']['minimums'] = list() |
|
513 | result['reporting_period']['minimums_per_unit_area'] = list() |
|
514 | result['reporting_period']['minimums_increment_rate'] = list() |
|
515 | result['reporting_period']['maximums'] = list() |
|
516 | result['reporting_period']['maximums_per_unit_area'] = list() |
|
517 | result['reporting_period']['maximums_increment_rate'] = list() |
|
518 | result['reporting_period']['stdevs'] = list() |
|
519 | result['reporting_period']['stdevs_per_unit_area'] = list() |
|
520 | result['reporting_period']['stdevs_increment_rate'] = list() |
|
521 | result['reporting_period']['variances'] = list() |
|
522 | result['reporting_period']['variances_per_unit_area'] = list() |
|
523 | result['reporting_period']['variances_increment_rate'] = list() |
|
524 | ||
525 | if energy_category_set is not None and len(energy_category_set) > 0: |
|
526 | for energy_category_id in energy_category_set: |
|
527 | result['reporting_period']['names'].append(energy_category_dict[energy_category_id]['name']) |
|
528 | result['reporting_period']['energy_category_ids'].append(energy_category_id) |
|
529 | result['reporting_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure']) |
|
530 | result['reporting_period']['timestamps'].append(reporting[energy_category_id]['timestamps']) |
|
531 | result['reporting_period']['values'].append(reporting[energy_category_id]['values']) |
|
532 | result['reporting_period']['subtotals'].append(reporting[energy_category_id]['subtotal']) |
|
533 | result['reporting_period']['means'].append(reporting[energy_category_id]['mean']) |
|
534 | result['reporting_period']['means_per_unit_area'].append( |
|
535 | reporting[energy_category_id]['mean'] / space['area'] |
|
536 | if reporting[energy_category_id]['mean'] is not None and |
|
537 | space['area'] is not None and |
|
538 | space['area'] > Decimal(0.0) |
|
539 | else None) |
|
540 | result['reporting_period']['means_increment_rate'].append( |
|
541 | (reporting[energy_category_id]['mean'] - base[energy_category_id]['mean']) / |
|
542 | base[energy_category_id]['mean'] if (base[energy_category_id]['mean'] is not None and |
|
543 | base[energy_category_id]['mean'] > Decimal(0.0)) |
|
544 | else None) |
|
545 | result['reporting_period']['medians'].append(reporting[energy_category_id]['median']) |
|
546 | result['reporting_period']['medians_per_unit_area'].append( |
|
547 | reporting[energy_category_id]['median'] / space['area'] |
|
548 | if reporting[energy_category_id]['median'] is not None and |
|
549 | space['area'] is not None and |
|
550 | space['area'] > Decimal(0.0) |
|
551 | else None) |
|
552 | result['reporting_period']['medians_increment_rate'].append( |
|
553 | (reporting[energy_category_id]['median'] - base[energy_category_id]['median']) / |
|
554 | base[energy_category_id]['median'] if (base[energy_category_id]['median'] is not None and |
|
555 | base[energy_category_id]['median'] > Decimal(0.0)) |
|
556 | else None) |
|
557 | result['reporting_period']['minimums'].append(reporting[energy_category_id]['minimum']) |
|
558 | result['reporting_period']['minimums_per_unit_area'].append( |
|
559 | reporting[energy_category_id]['minimum'] / space['area'] |
|
560 | if reporting[energy_category_id]['minimum'] is not None and |
|
561 | space['area'] is not None and |
|
562 | space['area'] > Decimal(0.0) |
|
563 | else None) |
|
564 | result['reporting_period']['minimums_increment_rate'].append( |
|
565 | (reporting[energy_category_id]['minimum'] - base[energy_category_id]['minimum']) / |
|
566 | base[energy_category_id]['minimum'] if (base[energy_category_id]['minimum'] is not None and |
|
567 | base[energy_category_id]['minimum'] > Decimal(0.0)) |
|
568 | else None) |
|
569 | result['reporting_period']['maximums'].append(reporting[energy_category_id]['maximum']) |
|
570 | result['reporting_period']['maximums_per_unit_area'].append( |
|
571 | reporting[energy_category_id]['maximum'] / space['area'] |
|
572 | if reporting[energy_category_id]['maximum'] is not None and |
|
573 | space['area'] is not None and |
|
574 | space['area'] > Decimal(0.0) |
|
575 | else None) |
|
576 | result['reporting_period']['maximums_increment_rate'].append( |
|
577 | (reporting[energy_category_id]['maximum'] - base[energy_category_id]['maximum']) / |
|
578 | base[energy_category_id]['maximum'] if (base[energy_category_id]['maximum'] is not None and |
|
579 | base[energy_category_id]['maximum'] > Decimal(0.0)) |
|
580 | else None) |
|
581 | result['reporting_period']['stdevs'].append(reporting[energy_category_id]['stdev']) |
|
582 | result['reporting_period']['stdevs_per_unit_area'].append( |
|
583 | reporting[energy_category_id]['stdev'] / space['area'] |
|
584 | if reporting[energy_category_id]['stdev'] is not None and |
|
585 | space['area'] is not None and |
|
586 | space['area'] > Decimal(0.0) |
|
587 | else None) |
|
588 | result['reporting_period']['stdevs_increment_rate'].append( |
|
589 | (reporting[energy_category_id]['stdev'] - base[energy_category_id]['stdev']) / |
|
590 | base[energy_category_id]['stdev'] if (base[energy_category_id]['stdev'] is not None and |
|
591 | base[energy_category_id]['stdev'] > Decimal(0.0)) |
|
592 | else None) |
|
593 | result['reporting_period']['variances'].append(reporting[energy_category_id]['variance']) |
|
594 | result['reporting_period']['variances_per_unit_area'].append( |
|
595 | reporting[energy_category_id]['variance'] / space['area'] |
|
596 | if reporting[energy_category_id]['variance'] is not None and |
|
597 | space['area'] is not None and |
|
598 | space['area'] > Decimal(0.0) |
|
599 | else None) |
|
600 | result['reporting_period']['variances_increment_rate'].append( |
|
601 | (reporting[energy_category_id]['variance'] - base[energy_category_id]['variance']) / |
|
602 | base[energy_category_id]['variance'] if (base[energy_category_id]['variance'] is not None and |
|
603 | base[energy_category_id]['variance'] > Decimal(0.0)) |
|
604 | else None) |
|
605 | ||
606 | result['parameters'] = { |
|
607 | "names": parameters_data['names'], |
|
608 | "timestamps": parameters_data['timestamps'], |
|
609 | "values": parameters_data['values'] |
|
610 | } |
|
611 | ||
612 | resp.body = json.dumps(result) |
|
613 |