reports.spaceload   F
last analyzed

Complexity

Total Complexity 102

Size/Duplication

Total Lines 557
Duplicated Lines 98.03 %

Importance

Changes 0
Metric Value
eloc 411
dl 546
loc 557
rs 2
c 0
b 0
f 0
wmc 102

3 Methods

Rating   Name   Duplication   Size   Complexity  
A Reporting.__init__() 3 3 1
F Reporting.on_get() 524 524 100
A Reporting.on_options() 3 3 1

How to fix   Duplicated Code    Complexity   

Duplicated Code

Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.

Common duplication problems, and corresponding solutions are:

Complexity

 Tip:   Before tackling complexity, make sure that you eliminate any duplication first. This often can reduce the size of classes significantly.

Complex classes like reports.spaceload often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.

Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.

1
import falcon
2
import simplejson as json
3
import mysql.connector
4
import config
5
from datetime import datetime, timedelta, timezone
6
from core import utilities
7
from decimal import Decimal
8
import excelexporters.spaceload
9
10
11 View Code Duplication
class Reporting:
0 ignored issues
show
Duplication introduced by
This code seems to be duplicated in your project.
Loading history...
12
    @staticmethod
13
    def __init__():
14
        pass
15
16
    @staticmethod
17
    def on_options(req, resp):
18
        resp.status = falcon.HTTP_200
19
20
    ####################################################################################################################
21
    # PROCEDURES
22
    # Step 1: valid parameters
23
    # Step 2: query the space
24
    # Step 3: query energy categories
25
    # Step 4: query associated sensors
26
    # Step 5: query associated points
27
    # Step 6: query base period energy input
28
    # Step 7: query reporting period energy input
29
    # Step 8: query tariff data
30
    # Step 9: query associated sensors and points data
31
    # Step 10: construct the report
32
    ####################################################################################################################
33
    @staticmethod
34
    def on_get(req, resp):
35
        print(req.params)
36
        space_id = req.params.get('spaceid')
37
        period_type = req.params.get('periodtype')
38
        base_start_datetime_local = req.params.get('baseperiodstartdatetime')
39
        base_end_datetime_local = req.params.get('baseperiodenddatetime')
40
        reporting_start_datetime_local = req.params.get('reportingperiodstartdatetime')
41
        reporting_end_datetime_local = req.params.get('reportingperiodenddatetime')
42
43
        ################################################################################################################
44
        # Step 1: valid parameters
45
        ################################################################################################################
46
        if space_id is None:
47
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_SPACE_ID')
48
        else:
49
            space_id = str.strip(space_id)
50
            if not space_id.isdigit() or int(space_id) <= 0:
51
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_SPACE_ID')
52
53
        if period_type is None:
54
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE')
55
        else:
56
            period_type = str.strip(period_type)
57
            if period_type not in ['hourly', 'daily', 'monthly', 'yearly']:
58
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE')
59
60
        timezone_offset = int(config.utc_offset[1:3]) * 60 + int(config.utc_offset[4:6])
61
        if config.utc_offset[0] == '-':
62
            timezone_offset = -timezone_offset
63
64
        base_start_datetime_utc = None
65
        if base_start_datetime_local is not None and len(str.strip(base_start_datetime_local)) > 0:
66
            base_start_datetime_local = str.strip(base_start_datetime_local)
67
            try:
68
                base_start_datetime_utc = datetime.strptime(base_start_datetime_local,
69
                                                            '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \
70
                    timedelta(minutes=timezone_offset)
71
            except ValueError:
72
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
73
                                       description="API.INVALID_BASE_PERIOD_START_DATETIME")
74
75
        base_end_datetime_utc = None
76
        if base_end_datetime_local is not None and len(str.strip(base_end_datetime_local)) > 0:
77
            base_end_datetime_local = str.strip(base_end_datetime_local)
78
            try:
79
                base_end_datetime_utc = datetime.strptime(base_end_datetime_local,
80
                                                          '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \
81
                    timedelta(minutes=timezone_offset)
82
            except ValueError:
83
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
84
                                       description="API.INVALID_BASE_PERIOD_END_DATETIME")
85
86
        if base_start_datetime_utc is not None and base_end_datetime_utc is not None and \
87
                base_start_datetime_utc >= base_end_datetime_utc:
88
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
89
                                   description='API.INVALID_BASE_PERIOD_END_DATETIME')
90
91
        if reporting_start_datetime_local is None:
92
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
93
                                   description="API.INVALID_REPORTING_PERIOD_START_DATETIME")
94
        else:
95
            reporting_start_datetime_local = str.strip(reporting_start_datetime_local)
96
            try:
97
                reporting_start_datetime_utc = datetime.strptime(reporting_start_datetime_local,
98
                                                                 '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \
99
                    timedelta(minutes=timezone_offset)
100
            except ValueError:
101
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
102
                                       description="API.INVALID_REPORTING_PERIOD_START_DATETIME")
103
104
        if reporting_end_datetime_local is None:
105
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
106
                                   description="API.INVALID_REPORTING_PERIOD_END_DATETIME")
107
        else:
108
            reporting_end_datetime_local = str.strip(reporting_end_datetime_local)
109
            try:
110
                reporting_end_datetime_utc = datetime.strptime(reporting_end_datetime_local,
111
                                                               '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \
112
                    timedelta(minutes=timezone_offset)
113
            except ValueError:
114
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
115
                                       description="API.INVALID_REPORTING_PERIOD_END_DATETIME")
116
117
        if reporting_start_datetime_utc >= reporting_end_datetime_utc:
118
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
119
                                   description='API.INVALID_REPORTING_PERIOD_END_DATETIME')
120
121
        ################################################################################################################
122
        # Step 2: query the space
123
        ################################################################################################################
124
        cnx_system = mysql.connector.connect(**config.myems_system_db)
125
        cursor_system = cnx_system.cursor()
126
127
        cnx_energy = mysql.connector.connect(**config.myems_energy_db)
128
        cursor_energy = cnx_energy.cursor()
129
130
        cnx_historical = mysql.connector.connect(**config.myems_historical_db)
131
        cursor_historical = cnx_historical.cursor()
132
133
        cursor_system.execute(" SELECT id, name, area, cost_center_id "
134
                              " FROM tbl_spaces "
135
                              " WHERE id = %s ", (space_id,))
136
        row_space = cursor_system.fetchone()
137
        if row_space is None:
138
            if cursor_system:
139
                cursor_system.close()
140
            if cnx_system:
141
                cnx_system.disconnect()
142
143
            if cursor_energy:
144
                cursor_energy.close()
145
            if cnx_energy:
146
                cnx_energy.disconnect()
147
148
            if cnx_historical:
149
                cnx_historical.close()
150
            if cursor_historical:
151
                cursor_historical.disconnect()
152
            raise falcon.HTTPError(falcon.HTTP_404, title='API.NOT_FOUND', description='API.SPACE_NOT_FOUND')
153
154
        space = dict()
155
        space['id'] = row_space[0]
156
        space['name'] = row_space[1]
157
        space['area'] = row_space[2]
158
        space['cost_center_id'] = row_space[3]
159
160
        ################################################################################################################
161
        # Step 3: query energy categories
162
        ################################################################################################################
163
        energy_category_set = set()
164
        # query energy categories in base period
165
        cursor_energy.execute(" SELECT DISTINCT(energy_category_id) "
166
                              " FROM tbl_space_input_category_hourly "
167
                              " WHERE space_id = %s "
168
                              "     AND start_datetime_utc >= %s "
169
                              "     AND start_datetime_utc < %s ",
170
                              (space['id'], base_start_datetime_utc, base_end_datetime_utc))
171
        rows_energy_categories = cursor_energy.fetchall()
172
        if rows_energy_categories is not None or len(rows_energy_categories) > 0:
173
            for row_energy_category in rows_energy_categories:
174
                energy_category_set.add(row_energy_category[0])
175
176
        # query energy categories in reporting period
177
        cursor_energy.execute(" SELECT DISTINCT(energy_category_id) "
178
                              " FROM tbl_space_input_category_hourly "
179
                              " WHERE space_id = %s "
180
                              "     AND start_datetime_utc >= %s "
181
                              "     AND start_datetime_utc < %s ",
182
                              (space['id'], reporting_start_datetime_utc, reporting_end_datetime_utc))
183
        rows_energy_categories = cursor_energy.fetchall()
184
        if rows_energy_categories is not None or len(rows_energy_categories) > 0:
185
            for row_energy_category in rows_energy_categories:
186
                energy_category_set.add(row_energy_category[0])
187
188
        # query all energy categories in base period and reporting period
189
        cursor_system.execute(" SELECT id, name, unit_of_measure, kgce, kgco2e "
190
                              " FROM tbl_energy_categories "
191
                              " ORDER BY id ", )
192
        rows_energy_categories = cursor_system.fetchall()
193
        if rows_energy_categories is None or len(rows_energy_categories) == 0:
194
            if cursor_system:
195
                cursor_system.close()
196
            if cnx_system:
197
                cnx_system.disconnect()
198
199
            if cursor_energy:
200
                cursor_energy.close()
201
            if cnx_energy:
202
                cnx_energy.disconnect()
203
204
            if cnx_historical:
205
                cnx_historical.close()
206
            if cursor_historical:
207
                cursor_historical.disconnect()
208
            raise falcon.HTTPError(falcon.HTTP_404,
209
                                   title='API.NOT_FOUND',
210
                                   description='API.ENERGY_CATEGORY_NOT_FOUND')
211
        energy_category_dict = dict()
212
        for row_energy_category in rows_energy_categories:
213
            if row_energy_category[0] in energy_category_set:
214
                energy_category_dict[row_energy_category[0]] = {"name": row_energy_category[1],
215
                                                                "unit_of_measure": row_energy_category[2],
216
                                                                "kgce": row_energy_category[3],
217
                                                                "kgco2e": row_energy_category[4]}
218
219
        ################################################################################################################
220
        # Step 4: query associated sensors
221
        ################################################################################################################
222
        point_list = list()
223
        cursor_system.execute(" SELECT po.id, po.name, po.units, po.object_type  "
224
                              " FROM tbl_spaces sp, tbl_sensors se, tbl_spaces_sensors spse, "
225
                              "      tbl_points po, tbl_sensors_points sepo "
226
                              " WHERE sp.id = %s AND sp.id = spse.space_id AND spse.sensor_id = se.id "
227
                              "       AND se.id = sepo.sensor_id AND sepo.point_id = po.id "
228
                              " ORDER BY po.id ", (space['id'], ))
229
        rows_points = cursor_system.fetchall()
230
        if rows_points is not None and len(rows_points) > 0:
231
            for row in rows_points:
232
                point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]})
233
234
        ################################################################################################################
235
        # Step 5: query associated points
236
        ################################################################################################################
237
        cursor_system.execute(" SELECT po.id, po.name, po.units, po.object_type  "
238
                              " FROM tbl_spaces sp, tbl_spaces_points sppo, tbl_points po "
239
                              " WHERE sp.id = %s AND sp.id = sppo.space_id AND sppo.point_id = po.id "
240
                              " ORDER BY po.id ", (space['id'], ))
241
        rows_points = cursor_system.fetchall()
242
        if rows_points is not None and len(rows_points) > 0:
243
            for row in rows_points:
244
                point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]})
245
246
        ################################################################################################################
247
        # Step 6: query base period energy input
248
        ################################################################################################################
249
        base = dict()
250
        if energy_category_set is not None and len(energy_category_set) > 0:
251
            for energy_category_id in energy_category_set:
252
                base[energy_category_id] = dict()
253
                base[energy_category_id]['timestamps'] = list()
254
                base[energy_category_id]['sub_averages'] = list()
255
                base[energy_category_id]['sub_maximums'] = list()
256
                base[energy_category_id]['average'] = None
257
                base[energy_category_id]['maximum'] = None
258
                base[energy_category_id]['factor'] = None
259
260
                cursor_energy.execute(" SELECT start_datetime_utc, actual_value "
261
                                      " FROM tbl_space_input_category_hourly "
262
                                      " WHERE space_id = %s "
263
                                      "     AND energy_category_id = %s "
264
                                      "     AND start_datetime_utc >= %s "
265
                                      "     AND start_datetime_utc < %s "
266
                                      " ORDER BY start_datetime_utc ",
267
                                      (space['id'],
268
                                       energy_category_id,
269
                                       base_start_datetime_utc,
270
                                       base_end_datetime_utc))
271
                rows_space_hourly = cursor_energy.fetchall()
272
273
                rows_space_periodically, \
274
                    base[energy_category_id]['average'], \
275
                    base[energy_category_id]['maximum'] = \
276
                    utilities.averaging_hourly_data_by_period(rows_space_hourly,
277
                                                              base_start_datetime_utc,
278
                                                              base_end_datetime_utc,
279
                                                              period_type)
280
                base[energy_category_id]['factor'] = \
281
                    (base[energy_category_id]['average'] / base[energy_category_id]['maximum']
282
                        if (base[energy_category_id]['average'] is not None and
283
                            base[energy_category_id]['maximum'] is not None and
284
                            base[energy_category_id]['maximum'] > Decimal(0.0))
285
                        else None)
286
287
                for row_space_periodically in rows_space_periodically:
288
                    current_datetime_local = row_space_periodically[0].replace(tzinfo=timezone.utc) + \
289
                                             timedelta(minutes=timezone_offset)
290
                    if period_type == 'hourly':
291
                        current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S')
292
                    elif period_type == 'daily':
293
                        current_datetime = current_datetime_local.strftime('%Y-%m-%d')
294
                    elif period_type == 'monthly':
295
                        current_datetime = current_datetime_local.strftime('%Y-%m')
296
                    elif period_type == 'yearly':
297
                        current_datetime = current_datetime_local.strftime('%Y')
298
299
                    base[energy_category_id]['timestamps'].append(current_datetime)
0 ignored issues
show
introduced by
The variable current_datetime does not seem to be defined for all execution paths.
Loading history...
300
                    base[energy_category_id]['sub_averages'].append(row_space_periodically[1])
301
                    base[energy_category_id]['sub_maximums'].append(row_space_periodically[2])
302
303
        ################################################################################################################
304
        # Step 7: query reporting period energy input
305
        ################################################################################################################
306
        reporting = dict()
307
        if energy_category_set is not None and len(energy_category_set) > 0:
308
            for energy_category_id in energy_category_set:
309
                reporting[energy_category_id] = dict()
310
                reporting[energy_category_id]['timestamps'] = list()
311
                reporting[energy_category_id]['sub_averages'] = list()
312
                reporting[energy_category_id]['sub_maximums'] = list()
313
                reporting[energy_category_id]['average'] = None
314
                reporting[energy_category_id]['maximum'] = None
315
                reporting[energy_category_id]['factor'] = None
316
317
                cursor_energy.execute(" SELECT start_datetime_utc, actual_value "
318
                                      " FROM tbl_space_input_category_hourly "
319
                                      " WHERE space_id = %s "
320
                                      "     AND energy_category_id = %s "
321
                                      "     AND start_datetime_utc >= %s "
322
                                      "     AND start_datetime_utc < %s "
323
                                      " ORDER BY start_datetime_utc ",
324
                                      (space['id'],
325
                                       energy_category_id,
326
                                       reporting_start_datetime_utc,
327
                                       reporting_end_datetime_utc))
328
                rows_space_hourly = cursor_energy.fetchall()
329
330
                rows_space_periodically, \
331
                    reporting[energy_category_id]['average'], \
332
                    reporting[energy_category_id]['maximum'] = \
333
                    utilities.averaging_hourly_data_by_period(rows_space_hourly,
334
                                                              reporting_start_datetime_utc,
335
                                                              reporting_end_datetime_utc,
336
                                                              period_type)
337
                reporting[energy_category_id]['factor'] = \
338
                    (reporting[energy_category_id]['average'] / reporting[energy_category_id]['maximum']
339
                     if (reporting[energy_category_id]['average'] is not None and
340
                         reporting[energy_category_id]['maximum'] is not None and
341
                         reporting[energy_category_id]['maximum'] > Decimal(0.0))
342
                     else None)
343
344
                for row_space_periodically in rows_space_periodically:
345
                    current_datetime_local = row_space_periodically[0].replace(tzinfo=timezone.utc) + \
346
                                             timedelta(minutes=timezone_offset)
347
                    if period_type == 'hourly':
348
                        current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S')
349
                    elif period_type == 'daily':
350
                        current_datetime = current_datetime_local.strftime('%Y-%m-%d')
351
                    elif period_type == 'monthly':
352
                        current_datetime = current_datetime_local.strftime('%Y-%m')
353
                    elif period_type == 'yearly':
354
                        current_datetime = current_datetime_local.strftime('%Y')
355
356
                    reporting[energy_category_id]['timestamps'].append(current_datetime)
357
                    reporting[energy_category_id]['sub_averages'].append(row_space_periodically[1])
358
                    reporting[energy_category_id]['sub_maximums'].append(row_space_periodically[2])
359
360
        ################################################################################################################
361
        # Step 8: query tariff data
362
        ################################################################################################################
363
        parameters_data = dict()
364
        parameters_data['names'] = list()
365
        parameters_data['timestamps'] = list()
366
        parameters_data['values'] = list()
367
        if energy_category_set is not None and len(energy_category_set) > 0:
368
            for energy_category_id in energy_category_set:
369
                energy_category_tariff_dict = utilities.get_energy_category_tariffs(space['cost_center_id'],
370
                                                                                    energy_category_id,
371
                                                                                    reporting_start_datetime_utc,
372
                                                                                    reporting_end_datetime_utc)
373
                tariff_timestamp_list = list()
374
                tariff_value_list = list()
375
                for k, v in energy_category_tariff_dict.items():
376
                    # convert k from utc to local
377
                    k = k + timedelta(minutes=timezone_offset)
378
                    tariff_timestamp_list.append(k.isoformat()[0:19][0:19])
379
                    tariff_value_list.append(v)
380
381
                parameters_data['names'].append('TARIFF-' + energy_category_dict[energy_category_id]['name'])
382
                parameters_data['timestamps'].append(tariff_timestamp_list)
383
                parameters_data['values'].append(tariff_value_list)
384
385
        ################################################################################################################
386
        # Step 9: query associated sensors and points data
387
        ################################################################################################################
388
        for point in point_list:
389
            point_values = []
390
            point_timestamps = []
391
            if point['object_type'] == 'ANALOG_VALUE':
392
                query = (" SELECT utc_date_time, actual_value "
393
                         " FROM tbl_analog_value "
394
                         " WHERE point_id = %s "
395
                         "       AND utc_date_time BETWEEN %s AND %s "
396
                         " ORDER BY utc_date_time ")
397
                cursor_historical.execute(query, (point['id'],
398
                                                  reporting_start_datetime_utc,
399
                                                  reporting_end_datetime_utc))
400
                rows = cursor_historical.fetchall()
401
402
                if rows is not None and len(rows) > 0:
403
                    for row in rows:
404
                        current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \
405
                                                 timedelta(minutes=timezone_offset)
406
                        current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S')
407
                        point_timestamps.append(current_datetime)
408
                        point_values.append(row[1])
409
410
            elif point['object_type'] == 'ENERGY_VALUE':
411
                query = (" SELECT utc_date_time, actual_value "
412
                         " FROM tbl_energy_value "
413
                         " WHERE point_id = %s "
414
                         "       AND utc_date_time BETWEEN %s AND %s "
415
                         " ORDER BY utc_date_time ")
416
                cursor_historical.execute(query, (point['id'],
417
                                                  reporting_start_datetime_utc,
418
                                                  reporting_end_datetime_utc))
419
                rows = cursor_historical.fetchall()
420
421
                if rows is not None and len(rows) > 0:
422
                    for row in rows:
423
                        current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \
424
                                                 timedelta(minutes=timezone_offset)
425
                        current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S')
426
                        point_timestamps.append(current_datetime)
427
                        point_values.append(row[1])
428
            elif point['object_type'] == 'DIGITAL_VALUE':
429
                query = (" SELECT utc_date_time, actual_value "
430
                         " FROM tbl_digital_value "
431
                         " WHERE point_id = %s "
432
                         "       AND utc_date_time BETWEEN %s AND %s ")
433
                cursor_historical.execute(query, (point['id'],
434
                                                  reporting_start_datetime_utc,
435
                                                  reporting_end_datetime_utc))
436
                rows = cursor_historical.fetchall()
437
438
                if rows is not None and len(rows) > 0:
439
                    for row in rows:
440
                        current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \
441
                                                 timedelta(minutes=timezone_offset)
442
                        current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S')
443
                        point_timestamps.append(current_datetime)
444
                        point_values.append(row[1])
445
446
            parameters_data['names'].append(point['name'] + ' (' + point['units'] + ')')
447
            parameters_data['timestamps'].append(point_timestamps)
448
            parameters_data['values'].append(point_values)
449
450
        ################################################################################################################
451
        # Step 10: construct the report
452
        ################################################################################################################
453
        if cursor_system:
454
            cursor_system.close()
455
        if cnx_system:
456
            cnx_system.disconnect()
457
458
        if cursor_energy:
459
            cursor_energy.close()
460
        if cnx_energy:
461
            cnx_energy.disconnect()
462
463
        result = dict()
464
465
        result['space'] = dict()
466
        result['space']['name'] = space['name']
467
        result['space']['area'] = space['area']
468
469
        result['base_period'] = dict()
470
        result['base_period']['names'] = list()
471
        result['base_period']['units'] = list()
472
        result['base_period']['timestamps'] = list()
473
        result['base_period']['sub_averages'] = list()
474
        result['base_period']['sub_maximums'] = list()
475
        result['base_period']['averages'] = list()
476
        result['base_period']['maximums'] = list()
477
        result['base_period']['factors'] = list()
478
        if energy_category_set is not None and len(energy_category_set) > 0:
479
            for energy_category_id in energy_category_set:
480
                result['base_period']['names'].append(energy_category_dict[energy_category_id]['name'])
481
                result['base_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure'])
482
                result['base_period']['timestamps'].append(base[energy_category_id]['timestamps'])
483
                result['base_period']['sub_averages'].append(base[energy_category_id]['sub_averages'])
484
                result['base_period']['sub_maximums'].append(base[energy_category_id]['sub_maximums'])
485
                result['base_period']['averages'].append(base[energy_category_id]['average'])
486
                result['base_period']['maximums'].append(base[energy_category_id]['maximum'])
487
                result['base_period']['factors'].append(base[energy_category_id]['factor'])
488
489
        result['reporting_period'] = dict()
490
        result['reporting_period']['names'] = list()
491
        result['reporting_period']['energy_category_ids'] = list()
492
        result['reporting_period']['units'] = list()
493
        result['reporting_period']['timestamps'] = list()
494
        result['reporting_period']['sub_averages'] = list()
495
        result['reporting_period']['sub_maximums'] = list()
496
        result['reporting_period']['averages'] = list()
497
        result['reporting_period']['averages_per_unit_area'] = list()
498
        result['reporting_period']['averages_increment_rate'] = list()
499
        result['reporting_period']['maximums'] = list()
500
        result['reporting_period']['maximums_per_unit_area'] = list()
501
        result['reporting_period']['maximums_increment_rate'] = list()
502
        result['reporting_period']['factors'] = list()
503
        result['reporting_period']['factors_increment_rate'] = list()
504
505
        if energy_category_set is not None and len(energy_category_set) > 0:
506
            for energy_category_id in energy_category_set:
507
                result['reporting_period']['names'].append(energy_category_dict[energy_category_id]['name'])
508
                result['reporting_period']['energy_category_ids'].append(energy_category_id)
509
                result['reporting_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure'])
510
                result['reporting_period']['timestamps'].append(reporting[energy_category_id]['timestamps'])
511
                result['reporting_period']['sub_averages'].append(reporting[energy_category_id]['sub_averages'])
512
                result['reporting_period']['sub_maximums'].append(reporting[energy_category_id]['sub_maximums'])
513
                result['reporting_period']['averages'].append(reporting[energy_category_id]['average'])
514
                result['reporting_period']['averages_per_unit_area'].append(
515
                        reporting[energy_category_id]['average'] / space['area']
516
                        if reporting[energy_category_id]['average'] is not None and
517
                        space['area'] is not None and
518
                        space['area'] > Decimal(0.0)
519
                        else None)
520
                result['reporting_period']['averages_increment_rate'].append(
521
                    (reporting[energy_category_id]['average'] - base[energy_category_id]['average']) /
522
                    base[energy_category_id]['average'] if (base[energy_category_id]['average'] is not None and
523
                                                            base[energy_category_id]['average'] > Decimal(0.0))
524
                    else None)
525
                result['reporting_period']['maximums'].append(reporting[energy_category_id]['maximum'])
526
                result['reporting_period']['maximums_increment_rate'].append(
527
                    (reporting[energy_category_id]['maximum'] - base[energy_category_id]['maximum']) /
528
                    base[energy_category_id]['maximum'] if (base[energy_category_id]['maximum'] is not None and
529
                                                            base[energy_category_id]['maximum'] > Decimal(0.0))
530
                    else None)
531
                result['reporting_period']['maximums_per_unit_area'].append(
532
                    reporting[energy_category_id]['maximum'] / space['area']
533
                    if reporting[energy_category_id]['maximum'] is not None and
534
                    space['area'] is not None and
535
                    space['area'] > Decimal(0.0)
536
                    else None)
537
                result['reporting_period']['factors'].append(reporting[energy_category_id]['factor'])
538
                result['reporting_period']['factors_increment_rate'].append(
539
                    (reporting[energy_category_id]['factor'] - base[energy_category_id]['factor']) /
540
                    base[energy_category_id]['factor'] if (base[energy_category_id]['factor'] is not None and
541
                                                           base[energy_category_id]['factor'] > Decimal(0.0))
542
                    else None)
543
544
        result['parameters'] = {
545
            "names": parameters_data['names'],
546
            "timestamps": parameters_data['timestamps'],
547
            "values": parameters_data['values']
548
        }
549
        # export result to Excel file and then encode the file to base64 string
550
        result['excel_bytes_base64'] = excelexporters.spaceload.export(result,
551
                                                                       space['name'],
552
                                                                       reporting_start_datetime_local,
553
                                                                       reporting_end_datetime_local,
554
                                                                       period_type)
555
556
        resp.body = json.dumps(result)
557