@@ 11-613 (lines=603) @@ | ||
8 | import statistics |
|
9 | ||
10 | ||
11 | class Reporting: |
|
12 | @staticmethod |
|
13 | def __init__(): |
|
14 | pass |
|
15 | ||
16 | @staticmethod |
|
17 | def on_options(req, resp): |
|
18 | resp.status = falcon.HTTP_200 |
|
19 | ||
20 | #################################################################################################################### |
|
21 | # PROCEDURES |
|
22 | # Step 1: valid parameters |
|
23 | # Step 2: query the tenant |
|
24 | # Step 3: query energy categories |
|
25 | # Step 4: query associated sensors |
|
26 | # Step 5: query associated points |
|
27 | # Step 6: query base period energy input |
|
28 | # Step 7: query reporting period energy input |
|
29 | # Step 8: query tariff data |
|
30 | # Step 9: query associated sensors and points data |
|
31 | # Step 10: construct the report |
|
32 | #################################################################################################################### |
|
33 | @staticmethod |
|
34 | def on_get(req, resp): |
|
35 | print(req.params) |
|
36 | tenant_id = req.params.get('tenantid') |
|
37 | period_type = req.params.get('periodtype') |
|
38 | base_start_datetime_local = req.params.get('baseperiodstartdatetime') |
|
39 | base_end_datetime_local = req.params.get('baseperiodenddatetime') |
|
40 | reporting_start_datetime_local = req.params.get('reportingperiodstartdatetime') |
|
41 | reporting_end_datetime_local = req.params.get('reportingperiodenddatetime') |
|
42 | ||
43 | ################################################################################################################ |
|
44 | # Step 1: valid parameters |
|
45 | ################################################################################################################ |
|
46 | if tenant_id is None: |
|
47 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_TENANT_ID') |
|
48 | else: |
|
49 | tenant_id = str.strip(tenant_id) |
|
50 | if not tenant_id.isdigit() or int(tenant_id) <= 0: |
|
51 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_TENANT_ID') |
|
52 | ||
53 | if period_type is None: |
|
54 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE') |
|
55 | else: |
|
56 | period_type = str.strip(period_type) |
|
57 | if period_type not in ['hourly', 'daily', 'monthly', 'yearly']: |
|
58 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE') |
|
59 | ||
60 | timezone_offset = int(config.utc_offset[1:3]) * 60 + int(config.utc_offset[4:6]) |
|
61 | if config.utc_offset[0] == '-': |
|
62 | timezone_offset = -timezone_offset |
|
63 | ||
64 | base_start_datetime_utc = None |
|
65 | if base_start_datetime_local is not None and len(str.strip(base_start_datetime_local)) > 0: |
|
66 | base_start_datetime_local = str.strip(base_start_datetime_local) |
|
67 | try: |
|
68 | base_start_datetime_utc = datetime.strptime(base_start_datetime_local, |
|
69 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
|
70 | timedelta(minutes=timezone_offset) |
|
71 | except ValueError: |
|
72 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
73 | description="API.INVALID_BASE_PERIOD_BEGINS_DATETIME") |
|
74 | ||
75 | base_end_datetime_utc = None |
|
76 | if base_end_datetime_local is not None and len(str.strip(base_end_datetime_local)) > 0: |
|
77 | base_end_datetime_local = str.strip(base_end_datetime_local) |
|
78 | try: |
|
79 | base_end_datetime_utc = datetime.strptime(base_end_datetime_local, |
|
80 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
|
81 | timedelta(minutes=timezone_offset) |
|
82 | except ValueError: |
|
83 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
84 | description="API.INVALID_BASE_PERIOD_ENDS_DATETIME") |
|
85 | ||
86 | if base_start_datetime_utc is not None and base_end_datetime_utc is not None and \ |
|
87 | base_start_datetime_utc >= base_end_datetime_utc: |
|
88 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
89 | description='API.INVALID_BASE_PERIOD_ENDS_DATETIME') |
|
90 | ||
91 | if reporting_start_datetime_local is None: |
|
92 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
93 | description="API.INVALID_REPORTING_PERIOD_BEGINS_DATETIME") |
|
94 | else: |
|
95 | reporting_start_datetime_local = str.strip(reporting_start_datetime_local) |
|
96 | try: |
|
97 | reporting_start_datetime_utc = datetime.strptime(reporting_start_datetime_local, |
|
98 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
|
99 | timedelta(minutes=timezone_offset) |
|
100 | except ValueError: |
|
101 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
102 | description="API.INVALID_REPORTING_PERIOD_BEGINS_DATETIME") |
|
103 | ||
104 | if reporting_end_datetime_local is None: |
|
105 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
106 | description="API.INVALID_REPORTING_PERIOD_ENDS_DATETIME") |
|
107 | else: |
|
108 | reporting_end_datetime_local = str.strip(reporting_end_datetime_local) |
|
109 | try: |
|
110 | reporting_end_datetime_utc = datetime.strptime(reporting_end_datetime_local, |
|
111 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
|
112 | timedelta(minutes=timezone_offset) |
|
113 | except ValueError: |
|
114 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
115 | description="API.INVALID_REPORTING_PERIOD_ENDS_DATETIME") |
|
116 | ||
117 | if reporting_start_datetime_utc >= reporting_end_datetime_utc: |
|
118 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
119 | description='API.INVALID_REPORTING_PERIOD_ENDS_DATETIME') |
|
120 | ||
121 | ################################################################################################################ |
|
122 | # Step 2: query the tenant |
|
123 | ################################################################################################################ |
|
124 | cnx_system = mysql.connector.connect(**config.myems_system_db) |
|
125 | cursor_system = cnx_system.cursor() |
|
126 | ||
127 | cnx_energy = mysql.connector.connect(**config.myems_energy_db) |
|
128 | cursor_energy = cnx_energy.cursor() |
|
129 | ||
130 | cnx_historical = mysql.connector.connect(**config.myems_historical_db) |
|
131 | cursor_historical = cnx_historical.cursor() |
|
132 | ||
133 | cursor_system.execute(" SELECT id, name, area, cost_center_id " |
|
134 | " FROM tbl_tenants " |
|
135 | " WHERE id = %s ", (tenant_id,)) |
|
136 | row_tenant = cursor_system.fetchone() |
|
137 | if row_tenant is None: |
|
138 | if cursor_system: |
|
139 | cursor_system.close() |
|
140 | if cnx_system: |
|
141 | cnx_system.disconnect() |
|
142 | ||
143 | if cursor_energy: |
|
144 | cursor_energy.close() |
|
145 | if cnx_energy: |
|
146 | cnx_energy.disconnect() |
|
147 | ||
148 | if cnx_historical: |
|
149 | cnx_historical.close() |
|
150 | if cursor_historical: |
|
151 | cursor_historical.disconnect() |
|
152 | raise falcon.HTTPError(falcon.HTTP_404, title='API.NOT_FOUND', description='API.TENANT_NOT_FOUND') |
|
153 | ||
154 | tenant = dict() |
|
155 | tenant['id'] = row_tenant[0] |
|
156 | tenant['name'] = row_tenant[1] |
|
157 | tenant['area'] = row_tenant[2] |
|
158 | tenant['cost_center_id'] = row_tenant[3] |
|
159 | ||
160 | ################################################################################################################ |
|
161 | # Step 3: query energy categories |
|
162 | ################################################################################################################ |
|
163 | energy_category_set = set() |
|
164 | # query energy categories in base period |
|
165 | cursor_energy.execute(" SELECT DISTINCT(energy_category_id) " |
|
166 | " FROM tbl_tenant_input_category_hourly " |
|
167 | " WHERE tenant_id = %s " |
|
168 | " AND start_datetime_utc >= %s " |
|
169 | " AND start_datetime_utc < %s ", |
|
170 | (tenant['id'], base_start_datetime_utc, base_end_datetime_utc)) |
|
171 | rows_energy_categories = cursor_energy.fetchall() |
|
172 | if rows_energy_categories is not None or len(rows_energy_categories) > 0: |
|
173 | for row_energy_category in rows_energy_categories: |
|
174 | energy_category_set.add(row_energy_category[0]) |
|
175 | ||
176 | # query energy categories in reporting period |
|
177 | cursor_energy.execute(" SELECT DISTINCT(energy_category_id) " |
|
178 | " FROM tbl_tenant_input_category_hourly " |
|
179 | " WHERE tenant_id = %s " |
|
180 | " AND start_datetime_utc >= %s " |
|
181 | " AND start_datetime_utc < %s ", |
|
182 | (tenant['id'], reporting_start_datetime_utc, reporting_end_datetime_utc)) |
|
183 | rows_energy_categories = cursor_energy.fetchall() |
|
184 | if rows_energy_categories is not None or len(rows_energy_categories) > 0: |
|
185 | for row_energy_category in rows_energy_categories: |
|
186 | energy_category_set.add(row_energy_category[0]) |
|
187 | ||
188 | # query all energy categories in base period and reporting period |
|
189 | cursor_system.execute(" SELECT id, name, unit_of_measure, kgce, kgco2e " |
|
190 | " FROM tbl_energy_categories " |
|
191 | " ORDER BY id ", ) |
|
192 | rows_energy_categories = cursor_system.fetchall() |
|
193 | if rows_energy_categories is None or len(rows_energy_categories) == 0: |
|
194 | if cursor_system: |
|
195 | cursor_system.close() |
|
196 | if cnx_system: |
|
197 | cnx_system.disconnect() |
|
198 | ||
199 | if cursor_energy: |
|
200 | cursor_energy.close() |
|
201 | if cnx_energy: |
|
202 | cnx_energy.disconnect() |
|
203 | ||
204 | if cnx_historical: |
|
205 | cnx_historical.close() |
|
206 | if cursor_historical: |
|
207 | cursor_historical.disconnect() |
|
208 | raise falcon.HTTPError(falcon.HTTP_404, |
|
209 | title='API.NOT_FOUND', |
|
210 | description='API.ENERGY_CATEGORY_NOT_FOUND') |
|
211 | energy_category_dict = dict() |
|
212 | for row_energy_category in rows_energy_categories: |
|
213 | if row_energy_category[0] in energy_category_set: |
|
214 | energy_category_dict[row_energy_category[0]] = {"name": row_energy_category[1], |
|
215 | "unit_of_measure": row_energy_category[2], |
|
216 | "kgce": row_energy_category[3], |
|
217 | "kgco2e": row_energy_category[4]} |
|
218 | ||
219 | ################################################################################################################ |
|
220 | # Step 4: query associated sensors |
|
221 | ################################################################################################################ |
|
222 | point_list = list() |
|
223 | cursor_system.execute(" SELECT p.id, p.name, p.units, p.object_type " |
|
224 | " FROM tbl_tenants t, tbl_sensors s, tbl_tenants_sensors ts, " |
|
225 | " tbl_points p, tbl_sensors_points sp " |
|
226 | " WHERE t.id = %s AND t.id = ts.tenant_id AND ts.sensor_id = s.id " |
|
227 | " AND s.id = sp.sensor_id AND sp.point_id = p.id " |
|
228 | " ORDER BY p.id ", (tenant['id'], )) |
|
229 | rows_points = cursor_system.fetchall() |
|
230 | if rows_points is not None and len(rows_points) > 0: |
|
231 | for row in rows_points: |
|
232 | point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]}) |
|
233 | ||
234 | ################################################################################################################ |
|
235 | # Step 5: query associated points |
|
236 | ################################################################################################################ |
|
237 | cursor_system.execute(" SELECT p.id, p.name, p.units, p.object_type " |
|
238 | " FROM tbl_tenants t, tbl_tenants_points tp, tbl_points p " |
|
239 | " WHERE t.id = %s AND t.id = tp.tenant_id AND tp.point_id = p.id " |
|
240 | " ORDER BY p.id ", (tenant['id'], )) |
|
241 | rows_points = cursor_system.fetchall() |
|
242 | if rows_points is not None and len(rows_points) > 0: |
|
243 | for row in rows_points: |
|
244 | point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]}) |
|
245 | ||
246 | ################################################################################################################ |
|
247 | # Step 6: query base period energy input |
|
248 | ################################################################################################################ |
|
249 | base = dict() |
|
250 | if energy_category_set is not None and len(energy_category_set) > 0: |
|
251 | for energy_category_id in energy_category_set: |
|
252 | base[energy_category_id] = dict() |
|
253 | base[energy_category_id]['timestamps'] = list() |
|
254 | base[energy_category_id]['values'] = list() |
|
255 | base[energy_category_id]['subtotal'] = Decimal(0.0) |
|
256 | base[energy_category_id]['mean'] = None |
|
257 | base[energy_category_id]['median'] = None |
|
258 | base[energy_category_id]['minimum'] = None |
|
259 | base[energy_category_id]['maximum'] = None |
|
260 | base[energy_category_id]['stdev'] = None |
|
261 | base[energy_category_id]['variance'] = None |
|
262 | ||
263 | cursor_energy.execute(" SELECT start_datetime_utc, actual_value " |
|
264 | " FROM tbl_tenant_input_category_hourly " |
|
265 | " WHERE tenant_id = %s " |
|
266 | " AND energy_category_id = %s " |
|
267 | " AND start_datetime_utc >= %s " |
|
268 | " AND start_datetime_utc < %s " |
|
269 | " ORDER BY start_datetime_utc ", |
|
270 | (tenant['id'], |
|
271 | energy_category_id, |
|
272 | base_start_datetime_utc, |
|
273 | base_end_datetime_utc)) |
|
274 | rows_tenant_hourly = cursor_energy.fetchall() |
|
275 | ||
276 | rows_tenant_periodically, \ |
|
277 | base[energy_category_id]['mean'], \ |
|
278 | base[energy_category_id]['median'], \ |
|
279 | base[energy_category_id]['minimum'], \ |
|
280 | base[energy_category_id]['maximum'], \ |
|
281 | base[energy_category_id]['stdev'], \ |
|
282 | base[energy_category_id]['variance'] = \ |
|
283 | utilities.statistics_hourly_data_by_period(rows_tenant_hourly, |
|
284 | base_start_datetime_utc, |
|
285 | base_end_datetime_utc, |
|
286 | period_type) |
|
287 | ||
288 | for row_tenant_periodically in rows_tenant_periodically: |
|
289 | current_datetime_local = row_tenant_periodically[0].replace(tzinfo=timezone.utc) + \ |
|
290 | timedelta(minutes=timezone_offset) |
|
291 | if period_type == 'hourly': |
|
292 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
|
293 | elif period_type == 'daily': |
|
294 | current_datetime = current_datetime_local.strftime('%Y-%m-%d') |
|
295 | elif period_type == 'monthly': |
|
296 | current_datetime = current_datetime_local.strftime('%Y-%m') |
|
297 | elif period_type == 'yearly': |
|
298 | current_datetime = current_datetime_local.strftime('%Y') |
|
299 | ||
300 | actual_value = Decimal(0.0) if row_tenant_periodically[1] is None else row_tenant_periodically[1] |
|
301 | base[energy_category_id]['timestamps'].append(current_datetime) |
|
302 | base[energy_category_id]['values'].append(actual_value) |
|
303 | base[energy_category_id]['subtotal'] += actual_value |
|
304 | ||
305 | ################################################################################################################ |
|
306 | # Step 7: query reporting period energy input |
|
307 | ################################################################################################################ |
|
308 | reporting = dict() |
|
309 | if energy_category_set is not None and len(energy_category_set) > 0: |
|
310 | for energy_category_id in energy_category_set: |
|
311 | reporting[energy_category_id] = dict() |
|
312 | reporting[energy_category_id]['timestamps'] = list() |
|
313 | reporting[energy_category_id]['values'] = list() |
|
314 | reporting[energy_category_id]['subtotal'] = Decimal(0.0) |
|
315 | reporting[energy_category_id]['mean'] = None |
|
316 | reporting[energy_category_id]['median'] = None |
|
317 | reporting[energy_category_id]['minimum'] = None |
|
318 | reporting[energy_category_id]['maximum'] = None |
|
319 | reporting[energy_category_id]['stdev'] = None |
|
320 | reporting[energy_category_id]['variance'] = None |
|
321 | ||
322 | cursor_energy.execute(" SELECT start_datetime_utc, actual_value " |
|
323 | " FROM tbl_tenant_input_category_hourly " |
|
324 | " WHERE tenant_id = %s " |
|
325 | " AND energy_category_id = %s " |
|
326 | " AND start_datetime_utc >= %s " |
|
327 | " AND start_datetime_utc < %s " |
|
328 | " ORDER BY start_datetime_utc ", |
|
329 | (tenant['id'], |
|
330 | energy_category_id, |
|
331 | reporting_start_datetime_utc, |
|
332 | reporting_end_datetime_utc)) |
|
333 | rows_tenant_hourly = cursor_energy.fetchall() |
|
334 | ||
335 | rows_tenant_periodically, \ |
|
336 | reporting[energy_category_id]['mean'], \ |
|
337 | reporting[energy_category_id]['median'], \ |
|
338 | reporting[energy_category_id]['minimum'], \ |
|
339 | reporting[energy_category_id]['maximum'], \ |
|
340 | reporting[energy_category_id]['stdev'], \ |
|
341 | reporting[energy_category_id]['variance'] = \ |
|
342 | utilities.statistics_hourly_data_by_period(rows_tenant_hourly, |
|
343 | reporting_start_datetime_utc, |
|
344 | reporting_end_datetime_utc, |
|
345 | period_type) |
|
346 | ||
347 | for row_tenant_periodically in rows_tenant_periodically: |
|
348 | current_datetime_local = row_tenant_periodically[0].replace(tzinfo=timezone.utc) + \ |
|
349 | timedelta(minutes=timezone_offset) |
|
350 | if period_type == 'hourly': |
|
351 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
|
352 | elif period_type == 'daily': |
|
353 | current_datetime = current_datetime_local.strftime('%Y-%m-%d') |
|
354 | elif period_type == 'monthly': |
|
355 | current_datetime = current_datetime_local.strftime('%Y-%m') |
|
356 | elif period_type == 'yearly': |
|
357 | current_datetime = current_datetime_local.strftime('%Y') |
|
358 | ||
359 | actual_value = Decimal(0.0) if row_tenant_periodically[1] is None else row_tenant_periodically[1] |
|
360 | reporting[energy_category_id]['timestamps'].append(current_datetime) |
|
361 | reporting[energy_category_id]['values'].append(actual_value) |
|
362 | reporting[energy_category_id]['subtotal'] += actual_value |
|
363 | ||
364 | ################################################################################################################ |
|
365 | # Step 8: query tariff data |
|
366 | ################################################################################################################ |
|
367 | parameters_data = dict() |
|
368 | parameters_data['names'] = list() |
|
369 | parameters_data['timestamps'] = list() |
|
370 | parameters_data['values'] = list() |
|
371 | if energy_category_set is not None and len(energy_category_set) > 0: |
|
372 | for energy_category_id in energy_category_set: |
|
373 | energy_category_tariff_dict = utilities.get_energy_category_tariffs(tenant['cost_center_id'], |
|
374 | energy_category_id, |
|
375 | reporting_start_datetime_utc, |
|
376 | reporting_end_datetime_utc) |
|
377 | tariff_timestamp_list = list() |
|
378 | tariff_value_list = list() |
|
379 | for k, v in energy_category_tariff_dict.items(): |
|
380 | # convert k from utc to local |
|
381 | k = k + timedelta(minutes=timezone_offset) |
|
382 | tariff_timestamp_list.append(k.isoformat()[0:19][0:19]) |
|
383 | tariff_value_list.append(v) |
|
384 | ||
385 | parameters_data['names'].append('TARIFF-' + energy_category_dict[energy_category_id]['name']) |
|
386 | parameters_data['timestamps'].append(tariff_timestamp_list) |
|
387 | parameters_data['values'].append(tariff_value_list) |
|
388 | ||
389 | ################################################################################################################ |
|
390 | # Step 9: query associated sensors and points data |
|
391 | ################################################################################################################ |
|
392 | for point in point_list: |
|
393 | point_values = [] |
|
394 | point_timestamps = [] |
|
395 | if point['object_type'] == 'ANALOG_VALUE': |
|
396 | query = (" SELECT utc_date_time, actual_value " |
|
397 | " FROM tbl_analog_value " |
|
398 | " WHERE point_id = %s " |
|
399 | " AND utc_date_time BETWEEN %s AND %s " |
|
400 | " ORDER BY utc_date_time ") |
|
401 | cursor_historical.execute(query, (point['id'], |
|
402 | reporting_start_datetime_utc, |
|
403 | reporting_end_datetime_utc)) |
|
404 | rows = cursor_historical.fetchall() |
|
405 | ||
406 | if rows is not None and len(rows) > 0: |
|
407 | for row in rows: |
|
408 | current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
|
409 | timedelta(minutes=timezone_offset) |
|
410 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
|
411 | point_timestamps.append(current_datetime) |
|
412 | point_values.append(row[1]) |
|
413 | ||
414 | elif point['object_type'] == 'ENERGY_VALUE': |
|
415 | query = (" SELECT utc_date_time, actual_value " |
|
416 | " FROM tbl_energy_value " |
|
417 | " WHERE point_id = %s " |
|
418 | " AND utc_date_time BETWEEN %s AND %s " |
|
419 | " ORDER BY utc_date_time ") |
|
420 | cursor_historical.execute(query, (point['id'], |
|
421 | reporting_start_datetime_utc, |
|
422 | reporting_end_datetime_utc)) |
|
423 | rows = cursor_historical.fetchall() |
|
424 | ||
425 | if rows is not None and len(rows) > 0: |
|
426 | for row in rows: |
|
427 | current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
|
428 | timedelta(minutes=timezone_offset) |
|
429 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
|
430 | point_timestamps.append(current_datetime) |
|
431 | point_values.append(row[1]) |
|
432 | elif point['object_type'] == 'DIGITAL_VALUE': |
|
433 | query = (" SELECT utc_date_time, actual_value " |
|
434 | " FROM tbl_digital_value " |
|
435 | " WHERE point_id = %s " |
|
436 | " AND utc_date_time BETWEEN %s AND %s ") |
|
437 | cursor_historical.execute(query, (point['id'], |
|
438 | reporting_start_datetime_utc, |
|
439 | reporting_end_datetime_utc)) |
|
440 | rows = cursor_historical.fetchall() |
|
441 | ||
442 | if rows is not None and len(rows) > 0: |
|
443 | for row in rows: |
|
444 | current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
|
445 | timedelta(minutes=timezone_offset) |
|
446 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
|
447 | point_timestamps.append(current_datetime) |
|
448 | point_values.append(row[1]) |
|
449 | ||
450 | parameters_data['names'].append(point['name'] + ' (' + point['units'] + ')') |
|
451 | parameters_data['timestamps'].append(point_timestamps) |
|
452 | parameters_data['values'].append(point_values) |
|
453 | ||
454 | ################################################################################################################ |
|
455 | # Step 10: construct the report |
|
456 | ################################################################################################################ |
|
457 | if cursor_system: |
|
458 | cursor_system.close() |
|
459 | if cnx_system: |
|
460 | cnx_system.disconnect() |
|
461 | ||
462 | if cursor_energy: |
|
463 | cursor_energy.close() |
|
464 | if cnx_energy: |
|
465 | cnx_energy.disconnect() |
|
466 | ||
467 | result = dict() |
|
468 | ||
469 | result['tenant'] = dict() |
|
470 | result['tenant']['name'] = tenant['name'] |
|
471 | result['tenant']['area'] = tenant['area'] |
|
472 | ||
473 | result['base_period'] = dict() |
|
474 | result['base_period']['names'] = list() |
|
475 | result['base_period']['units'] = list() |
|
476 | result['base_period']['timestamps'] = list() |
|
477 | result['base_period']['values'] = list() |
|
478 | result['base_period']['subtotals'] = list() |
|
479 | result['base_period']['means'] = list() |
|
480 | result['base_period']['medians'] = list() |
|
481 | result['base_period']['minimums'] = list() |
|
482 | result['base_period']['maximums'] = list() |
|
483 | result['base_period']['stdevs'] = list() |
|
484 | result['base_period']['variances'] = list() |
|
485 | ||
486 | if energy_category_set is not None and len(energy_category_set) > 0: |
|
487 | for energy_category_id in energy_category_set: |
|
488 | result['base_period']['names'].append(energy_category_dict[energy_category_id]['name']) |
|
489 | result['base_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure']) |
|
490 | result['base_period']['timestamps'].append(base[energy_category_id]['timestamps']) |
|
491 | result['base_period']['values'].append(base[energy_category_id]['values']) |
|
492 | result['base_period']['subtotals'].append(base[energy_category_id]['subtotal']) |
|
493 | result['base_period']['means'].append(base[energy_category_id]['mean']) |
|
494 | result['base_period']['medians'].append(base[energy_category_id]['median']) |
|
495 | result['base_period']['minimums'].append(base[energy_category_id]['minimum']) |
|
496 | result['base_period']['maximums'].append(base[energy_category_id]['maximum']) |
|
497 | result['base_period']['stdevs'].append(base[energy_category_id]['stdev']) |
|
498 | result['base_period']['variances'].append(base[energy_category_id]['variance']) |
|
499 | ||
500 | result['reporting_period'] = dict() |
|
501 | result['reporting_period']['names'] = list() |
|
502 | result['reporting_period']['energy_category_ids'] = list() |
|
503 | result['reporting_period']['units'] = list() |
|
504 | result['reporting_period']['timestamps'] = list() |
|
505 | result['reporting_period']['values'] = list() |
|
506 | result['reporting_period']['subtotals'] = list() |
|
507 | result['reporting_period']['means'] = list() |
|
508 | result['reporting_period']['means_per_unit_area'] = list() |
|
509 | result['reporting_period']['means_increment_rate'] = list() |
|
510 | result['reporting_period']['medians'] = list() |
|
511 | result['reporting_period']['medians_per_unit_area'] = list() |
|
512 | result['reporting_period']['medians_increment_rate'] = list() |
|
513 | result['reporting_period']['minimums'] = list() |
|
514 | result['reporting_period']['minimums_per_unit_area'] = list() |
|
515 | result['reporting_period']['minimums_increment_rate'] = list() |
|
516 | result['reporting_period']['maximums'] = list() |
|
517 | result['reporting_period']['maximums_per_unit_area'] = list() |
|
518 | result['reporting_period']['maximums_increment_rate'] = list() |
|
519 | result['reporting_period']['stdevs'] = list() |
|
520 | result['reporting_period']['stdevs_per_unit_area'] = list() |
|
521 | result['reporting_period']['stdevs_increment_rate'] = list() |
|
522 | result['reporting_period']['variances'] = list() |
|
523 | result['reporting_period']['variances_per_unit_area'] = list() |
|
524 | result['reporting_period']['variances_increment_rate'] = list() |
|
525 | ||
526 | if energy_category_set is not None and len(energy_category_set) > 0: |
|
527 | for energy_category_id in energy_category_set: |
|
528 | result['reporting_period']['names'].append(energy_category_dict[energy_category_id]['name']) |
|
529 | result['reporting_period']['energy_category_ids'].append(energy_category_id) |
|
530 | result['reporting_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure']) |
|
531 | result['reporting_period']['timestamps'].append(reporting[energy_category_id]['timestamps']) |
|
532 | result['reporting_period']['values'].append(reporting[energy_category_id]['values']) |
|
533 | result['reporting_period']['subtotals'].append(reporting[energy_category_id]['subtotal']) |
|
534 | result['reporting_period']['means'].append(reporting[energy_category_id]['mean']) |
|
535 | result['reporting_period']['means_per_unit_area'].append( |
|
536 | reporting[energy_category_id]['mean'] / tenant['area'] |
|
537 | if reporting[energy_category_id]['mean'] is not None and |
|
538 | tenant['area'] is not None and |
|
539 | tenant['area'] > Decimal(0.0) |
|
540 | else None) |
|
541 | result['reporting_period']['means_increment_rate'].append( |
|
542 | (reporting[energy_category_id]['mean'] - base[energy_category_id]['mean']) / |
|
543 | base[energy_category_id]['mean'] if (base[energy_category_id]['mean'] is not None and |
|
544 | base[energy_category_id]['mean'] > Decimal(0.0)) |
|
545 | else None) |
|
546 | result['reporting_period']['medians'].append(reporting[energy_category_id]['median']) |
|
547 | result['reporting_period']['medians_per_unit_area'].append( |
|
548 | reporting[energy_category_id]['median'] / tenant['area'] |
|
549 | if reporting[energy_category_id]['median'] is not None and |
|
550 | tenant['area'] is not None and |
|
551 | tenant['area'] > Decimal(0.0) |
|
552 | else None) |
|
553 | result['reporting_period']['medians_increment_rate'].append( |
|
554 | (reporting[energy_category_id]['median'] - base[energy_category_id]['median']) / |
|
555 | base[energy_category_id]['median'] if (base[energy_category_id]['median'] is not None and |
|
556 | base[energy_category_id]['median'] > Decimal(0.0)) |
|
557 | else None) |
|
558 | result['reporting_period']['minimums'].append(reporting[energy_category_id]['minimum']) |
|
559 | result['reporting_period']['minimums_per_unit_area'].append( |
|
560 | reporting[energy_category_id]['minimum'] / tenant['area'] |
|
561 | if reporting[energy_category_id]['minimum'] is not None and |
|
562 | tenant['area'] is not None and |
|
563 | tenant['area'] > Decimal(0.0) |
|
564 | else None) |
|
565 | result['reporting_period']['minimums_increment_rate'].append( |
|
566 | (reporting[energy_category_id]['minimum'] - base[energy_category_id]['minimum']) / |
|
567 | base[energy_category_id]['minimum'] if (base[energy_category_id]['minimum'] is not None and |
|
568 | base[energy_category_id]['minimum'] > Decimal(0.0)) |
|
569 | else None) |
|
570 | result['reporting_period']['maximums'].append(reporting[energy_category_id]['maximum']) |
|
571 | result['reporting_period']['maximums_per_unit_area'].append( |
|
572 | reporting[energy_category_id]['maximum'] / tenant['area'] |
|
573 | if reporting[energy_category_id]['maximum'] is not None and |
|
574 | tenant['area'] is not None and |
|
575 | tenant['area'] > Decimal(0.0) |
|
576 | else None) |
|
577 | result['reporting_period']['maximums_increment_rate'].append( |
|
578 | (reporting[energy_category_id]['maximum'] - base[energy_category_id]['maximum']) / |
|
579 | base[energy_category_id]['maximum'] if (base[energy_category_id]['maximum'] is not None and |
|
580 | base[energy_category_id]['maximum'] > Decimal(0.0)) |
|
581 | else None) |
|
582 | result['reporting_period']['stdevs'].append(reporting[energy_category_id]['stdev']) |
|
583 | result['reporting_period']['stdevs_per_unit_area'].append( |
|
584 | reporting[energy_category_id]['stdev'] / tenant['area'] |
|
585 | if reporting[energy_category_id]['stdev'] is not None and |
|
586 | tenant['area'] is not None and |
|
587 | tenant['area'] > Decimal(0.0) |
|
588 | else None) |
|
589 | result['reporting_period']['stdevs_increment_rate'].append( |
|
590 | (reporting[energy_category_id]['stdev'] - base[energy_category_id]['stdev']) / |
|
591 | base[energy_category_id]['stdev'] if (base[energy_category_id]['stdev'] is not None and |
|
592 | base[energy_category_id]['stdev'] > Decimal(0.0)) |
|
593 | else None) |
|
594 | result['reporting_period']['variances'].append(reporting[energy_category_id]['variance']) |
|
595 | result['reporting_period']['variances_per_unit_area'].append( |
|
596 | reporting[energy_category_id]['variance'] / tenant['area'] |
|
597 | if reporting[energy_category_id]['variance'] is not None and |
|
598 | tenant['area'] is not None and |
|
599 | tenant['area'] > Decimal(0.0) |
|
600 | else None) |
|
601 | result['reporting_period']['variances_increment_rate'].append( |
|
602 | (reporting[energy_category_id]['variance'] - base[energy_category_id]['variance']) / |
|
603 | base[energy_category_id]['variance'] if (base[energy_category_id]['variance'] is not None and |
|
604 | base[energy_category_id]['variance'] > Decimal(0.0)) |
|
605 | else None) |
|
606 | ||
607 | result['parameters'] = { |
|
608 | "names": parameters_data['names'], |
|
609 | "timestamps": parameters_data['timestamps'], |
|
610 | "values": parameters_data['values'] |
|
611 | } |
|
612 | ||
613 | resp.body = json.dumps(result) |
|
614 |
@@ 11-613 (lines=603) @@ | ||
8 | import statistics |
|
9 | ||
10 | ||
11 | class Reporting: |
|
12 | @staticmethod |
|
13 | def __init__(): |
|
14 | pass |
|
15 | ||
16 | @staticmethod |
|
17 | def on_options(req, resp): |
|
18 | resp.status = falcon.HTTP_200 |
|
19 | ||
20 | #################################################################################################################### |
|
21 | # PROCEDURES |
|
22 | # Step 1: valid parameters |
|
23 | # Step 2: query the space |
|
24 | # Step 3: query energy categories |
|
25 | # Step 4: query associated sensors |
|
26 | # Step 5: query associated points |
|
27 | # Step 6: query base period energy input |
|
28 | # Step 7: query reporting period energy input |
|
29 | # Step 8: query tariff data |
|
30 | # Step 9: query associated sensors and points data |
|
31 | # Step 10: construct the report |
|
32 | #################################################################################################################### |
|
33 | @staticmethod |
|
34 | def on_get(req, resp): |
|
35 | print(req.params) |
|
36 | space_id = req.params.get('spaceid') |
|
37 | period_type = req.params.get('periodtype') |
|
38 | base_start_datetime_local = req.params.get('baseperiodstartdatetime') |
|
39 | base_end_datetime_local = req.params.get('baseperiodenddatetime') |
|
40 | reporting_start_datetime_local = req.params.get('reportingperiodstartdatetime') |
|
41 | reporting_end_datetime_local = req.params.get('reportingperiodenddatetime') |
|
42 | ||
43 | ################################################################################################################ |
|
44 | # Step 1: valid parameters |
|
45 | ################################################################################################################ |
|
46 | if space_id is None: |
|
47 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_SPACE_ID') |
|
48 | else: |
|
49 | space_id = str.strip(space_id) |
|
50 | if not space_id.isdigit() or int(space_id) <= 0: |
|
51 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_SPACE_ID') |
|
52 | ||
53 | if period_type is None: |
|
54 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE') |
|
55 | else: |
|
56 | period_type = str.strip(period_type) |
|
57 | if period_type not in ['hourly', 'daily', 'monthly', 'yearly']: |
|
58 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE') |
|
59 | ||
60 | timezone_offset = int(config.utc_offset[1:3]) * 60 + int(config.utc_offset[4:6]) |
|
61 | if config.utc_offset[0] == '-': |
|
62 | timezone_offset = -timezone_offset |
|
63 | ||
64 | base_start_datetime_utc = None |
|
65 | if base_start_datetime_local is not None and len(str.strip(base_start_datetime_local)) > 0: |
|
66 | base_start_datetime_local = str.strip(base_start_datetime_local) |
|
67 | try: |
|
68 | base_start_datetime_utc = datetime.strptime(base_start_datetime_local, |
|
69 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
|
70 | timedelta(minutes=timezone_offset) |
|
71 | except ValueError: |
|
72 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
73 | description="API.INVALID_BASE_PERIOD_BEGINS_DATETIME") |
|
74 | ||
75 | base_end_datetime_utc = None |
|
76 | if base_end_datetime_local is not None and len(str.strip(base_end_datetime_local)) > 0: |
|
77 | base_end_datetime_local = str.strip(base_end_datetime_local) |
|
78 | try: |
|
79 | base_end_datetime_utc = datetime.strptime(base_end_datetime_local, |
|
80 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
|
81 | timedelta(minutes=timezone_offset) |
|
82 | except ValueError: |
|
83 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
84 | description="API.INVALID_BASE_PERIOD_ENDS_DATETIME") |
|
85 | ||
86 | if base_start_datetime_utc is not None and base_end_datetime_utc is not None and \ |
|
87 | base_start_datetime_utc >= base_end_datetime_utc: |
|
88 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
89 | description='API.INVALID_BASE_PERIOD_ENDS_DATETIME') |
|
90 | ||
91 | if reporting_start_datetime_local is None: |
|
92 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
93 | description="API.INVALID_REPORTING_PERIOD_BEGINS_DATETIME") |
|
94 | else: |
|
95 | reporting_start_datetime_local = str.strip(reporting_start_datetime_local) |
|
96 | try: |
|
97 | reporting_start_datetime_utc = datetime.strptime(reporting_start_datetime_local, |
|
98 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
|
99 | timedelta(minutes=timezone_offset) |
|
100 | except ValueError: |
|
101 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
102 | description="API.INVALID_REPORTING_PERIOD_BEGINS_DATETIME") |
|
103 | ||
104 | if reporting_end_datetime_local is None: |
|
105 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
106 | description="API.INVALID_REPORTING_PERIOD_ENDS_DATETIME") |
|
107 | else: |
|
108 | reporting_end_datetime_local = str.strip(reporting_end_datetime_local) |
|
109 | try: |
|
110 | reporting_end_datetime_utc = datetime.strptime(reporting_end_datetime_local, |
|
111 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
|
112 | timedelta(minutes=timezone_offset) |
|
113 | except ValueError: |
|
114 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
115 | description="API.INVALID_REPORTING_PERIOD_ENDS_DATETIME") |
|
116 | ||
117 | if reporting_start_datetime_utc >= reporting_end_datetime_utc: |
|
118 | raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', |
|
119 | description='API.INVALID_REPORTING_PERIOD_ENDS_DATETIME') |
|
120 | ||
121 | ################################################################################################################ |
|
122 | # Step 2: query the space |
|
123 | ################################################################################################################ |
|
124 | cnx_system = mysql.connector.connect(**config.myems_system_db) |
|
125 | cursor_system = cnx_system.cursor() |
|
126 | ||
127 | cnx_energy = mysql.connector.connect(**config.myems_energy_db) |
|
128 | cursor_energy = cnx_energy.cursor() |
|
129 | ||
130 | cnx_historical = mysql.connector.connect(**config.myems_historical_db) |
|
131 | cursor_historical = cnx_historical.cursor() |
|
132 | ||
133 | cursor_system.execute(" SELECT id, name, area, cost_center_id " |
|
134 | " FROM tbl_spaces " |
|
135 | " WHERE id = %s ", (space_id,)) |
|
136 | row_space = cursor_system.fetchone() |
|
137 | if row_space is None: |
|
138 | if cursor_system: |
|
139 | cursor_system.close() |
|
140 | if cnx_system: |
|
141 | cnx_system.disconnect() |
|
142 | ||
143 | if cursor_energy: |
|
144 | cursor_energy.close() |
|
145 | if cnx_energy: |
|
146 | cnx_energy.disconnect() |
|
147 | ||
148 | if cnx_historical: |
|
149 | cnx_historical.close() |
|
150 | if cursor_historical: |
|
151 | cursor_historical.disconnect() |
|
152 | raise falcon.HTTPError(falcon.HTTP_404, title='API.NOT_FOUND', description='API.SPACE_NOT_FOUND') |
|
153 | ||
154 | space = dict() |
|
155 | space['id'] = row_space[0] |
|
156 | space['name'] = row_space[1] |
|
157 | space['area'] = row_space[2] |
|
158 | space['cost_center_id'] = row_space[3] |
|
159 | ||
160 | ################################################################################################################ |
|
161 | # Step 3: query energy categories |
|
162 | ################################################################################################################ |
|
163 | energy_category_set = set() |
|
164 | # query energy categories in base period |
|
165 | cursor_energy.execute(" SELECT DISTINCT(energy_category_id) " |
|
166 | " FROM tbl_space_input_category_hourly " |
|
167 | " WHERE space_id = %s " |
|
168 | " AND start_datetime_utc >= %s " |
|
169 | " AND start_datetime_utc < %s ", |
|
170 | (space['id'], base_start_datetime_utc, base_end_datetime_utc)) |
|
171 | rows_energy_categories = cursor_energy.fetchall() |
|
172 | if rows_energy_categories is not None or len(rows_energy_categories) > 0: |
|
173 | for row_energy_category in rows_energy_categories: |
|
174 | energy_category_set.add(row_energy_category[0]) |
|
175 | ||
176 | # query energy categories in reporting period |
|
177 | cursor_energy.execute(" SELECT DISTINCT(energy_category_id) " |
|
178 | " FROM tbl_space_input_category_hourly " |
|
179 | " WHERE space_id = %s " |
|
180 | " AND start_datetime_utc >= %s " |
|
181 | " AND start_datetime_utc < %s ", |
|
182 | (space['id'], reporting_start_datetime_utc, reporting_end_datetime_utc)) |
|
183 | rows_energy_categories = cursor_energy.fetchall() |
|
184 | if rows_energy_categories is not None or len(rows_energy_categories) > 0: |
|
185 | for row_energy_category in rows_energy_categories: |
|
186 | energy_category_set.add(row_energy_category[0]) |
|
187 | ||
188 | # query all energy categories in base period and reporting period |
|
189 | cursor_system.execute(" SELECT id, name, unit_of_measure, kgce, kgco2e " |
|
190 | " FROM tbl_energy_categories " |
|
191 | " ORDER BY id ", ) |
|
192 | rows_energy_categories = cursor_system.fetchall() |
|
193 | if rows_energy_categories is None or len(rows_energy_categories) == 0: |
|
194 | if cursor_system: |
|
195 | cursor_system.close() |
|
196 | if cnx_system: |
|
197 | cnx_system.disconnect() |
|
198 | ||
199 | if cursor_energy: |
|
200 | cursor_energy.close() |
|
201 | if cnx_energy: |
|
202 | cnx_energy.disconnect() |
|
203 | ||
204 | if cnx_historical: |
|
205 | cnx_historical.close() |
|
206 | if cursor_historical: |
|
207 | cursor_historical.disconnect() |
|
208 | raise falcon.HTTPError(falcon.HTTP_404, |
|
209 | title='API.NOT_FOUND', |
|
210 | description='API.ENERGY_CATEGORY_NOT_FOUND') |
|
211 | energy_category_dict = dict() |
|
212 | for row_energy_category in rows_energy_categories: |
|
213 | if row_energy_category[0] in energy_category_set: |
|
214 | energy_category_dict[row_energy_category[0]] = {"name": row_energy_category[1], |
|
215 | "unit_of_measure": row_energy_category[2], |
|
216 | "kgce": row_energy_category[3], |
|
217 | "kgco2e": row_energy_category[4]} |
|
218 | ||
219 | ################################################################################################################ |
|
220 | # Step 4: query associated sensors |
|
221 | ################################################################################################################ |
|
222 | point_list = list() |
|
223 | cursor_system.execute(" SELECT po.id, po.name, po.units, po.object_type " |
|
224 | " FROM tbl_spaces sp, tbl_sensors se, tbl_spaces_sensors spse, " |
|
225 | " tbl_points po, tbl_sensors_points sepo " |
|
226 | " WHERE sp.id = %s AND sp.id = spse.space_id AND spse.sensor_id = se.id " |
|
227 | " AND se.id = sepo.sensor_id AND sepo.point_id = po.id " |
|
228 | " ORDER BY po.id ", (space['id'], )) |
|
229 | rows_points = cursor_system.fetchall() |
|
230 | if rows_points is not None and len(rows_points) > 0: |
|
231 | for row in rows_points: |
|
232 | point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]}) |
|
233 | ||
234 | ################################################################################################################ |
|
235 | # Step 5: query associated points |
|
236 | ################################################################################################################ |
|
237 | cursor_system.execute(" SELECT po.id, po.name, po.units, po.object_type " |
|
238 | " FROM tbl_spaces sp, tbl_spaces_points sppo, tbl_points po " |
|
239 | " WHERE sp.id = %s AND sp.id = sppo.space_id AND sppo.point_id = po.id " |
|
240 | " ORDER BY po.id ", (space['id'], )) |
|
241 | rows_points = cursor_system.fetchall() |
|
242 | if rows_points is not None and len(rows_points) > 0: |
|
243 | for row in rows_points: |
|
244 | point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]}) |
|
245 | ||
246 | ################################################################################################################ |
|
247 | # Step 6: query base period energy input |
|
248 | ################################################################################################################ |
|
249 | base = dict() |
|
250 | if energy_category_set is not None and len(energy_category_set) > 0: |
|
251 | for energy_category_id in energy_category_set: |
|
252 | base[energy_category_id] = dict() |
|
253 | base[energy_category_id]['timestamps'] = list() |
|
254 | base[energy_category_id]['values'] = list() |
|
255 | base[energy_category_id]['subtotal'] = Decimal(0.0) |
|
256 | base[energy_category_id]['mean'] = None |
|
257 | base[energy_category_id]['median'] = None |
|
258 | base[energy_category_id]['minimum'] = None |
|
259 | base[energy_category_id]['maximum'] = None |
|
260 | base[energy_category_id]['stdev'] = None |
|
261 | base[energy_category_id]['variance'] = None |
|
262 | ||
263 | cursor_energy.execute(" SELECT start_datetime_utc, actual_value " |
|
264 | " FROM tbl_space_input_category_hourly " |
|
265 | " WHERE space_id = %s " |
|
266 | " AND energy_category_id = %s " |
|
267 | " AND start_datetime_utc >= %s " |
|
268 | " AND start_datetime_utc < %s " |
|
269 | " ORDER BY start_datetime_utc ", |
|
270 | (space['id'], |
|
271 | energy_category_id, |
|
272 | base_start_datetime_utc, |
|
273 | base_end_datetime_utc)) |
|
274 | rows_space_hourly = cursor_energy.fetchall() |
|
275 | ||
276 | rows_space_periodically, \ |
|
277 | base[energy_category_id]['mean'], \ |
|
278 | base[energy_category_id]['median'], \ |
|
279 | base[energy_category_id]['minimum'], \ |
|
280 | base[energy_category_id]['maximum'], \ |
|
281 | base[energy_category_id]['stdev'], \ |
|
282 | base[energy_category_id]['variance'] = \ |
|
283 | utilities.statistics_hourly_data_by_period(rows_space_hourly, |
|
284 | base_start_datetime_utc, |
|
285 | base_end_datetime_utc, |
|
286 | period_type) |
|
287 | ||
288 | for row_space_periodically in rows_space_periodically: |
|
289 | current_datetime_local = row_space_periodically[0].replace(tzinfo=timezone.utc) + \ |
|
290 | timedelta(minutes=timezone_offset) |
|
291 | if period_type == 'hourly': |
|
292 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
|
293 | elif period_type == 'daily': |
|
294 | current_datetime = current_datetime_local.strftime('%Y-%m-%d') |
|
295 | elif period_type == 'monthly': |
|
296 | current_datetime = current_datetime_local.strftime('%Y-%m') |
|
297 | elif period_type == 'yearly': |
|
298 | current_datetime = current_datetime_local.strftime('%Y') |
|
299 | ||
300 | actual_value = Decimal(0.0) if row_space_periodically[1] is None else row_space_periodically[1] |
|
301 | base[energy_category_id]['timestamps'].append(current_datetime) |
|
302 | base[energy_category_id]['values'].append(actual_value) |
|
303 | base[energy_category_id]['subtotal'] += actual_value |
|
304 | ||
305 | ################################################################################################################ |
|
306 | # Step 7: query reporting period energy input |
|
307 | ################################################################################################################ |
|
308 | reporting = dict() |
|
309 | if energy_category_set is not None and len(energy_category_set) > 0: |
|
310 | for energy_category_id in energy_category_set: |
|
311 | reporting[energy_category_id] = dict() |
|
312 | reporting[energy_category_id]['timestamps'] = list() |
|
313 | reporting[energy_category_id]['values'] = list() |
|
314 | reporting[energy_category_id]['subtotal'] = Decimal(0.0) |
|
315 | reporting[energy_category_id]['mean'] = None |
|
316 | reporting[energy_category_id]['median'] = None |
|
317 | reporting[energy_category_id]['minimum'] = None |
|
318 | reporting[energy_category_id]['maximum'] = None |
|
319 | reporting[energy_category_id]['stdev'] = None |
|
320 | reporting[energy_category_id]['variance'] = None |
|
321 | ||
322 | cursor_energy.execute(" SELECT start_datetime_utc, actual_value " |
|
323 | " FROM tbl_space_input_category_hourly " |
|
324 | " WHERE space_id = %s " |
|
325 | " AND energy_category_id = %s " |
|
326 | " AND start_datetime_utc >= %s " |
|
327 | " AND start_datetime_utc < %s " |
|
328 | " ORDER BY start_datetime_utc ", |
|
329 | (space['id'], |
|
330 | energy_category_id, |
|
331 | reporting_start_datetime_utc, |
|
332 | reporting_end_datetime_utc)) |
|
333 | rows_space_hourly = cursor_energy.fetchall() |
|
334 | ||
335 | rows_space_periodically, \ |
|
336 | reporting[energy_category_id]['mean'], \ |
|
337 | reporting[energy_category_id]['median'], \ |
|
338 | reporting[energy_category_id]['minimum'], \ |
|
339 | reporting[energy_category_id]['maximum'], \ |
|
340 | reporting[energy_category_id]['stdev'], \ |
|
341 | reporting[energy_category_id]['variance'] = \ |
|
342 | utilities.statistics_hourly_data_by_period(rows_space_hourly, |
|
343 | reporting_start_datetime_utc, |
|
344 | reporting_end_datetime_utc, |
|
345 | period_type) |
|
346 | ||
347 | for row_space_periodically in rows_space_periodically: |
|
348 | current_datetime_local = row_space_periodically[0].replace(tzinfo=timezone.utc) + \ |
|
349 | timedelta(minutes=timezone_offset) |
|
350 | if period_type == 'hourly': |
|
351 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
|
352 | elif period_type == 'daily': |
|
353 | current_datetime = current_datetime_local.strftime('%Y-%m-%d') |
|
354 | elif period_type == 'monthly': |
|
355 | current_datetime = current_datetime_local.strftime('%Y-%m') |
|
356 | elif period_type == 'yearly': |
|
357 | current_datetime = current_datetime_local.strftime('%Y') |
|
358 | ||
359 | actual_value = Decimal(0.0) if row_space_periodically[1] is None else row_space_periodically[1] |
|
360 | reporting[energy_category_id]['timestamps'].append(current_datetime) |
|
361 | reporting[energy_category_id]['values'].append(actual_value) |
|
362 | reporting[energy_category_id]['subtotal'] += actual_value |
|
363 | ||
364 | ################################################################################################################ |
|
365 | # Step 8: query tariff data |
|
366 | ################################################################################################################ |
|
367 | parameters_data = dict() |
|
368 | parameters_data['names'] = list() |
|
369 | parameters_data['timestamps'] = list() |
|
370 | parameters_data['values'] = list() |
|
371 | if energy_category_set is not None and len(energy_category_set) > 0: |
|
372 | for energy_category_id in energy_category_set: |
|
373 | energy_category_tariff_dict = utilities.get_energy_category_tariffs(space['cost_center_id'], |
|
374 | energy_category_id, |
|
375 | reporting_start_datetime_utc, |
|
376 | reporting_end_datetime_utc) |
|
377 | tariff_timestamp_list = list() |
|
378 | tariff_value_list = list() |
|
379 | for k, v in energy_category_tariff_dict.items(): |
|
380 | # convert k from utc to local |
|
381 | k = k + timedelta(minutes=timezone_offset) |
|
382 | tariff_timestamp_list.append(k.isoformat()[0:19][0:19]) |
|
383 | tariff_value_list.append(v) |
|
384 | ||
385 | parameters_data['names'].append('TARIFF-' + energy_category_dict[energy_category_id]['name']) |
|
386 | parameters_data['timestamps'].append(tariff_timestamp_list) |
|
387 | parameters_data['values'].append(tariff_value_list) |
|
388 | ||
389 | ################################################################################################################ |
|
390 | # Step 9: query associated sensors and points data |
|
391 | ################################################################################################################ |
|
392 | for point in point_list: |
|
393 | point_values = [] |
|
394 | point_timestamps = [] |
|
395 | if point['object_type'] == 'ANALOG_VALUE': |
|
396 | query = (" SELECT utc_date_time, actual_value " |
|
397 | " FROM tbl_analog_value " |
|
398 | " WHERE point_id = %s " |
|
399 | " AND utc_date_time BETWEEN %s AND %s " |
|
400 | " ORDER BY utc_date_time ") |
|
401 | cursor_historical.execute(query, (point['id'], |
|
402 | reporting_start_datetime_utc, |
|
403 | reporting_end_datetime_utc)) |
|
404 | rows = cursor_historical.fetchall() |
|
405 | ||
406 | if rows is not None and len(rows) > 0: |
|
407 | for row in rows: |
|
408 | current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
|
409 | timedelta(minutes=timezone_offset) |
|
410 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
|
411 | point_timestamps.append(current_datetime) |
|
412 | point_values.append(row[1]) |
|
413 | ||
414 | elif point['object_type'] == 'ENERGY_VALUE': |
|
415 | query = (" SELECT utc_date_time, actual_value " |
|
416 | " FROM tbl_energy_value " |
|
417 | " WHERE point_id = %s " |
|
418 | " AND utc_date_time BETWEEN %s AND %s " |
|
419 | " ORDER BY utc_date_time ") |
|
420 | cursor_historical.execute(query, (point['id'], |
|
421 | reporting_start_datetime_utc, |
|
422 | reporting_end_datetime_utc)) |
|
423 | rows = cursor_historical.fetchall() |
|
424 | ||
425 | if rows is not None and len(rows) > 0: |
|
426 | for row in rows: |
|
427 | current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
|
428 | timedelta(minutes=timezone_offset) |
|
429 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
|
430 | point_timestamps.append(current_datetime) |
|
431 | point_values.append(row[1]) |
|
432 | elif point['object_type'] == 'DIGITAL_VALUE': |
|
433 | query = (" SELECT utc_date_time, actual_value " |
|
434 | " FROM tbl_digital_value " |
|
435 | " WHERE point_id = %s " |
|
436 | " AND utc_date_time BETWEEN %s AND %s ") |
|
437 | cursor_historical.execute(query, (point['id'], |
|
438 | reporting_start_datetime_utc, |
|
439 | reporting_end_datetime_utc)) |
|
440 | rows = cursor_historical.fetchall() |
|
441 | ||
442 | if rows is not None and len(rows) > 0: |
|
443 | for row in rows: |
|
444 | current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \ |
|
445 | timedelta(minutes=timezone_offset) |
|
446 | current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S') |
|
447 | point_timestamps.append(current_datetime) |
|
448 | point_values.append(row[1]) |
|
449 | ||
450 | parameters_data['names'].append(point['name'] + ' (' + point['units'] + ')') |
|
451 | parameters_data['timestamps'].append(point_timestamps) |
|
452 | parameters_data['values'].append(point_values) |
|
453 | ||
454 | ################################################################################################################ |
|
455 | # Step 10: construct the report |
|
456 | ################################################################################################################ |
|
457 | if cursor_system: |
|
458 | cursor_system.close() |
|
459 | if cnx_system: |
|
460 | cnx_system.disconnect() |
|
461 | ||
462 | if cursor_energy: |
|
463 | cursor_energy.close() |
|
464 | if cnx_energy: |
|
465 | cnx_energy.disconnect() |
|
466 | ||
467 | result = dict() |
|
468 | ||
469 | result['space'] = dict() |
|
470 | result['space']['name'] = space['name'] |
|
471 | result['space']['area'] = space['area'] |
|
472 | ||
473 | result['base_period'] = dict() |
|
474 | result['base_period']['names'] = list() |
|
475 | result['base_period']['units'] = list() |
|
476 | result['base_period']['timestamps'] = list() |
|
477 | result['base_period']['values'] = list() |
|
478 | result['base_period']['subtotals'] = list() |
|
479 | result['base_period']['means'] = list() |
|
480 | result['base_period']['medians'] = list() |
|
481 | result['base_period']['minimums'] = list() |
|
482 | result['base_period']['maximums'] = list() |
|
483 | result['base_period']['stdevs'] = list() |
|
484 | result['base_period']['variances'] = list() |
|
485 | ||
486 | if energy_category_set is not None and len(energy_category_set) > 0: |
|
487 | for energy_category_id in energy_category_set: |
|
488 | result['base_period']['names'].append(energy_category_dict[energy_category_id]['name']) |
|
489 | result['base_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure']) |
|
490 | result['base_period']['timestamps'].append(base[energy_category_id]['timestamps']) |
|
491 | result['base_period']['values'].append(base[energy_category_id]['values']) |
|
492 | result['base_period']['subtotals'].append(base[energy_category_id]['subtotal']) |
|
493 | result['base_period']['means'].append(base[energy_category_id]['mean']) |
|
494 | result['base_period']['medians'].append(base[energy_category_id]['median']) |
|
495 | result['base_period']['minimums'].append(base[energy_category_id]['minimum']) |
|
496 | result['base_period']['maximums'].append(base[energy_category_id]['maximum']) |
|
497 | result['base_period']['stdevs'].append(base[energy_category_id]['stdev']) |
|
498 | result['base_period']['variances'].append(base[energy_category_id]['variance']) |
|
499 | ||
500 | result['reporting_period'] = dict() |
|
501 | result['reporting_period']['names'] = list() |
|
502 | result['reporting_period']['energy_category_ids'] = list() |
|
503 | result['reporting_period']['units'] = list() |
|
504 | result['reporting_period']['timestamps'] = list() |
|
505 | result['reporting_period']['values'] = list() |
|
506 | result['reporting_period']['subtotals'] = list() |
|
507 | result['reporting_period']['means'] = list() |
|
508 | result['reporting_period']['means_per_unit_area'] = list() |
|
509 | result['reporting_period']['means_increment_rate'] = list() |
|
510 | result['reporting_period']['medians'] = list() |
|
511 | result['reporting_period']['medians_per_unit_area'] = list() |
|
512 | result['reporting_period']['medians_increment_rate'] = list() |
|
513 | result['reporting_period']['minimums'] = list() |
|
514 | result['reporting_period']['minimums_per_unit_area'] = list() |
|
515 | result['reporting_period']['minimums_increment_rate'] = list() |
|
516 | result['reporting_period']['maximums'] = list() |
|
517 | result['reporting_period']['maximums_per_unit_area'] = list() |
|
518 | result['reporting_period']['maximums_increment_rate'] = list() |
|
519 | result['reporting_period']['stdevs'] = list() |
|
520 | result['reporting_period']['stdevs_per_unit_area'] = list() |
|
521 | result['reporting_period']['stdevs_increment_rate'] = list() |
|
522 | result['reporting_period']['variances'] = list() |
|
523 | result['reporting_period']['variances_per_unit_area'] = list() |
|
524 | result['reporting_period']['variances_increment_rate'] = list() |
|
525 | ||
526 | if energy_category_set is not None and len(energy_category_set) > 0: |
|
527 | for energy_category_id in energy_category_set: |
|
528 | result['reporting_period']['names'].append(energy_category_dict[energy_category_id]['name']) |
|
529 | result['reporting_period']['energy_category_ids'].append(energy_category_id) |
|
530 | result['reporting_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure']) |
|
531 | result['reporting_period']['timestamps'].append(reporting[energy_category_id]['timestamps']) |
|
532 | result['reporting_period']['values'].append(reporting[energy_category_id]['values']) |
|
533 | result['reporting_period']['subtotals'].append(reporting[energy_category_id]['subtotal']) |
|
534 | result['reporting_period']['means'].append(reporting[energy_category_id]['mean']) |
|
535 | result['reporting_period']['means_per_unit_area'].append( |
|
536 | reporting[energy_category_id]['mean'] / space['area'] |
|
537 | if reporting[energy_category_id]['mean'] is not None and |
|
538 | space['area'] is not None and |
|
539 | space['area'] > Decimal(0.0) |
|
540 | else None) |
|
541 | result['reporting_period']['means_increment_rate'].append( |
|
542 | (reporting[energy_category_id]['mean'] - base[energy_category_id]['mean']) / |
|
543 | base[energy_category_id]['mean'] if (base[energy_category_id]['mean'] is not None and |
|
544 | base[energy_category_id]['mean'] > Decimal(0.0)) |
|
545 | else None) |
|
546 | result['reporting_period']['medians'].append(reporting[energy_category_id]['median']) |
|
547 | result['reporting_period']['medians_per_unit_area'].append( |
|
548 | reporting[energy_category_id]['median'] / space['area'] |
|
549 | if reporting[energy_category_id]['median'] is not None and |
|
550 | space['area'] is not None and |
|
551 | space['area'] > Decimal(0.0) |
|
552 | else None) |
|
553 | result['reporting_period']['medians_increment_rate'].append( |
|
554 | (reporting[energy_category_id]['median'] - base[energy_category_id]['median']) / |
|
555 | base[energy_category_id]['median'] if (base[energy_category_id]['median'] is not None and |
|
556 | base[energy_category_id]['median'] > Decimal(0.0)) |
|
557 | else None) |
|
558 | result['reporting_period']['minimums'].append(reporting[energy_category_id]['minimum']) |
|
559 | result['reporting_period']['minimums_per_unit_area'].append( |
|
560 | reporting[energy_category_id]['minimum'] / space['area'] |
|
561 | if reporting[energy_category_id]['minimum'] is not None and |
|
562 | space['area'] is not None and |
|
563 | space['area'] > Decimal(0.0) |
|
564 | else None) |
|
565 | result['reporting_period']['minimums_increment_rate'].append( |
|
566 | (reporting[energy_category_id]['minimum'] - base[energy_category_id]['minimum']) / |
|
567 | base[energy_category_id]['minimum'] if (base[energy_category_id]['minimum'] is not None and |
|
568 | base[energy_category_id]['minimum'] > Decimal(0.0)) |
|
569 | else None) |
|
570 | result['reporting_period']['maximums'].append(reporting[energy_category_id]['maximum']) |
|
571 | result['reporting_period']['maximums_per_unit_area'].append( |
|
572 | reporting[energy_category_id]['maximum'] / space['area'] |
|
573 | if reporting[energy_category_id]['maximum'] is not None and |
|
574 | space['area'] is not None and |
|
575 | space['area'] > Decimal(0.0) |
|
576 | else None) |
|
577 | result['reporting_period']['maximums_increment_rate'].append( |
|
578 | (reporting[energy_category_id]['maximum'] - base[energy_category_id]['maximum']) / |
|
579 | base[energy_category_id]['maximum'] if (base[energy_category_id]['maximum'] is not None and |
|
580 | base[energy_category_id]['maximum'] > Decimal(0.0)) |
|
581 | else None) |
|
582 | result['reporting_period']['stdevs'].append(reporting[energy_category_id]['stdev']) |
|
583 | result['reporting_period']['stdevs_per_unit_area'].append( |
|
584 | reporting[energy_category_id]['stdev'] / space['area'] |
|
585 | if reporting[energy_category_id]['stdev'] is not None and |
|
586 | space['area'] is not None and |
|
587 | space['area'] > Decimal(0.0) |
|
588 | else None) |
|
589 | result['reporting_period']['stdevs_increment_rate'].append( |
|
590 | (reporting[energy_category_id]['stdev'] - base[energy_category_id]['stdev']) / |
|
591 | base[energy_category_id]['stdev'] if (base[energy_category_id]['stdev'] is not None and |
|
592 | base[energy_category_id]['stdev'] > Decimal(0.0)) |
|
593 | else None) |
|
594 | result['reporting_period']['variances'].append(reporting[energy_category_id]['variance']) |
|
595 | result['reporting_period']['variances_per_unit_area'].append( |
|
596 | reporting[energy_category_id]['variance'] / space['area'] |
|
597 | if reporting[energy_category_id]['variance'] is not None and |
|
598 | space['area'] is not None and |
|
599 | space['area'] > Decimal(0.0) |
|
600 | else None) |
|
601 | result['reporting_period']['variances_increment_rate'].append( |
|
602 | (reporting[energy_category_id]['variance'] - base[energy_category_id]['variance']) / |
|
603 | base[energy_category_id]['variance'] if (base[energy_category_id]['variance'] is not None and |
|
604 | base[energy_category_id]['variance'] > Decimal(0.0)) |
|
605 | else None) |
|
606 | ||
607 | result['parameters'] = { |
|
608 | "names": parameters_data['names'], |
|
609 | "timestamps": parameters_data['timestamps'], |
|
610 | "values": parameters_data['values'] |
|
611 | } |
|
612 | ||
613 | resp.body = json.dumps(result) |
|
614 |