reports.shopfloorstatistics   F
last analyzed

Complexity

Total Complexity 109

Size/Duplication

Total Lines 623
Duplicated Lines 98.23 %

Importance

Changes 0
Metric Value
eloc 475
dl 612
loc 623
rs 2
c 0
b 0
f 0
wmc 109

3 Methods

Rating   Name   Duplication   Size   Complexity  
A Reporting.on_options() 3 3 1
A Reporting.__init__() 3 3 1
F Reporting.on_get() 590 590 107

How to fix   Duplicated Code    Complexity   

Duplicated Code

Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.

Common duplication problems, and corresponding solutions are:

Complexity

 Tip:   Before tackling complexity, make sure that you eliminate any duplication first. This often can reduce the size of classes significantly.

Complex classes like reports.shopfloorstatistics often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.

Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.

1
import falcon
2
import simplejson as json
3
import mysql.connector
4
import config
5
from datetime import datetime, timedelta, timezone
6
from core import utilities
7
from decimal import Decimal
8
import excelexporters.shopfloorstatistics
9
10
11 View Code Duplication
class Reporting:
0 ignored issues
show
Duplication introduced by
This code seems to be duplicated in your project.
Loading history...
12
    @staticmethod
13
    def __init__():
14
        pass
15
16
    @staticmethod
17
    def on_options(req, resp):
18
        resp.status = falcon.HTTP_200
19
20
    ####################################################################################################################
21
    # PROCEDURES
22
    # Step 1: valid parameters
23
    # Step 2: query the shopfloor
24
    # Step 3: query energy categories
25
    # Step 4: query associated sensors
26
    # Step 5: query associated points
27
    # Step 6: query base period energy input
28
    # Step 7: query reporting period energy input
29
    # Step 8: query tariff data
30
    # Step 9: query associated sensors and points data
31
    # Step 10: construct the report
32
    ####################################################################################################################
33
    @staticmethod
34
    def on_get(req, resp):
35
        print(req.params)
36
        shopfloor_id = req.params.get('shopfloorid')
37
        period_type = req.params.get('periodtype')
38
        base_start_datetime_local = req.params.get('baseperiodstartdatetime')
39
        base_end_datetime_local = req.params.get('baseperiodenddatetime')
40
        reporting_start_datetime_local = req.params.get('reportingperiodstartdatetime')
41
        reporting_end_datetime_local = req.params.get('reportingperiodenddatetime')
42
43
        ################################################################################################################
44
        # Step 1: valid parameters
45
        ################################################################################################################
46
        if shopfloor_id is None:
47
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_SHOPFLOOR_ID')
48
        else:
49
            shopfloor_id = str.strip(shopfloor_id)
50
            if not shopfloor_id.isdigit() or int(shopfloor_id) <= 0:
51
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_SHOPFLOOR_ID')
52
53
        if period_type is None:
54
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE')
55
        else:
56
            period_type = str.strip(period_type)
57
            if period_type not in ['hourly', 'daily', 'monthly', 'yearly']:
58
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST', description='API.INVALID_PERIOD_TYPE')
59
60
        timezone_offset = int(config.utc_offset[1:3]) * 60 + int(config.utc_offset[4:6])
61
        if config.utc_offset[0] == '-':
62
            timezone_offset = -timezone_offset
63
64
        base_start_datetime_utc = None
65
        if base_start_datetime_local is not None and len(str.strip(base_start_datetime_local)) > 0:
66
            base_start_datetime_local = str.strip(base_start_datetime_local)
67
            try:
68
                base_start_datetime_utc = datetime.strptime(base_start_datetime_local,
69
                                                            '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \
70
                                          timedelta(minutes=timezone_offset)
71
            except ValueError:
72
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
73
                                       description="API.INVALID_BASE_PERIOD_START_DATETIME")
74
75
        base_end_datetime_utc = None
76
        if base_end_datetime_local is not None and len(str.strip(base_end_datetime_local)) > 0:
77
            base_end_datetime_local = str.strip(base_end_datetime_local)
78
            try:
79
                base_end_datetime_utc = datetime.strptime(base_end_datetime_local,
80
                                                          '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \
81
                                        timedelta(minutes=timezone_offset)
82
            except ValueError:
83
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
84
                                       description="API.INVALID_BASE_PERIOD_END_DATETIME")
85
86
        if base_start_datetime_utc is not None and base_end_datetime_utc is not None and \
87
                base_start_datetime_utc >= base_end_datetime_utc:
88
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
89
                                   description='API.INVALID_BASE_PERIOD_END_DATETIME')
90
91
        if reporting_start_datetime_local is None:
92
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
93
                                   description="API.INVALID_REPORTING_PERIOD_START_DATETIME")
94
        else:
95
            reporting_start_datetime_local = str.strip(reporting_start_datetime_local)
96
            try:
97
                reporting_start_datetime_utc = datetime.strptime(reporting_start_datetime_local,
98
                                                                 '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \
99
                                               timedelta(minutes=timezone_offset)
100
            except ValueError:
101
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
102
                                       description="API.INVALID_REPORTING_PERIOD_START_DATETIME")
103
104
        if reporting_end_datetime_local is None:
105
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
106
                                   description="API.INVALID_REPORTING_PERIOD_END_DATETIME")
107
        else:
108
            reporting_end_datetime_local = str.strip(reporting_end_datetime_local)
109
            try:
110
                reporting_end_datetime_utc = datetime.strptime(reporting_end_datetime_local,
111
                                                               '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \
112
                                             timedelta(minutes=timezone_offset)
113
            except ValueError:
114
                raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
115
                                       description="API.INVALID_REPORTING_PERIOD_END_DATETIME")
116
117
        if reporting_start_datetime_utc >= reporting_end_datetime_utc:
118
            raise falcon.HTTPError(falcon.HTTP_400, title='API.BAD_REQUEST',
119
                                   description='API.INVALID_REPORTING_PERIOD_END_DATETIME')
120
121
        ################################################################################################################
122
        # Step 2: query the shopfloor
123
        ################################################################################################################
124
        cnx_system = mysql.connector.connect(**config.myems_system_db)
125
        cursor_system = cnx_system.cursor()
126
127
        cnx_energy = mysql.connector.connect(**config.myems_energy_db)
128
        cursor_energy = cnx_energy.cursor()
129
130
        cnx_historical = mysql.connector.connect(**config.myems_historical_db)
131
        cursor_historical = cnx_historical.cursor()
132
133
        cursor_system.execute(" SELECT id, name, area, cost_center_id "
134
                              " FROM tbl_shopfloors "
135
                              " WHERE id = %s ", (shopfloor_id,))
136
        row_shopfloor = cursor_system.fetchone()
137
        if row_shopfloor is None:
138
            if cursor_system:
139
                cursor_system.close()
140
            if cnx_system:
141
                cnx_system.disconnect()
142
143
            if cursor_energy:
144
                cursor_energy.close()
145
            if cnx_energy:
146
                cnx_energy.disconnect()
147
148
            if cnx_historical:
149
                cnx_historical.close()
150
            if cursor_historical:
151
                cursor_historical.disconnect()
152
            raise falcon.HTTPError(falcon.HTTP_404, title='API.NOT_FOUND', description='API.SHOPFLOOR_NOT_FOUND')
153
154
        shopfloor = dict()
155
        shopfloor['id'] = row_shopfloor[0]
156
        shopfloor['name'] = row_shopfloor[1]
157
        shopfloor['area'] = row_shopfloor[2]
158
        shopfloor['cost_center_id'] = row_shopfloor[3]
159
160
        ################################################################################################################
161
        # Step 3: query energy categories
162
        ################################################################################################################
163
        energy_category_set = set()
164
        # query energy categories in base period
165
        cursor_energy.execute(" SELECT DISTINCT(energy_category_id) "
166
                              " FROM tbl_shopfloor_input_category_hourly "
167
                              " WHERE shopfloor_id = %s "
168
                              "     AND start_datetime_utc >= %s "
169
                              "     AND start_datetime_utc < %s ",
170
                              (shopfloor['id'], base_start_datetime_utc, base_end_datetime_utc))
171
        rows_energy_categories = cursor_energy.fetchall()
172
        if rows_energy_categories is not None or len(rows_energy_categories) > 0:
173
            for row_energy_category in rows_energy_categories:
174
                energy_category_set.add(row_energy_category[0])
175
176
        # query energy categories in reporting period
177
        cursor_energy.execute(" SELECT DISTINCT(energy_category_id) "
178
                              " FROM tbl_shopfloor_input_category_hourly "
179
                              " WHERE shopfloor_id = %s "
180
                              "     AND start_datetime_utc >= %s "
181
                              "     AND start_datetime_utc < %s ",
182
                              (shopfloor['id'], reporting_start_datetime_utc, reporting_end_datetime_utc))
183
        rows_energy_categories = cursor_energy.fetchall()
184
        if rows_energy_categories is not None or len(rows_energy_categories) > 0:
185
            for row_energy_category in rows_energy_categories:
186
                energy_category_set.add(row_energy_category[0])
187
188
        # query all energy categories in base period and reporting period
189
        cursor_system.execute(" SELECT id, name, unit_of_measure, kgce, kgco2e "
190
                              " FROM tbl_energy_categories "
191
                              " ORDER BY id ", )
192
        rows_energy_categories = cursor_system.fetchall()
193
        if rows_energy_categories is None or len(rows_energy_categories) == 0:
194
            if cursor_system:
195
                cursor_system.close()
196
            if cnx_system:
197
                cnx_system.disconnect()
198
199
            if cursor_energy:
200
                cursor_energy.close()
201
            if cnx_energy:
202
                cnx_energy.disconnect()
203
204
            if cnx_historical:
205
                cnx_historical.close()
206
            if cursor_historical:
207
                cursor_historical.disconnect()
208
            raise falcon.HTTPError(falcon.HTTP_404,
209
                                   title='API.NOT_FOUND',
210
                                   description='API.ENERGY_CATEGORY_NOT_FOUND')
211
        energy_category_dict = dict()
212
        for row_energy_category in rows_energy_categories:
213
            if row_energy_category[0] in energy_category_set:
214
                energy_category_dict[row_energy_category[0]] = {"name": row_energy_category[1],
215
                                                                "unit_of_measure": row_energy_category[2],
216
                                                                "kgce": row_energy_category[3],
217
                                                                "kgco2e": row_energy_category[4]}
218
219
        ################################################################################################################
220
        # Step 4: query associated sensors
221
        ################################################################################################################
222
        point_list = list()
223
        cursor_system.execute(" SELECT p.id, p.name, p.units, p.object_type  "
224
                              " FROM tbl_shopfloors st, tbl_sensors se, tbl_shopfloors_sensors ss, "
225
                              "      tbl_points p, tbl_sensors_points sp "
226
                              " WHERE st.id = %s AND st.id = ss.shopfloor_id AND ss.sensor_id = se.id "
227
                              "       AND se.id = sp.sensor_id AND sp.point_id = p.id "
228
                              " ORDER BY p.id ", (shopfloor['id'],))
229
        rows_points = cursor_system.fetchall()
230
        if rows_points is not None and len(rows_points) > 0:
231
            for row in rows_points:
232
                point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]})
233
234
        ################################################################################################################
235
        # Step 5: query associated points
236
        ################################################################################################################
237
        cursor_system.execute(" SELECT p.id, p.name, p.units, p.object_type  "
238
                              " FROM tbl_shopfloors s, tbl_shopfloors_points sp, tbl_points p "
239
                              " WHERE s.id = %s AND s.id = sp.shopfloor_id AND sp.point_id = p.id "
240
                              " ORDER BY p.id ", (shopfloor['id'],))
241
        rows_points = cursor_system.fetchall()
242
        if rows_points is not None and len(rows_points) > 0:
243
            for row in rows_points:
244
                point_list.append({"id": row[0], "name": row[1], "units": row[2], "object_type": row[3]})
245
246
        ################################################################################################################
247
        # Step 6: query base period energy input
248
        ################################################################################################################
249
        base = dict()
250
        if energy_category_set is not None and len(energy_category_set) > 0:
251
            for energy_category_id in energy_category_set:
252
                base[energy_category_id] = dict()
253
                base[energy_category_id]['timestamps'] = list()
254
                base[energy_category_id]['values'] = list()
255
                base[energy_category_id]['subtotal'] = Decimal(0.0)
256
                base[energy_category_id]['mean'] = None
257
                base[energy_category_id]['median'] = None
258
                base[energy_category_id]['minimum'] = None
259
                base[energy_category_id]['maximum'] = None
260
                base[energy_category_id]['stdev'] = None
261
                base[energy_category_id]['variance'] = None
262
263
                cursor_energy.execute(" SELECT start_datetime_utc, actual_value "
264
                                      " FROM tbl_shopfloor_input_category_hourly "
265
                                      " WHERE shopfloor_id = %s "
266
                                      "     AND energy_category_id = %s "
267
                                      "     AND start_datetime_utc >= %s "
268
                                      "     AND start_datetime_utc < %s "
269
                                      " ORDER BY start_datetime_utc ",
270
                                      (shopfloor['id'],
271
                                       energy_category_id,
272
                                       base_start_datetime_utc,
273
                                       base_end_datetime_utc))
274
                rows_shopfloor_hourly = cursor_energy.fetchall()
275
276
                rows_shopfloor_periodically, \
277
                    base[energy_category_id]['mean'], \
278
                    base[energy_category_id]['median'], \
279
                    base[energy_category_id]['minimum'], \
280
                    base[energy_category_id]['maximum'], \
281
                    base[energy_category_id]['stdev'], \
282
                    base[energy_category_id]['variance'] = \
283
                    utilities.statistics_hourly_data_by_period(rows_shopfloor_hourly,
284
                                                               base_start_datetime_utc,
285
                                                               base_end_datetime_utc,
286
                                                               period_type)
287
288
                for row_shopfloor_periodically in rows_shopfloor_periodically:
289
                    current_datetime_local = row_shopfloor_periodically[0].replace(tzinfo=timezone.utc) + \
290
                                             timedelta(minutes=timezone_offset)
291
                    if period_type == 'hourly':
292
                        current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S')
293
                    elif period_type == 'daily':
294
                        current_datetime = current_datetime_local.strftime('%Y-%m-%d')
295
                    elif period_type == 'monthly':
296
                        current_datetime = current_datetime_local.strftime('%Y-%m')
297
                    elif period_type == 'yearly':
298
                        current_datetime = current_datetime_local.strftime('%Y')
299
300
                    actual_value = Decimal(0.0) if row_shopfloor_periodically[1] is None \
301
                        else row_shopfloor_periodically[1]
302
                    base[energy_category_id]['timestamps'].append(current_datetime)
0 ignored issues
show
introduced by
The variable current_datetime does not seem to be defined for all execution paths.
Loading history...
303
                    base[energy_category_id]['values'].append(actual_value)
304
                    base[energy_category_id]['subtotal'] += actual_value
305
306
        ################################################################################################################
307
        # Step 7: query reporting period energy input
308
        ################################################################################################################
309
        reporting = dict()
310
        if energy_category_set is not None and len(energy_category_set) > 0:
311
            for energy_category_id in energy_category_set:
312
                reporting[energy_category_id] = dict()
313
                reporting[energy_category_id]['timestamps'] = list()
314
                reporting[energy_category_id]['values'] = list()
315
                reporting[energy_category_id]['subtotal'] = Decimal(0.0)
316
                reporting[energy_category_id]['mean'] = None
317
                reporting[energy_category_id]['median'] = None
318
                reporting[energy_category_id]['minimum'] = None
319
                reporting[energy_category_id]['maximum'] = None
320
                reporting[energy_category_id]['stdev'] = None
321
                reporting[energy_category_id]['variance'] = None
322
323
                cursor_energy.execute(" SELECT start_datetime_utc, actual_value "
324
                                      " FROM tbl_shopfloor_input_category_hourly "
325
                                      " WHERE shopfloor_id = %s "
326
                                      "     AND energy_category_id = %s "
327
                                      "     AND start_datetime_utc >= %s "
328
                                      "     AND start_datetime_utc < %s "
329
                                      " ORDER BY start_datetime_utc ",
330
                                      (shopfloor['id'],
331
                                       energy_category_id,
332
                                       reporting_start_datetime_utc,
333
                                       reporting_end_datetime_utc))
334
                rows_shopfloor_hourly = cursor_energy.fetchall()
335
336
                rows_shopfloor_periodically, \
337
                    reporting[energy_category_id]['mean'], \
338
                    reporting[energy_category_id]['median'], \
339
                    reporting[energy_category_id]['minimum'], \
340
                    reporting[energy_category_id]['maximum'], \
341
                    reporting[energy_category_id]['stdev'], \
342
                    reporting[energy_category_id]['variance'] = \
343
                    utilities.statistics_hourly_data_by_period(rows_shopfloor_hourly,
344
                                                               reporting_start_datetime_utc,
345
                                                               reporting_end_datetime_utc,
346
                                                               period_type)
347
348
                for row_shopfloor_periodically in rows_shopfloor_periodically:
349
                    current_datetime_local = row_shopfloor_periodically[0].replace(tzinfo=timezone.utc) + \
350
                                             timedelta(minutes=timezone_offset)
351
                    if period_type == 'hourly':
352
                        current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S')
353
                    elif period_type == 'daily':
354
                        current_datetime = current_datetime_local.strftime('%Y-%m-%d')
355
                    elif period_type == 'monthly':
356
                        current_datetime = current_datetime_local.strftime('%Y-%m')
357
                    elif period_type == 'yearly':
358
                        current_datetime = current_datetime_local.strftime('%Y')
359
360
                    actual_value = Decimal(0.0) if row_shopfloor_periodically[1] is None \
361
                        else row_shopfloor_periodically[1]
362
                    reporting[energy_category_id]['timestamps'].append(current_datetime)
363
                    reporting[energy_category_id]['values'].append(actual_value)
364
                    reporting[energy_category_id]['subtotal'] += actual_value
365
366
        ################################################################################################################
367
        # Step 8: query tariff data
368
        ################################################################################################################
369
        parameters_data = dict()
370
        parameters_data['names'] = list()
371
        parameters_data['timestamps'] = list()
372
        parameters_data['values'] = list()
373
        if energy_category_set is not None and len(energy_category_set) > 0:
374
            for energy_category_id in energy_category_set:
375
                energy_category_tariff_dict = utilities.get_energy_category_tariffs(shopfloor['cost_center_id'],
376
                                                                                    energy_category_id,
377
                                                                                    reporting_start_datetime_utc,
378
                                                                                    reporting_end_datetime_utc)
379
                tariff_timestamp_list = list()
380
                tariff_value_list = list()
381
                for k, v in energy_category_tariff_dict.items():
382
                    # convert k from utc to local
383
                    k = k + timedelta(minutes=timezone_offset)
384
                    tariff_timestamp_list.append(k.isoformat()[0:19][0:19])
385
                    tariff_value_list.append(v)
386
387
                parameters_data['names'].append('TARIFF-' + energy_category_dict[energy_category_id]['name'])
388
                parameters_data['timestamps'].append(tariff_timestamp_list)
389
                parameters_data['values'].append(tariff_value_list)
390
391
        ################################################################################################################
392
        # Step 9: query associated sensors and points data
393
        ################################################################################################################
394
        for point in point_list:
395
            point_values = []
396
            point_timestamps = []
397
            if point['object_type'] == 'ANALOG_VALUE':
398
                query = (" SELECT utc_date_time, actual_value "
399
                         " FROM tbl_analog_value "
400
                         " WHERE point_id = %s "
401
                         "       AND utc_date_time BETWEEN %s AND %s "
402
                         " ORDER BY utc_date_time ")
403
                cursor_historical.execute(query, (point['id'],
404
                                                  reporting_start_datetime_utc,
405
                                                  reporting_end_datetime_utc))
406
                rows = cursor_historical.fetchall()
407
408
                if rows is not None and len(rows) > 0:
409
                    for row in rows:
410
                        current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \
411
                                                 timedelta(minutes=timezone_offset)
412
                        current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S')
413
                        point_timestamps.append(current_datetime)
414
                        point_values.append(row[1])
415
416
            elif point['object_type'] == 'ENERGY_VALUE':
417
                query = (" SELECT utc_date_time, actual_value "
418
                         " FROM tbl_energy_value "
419
                         " WHERE point_id = %s "
420
                         "       AND utc_date_time BETWEEN %s AND %s "
421
                         " ORDER BY utc_date_time ")
422
                cursor_historical.execute(query, (point['id'],
423
                                                  reporting_start_datetime_utc,
424
                                                  reporting_end_datetime_utc))
425
                rows = cursor_historical.fetchall()
426
427
                if rows is not None and len(rows) > 0:
428
                    for row in rows:
429
                        current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \
430
                                                 timedelta(minutes=timezone_offset)
431
                        current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S')
432
                        point_timestamps.append(current_datetime)
433
                        point_values.append(row[1])
434
            elif point['object_type'] == 'DIGITAL_VALUE':
435
                query = (" SELECT utc_date_time, actual_value "
436
                         " FROM tbl_digital_value "
437
                         " WHERE point_id = %s "
438
                         "       AND utc_date_time BETWEEN %s AND %s ")
439
                cursor_historical.execute(query, (point['id'],
440
                                                  reporting_start_datetime_utc,
441
                                                  reporting_end_datetime_utc))
442
                rows = cursor_historical.fetchall()
443
444
                if rows is not None and len(rows) > 0:
445
                    for row in rows:
446
                        current_datetime_local = row[0].replace(tzinfo=timezone.utc) + \
447
                                                 timedelta(minutes=timezone_offset)
448
                        current_datetime = current_datetime_local.strftime('%Y-%m-%dT%H:%M:%S')
449
                        point_timestamps.append(current_datetime)
450
                        point_values.append(row[1])
451
452
            parameters_data['names'].append(point['name'] + ' (' + point['units'] + ')')
453
            parameters_data['timestamps'].append(point_timestamps)
454
            parameters_data['values'].append(point_values)
455
456
        ################################################################################################################
457
        # Step 10: construct the report
458
        ################################################################################################################
459
        if cursor_system:
460
            cursor_system.close()
461
        if cnx_system:
462
            cnx_system.disconnect()
463
464
        if cursor_energy:
465
            cursor_energy.close()
466
        if cnx_energy:
467
            cnx_energy.disconnect()
468
469
        result = dict()
470
471
        result['shopfloor'] = dict()
472
        result['shopfloor']['name'] = shopfloor['name']
473
        result['shopfloor']['area'] = shopfloor['area']
474
475
        result['base_period'] = dict()
476
        result['base_period']['names'] = list()
477
        result['base_period']['units'] = list()
478
        result['base_period']['timestamps'] = list()
479
        result['base_period']['values'] = list()
480
        result['base_period']['subtotals'] = list()
481
        result['base_period']['means'] = list()
482
        result['base_period']['medians'] = list()
483
        result['base_period']['minimums'] = list()
484
        result['base_period']['maximums'] = list()
485
        result['base_period']['stdevs'] = list()
486
        result['base_period']['variances'] = list()
487
488
        if energy_category_set is not None and len(energy_category_set) > 0:
489
            for energy_category_id in energy_category_set:
490
                result['base_period']['names'].append(energy_category_dict[energy_category_id]['name'])
491
                result['base_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure'])
492
                result['base_period']['timestamps'].append(base[energy_category_id]['timestamps'])
493
                result['base_period']['values'].append(base[energy_category_id]['values'])
494
                result['base_period']['subtotals'].append(base[energy_category_id]['subtotal'])
495
                result['base_period']['means'].append(base[energy_category_id]['mean'])
496
                result['base_period']['medians'].append(base[energy_category_id]['median'])
497
                result['base_period']['minimums'].append(base[energy_category_id]['minimum'])
498
                result['base_period']['maximums'].append(base[energy_category_id]['maximum'])
499
                result['base_period']['stdevs'].append(base[energy_category_id]['stdev'])
500
                result['base_period']['variances'].append(base[energy_category_id]['variance'])
501
502
        result['reporting_period'] = dict()
503
        result['reporting_period']['names'] = list()
504
        result['reporting_period']['energy_category_ids'] = list()
505
        result['reporting_period']['units'] = list()
506
        result['reporting_period']['timestamps'] = list()
507
        result['reporting_period']['values'] = list()
508
        result['reporting_period']['subtotals'] = list()
509
        result['reporting_period']['means'] = list()
510
        result['reporting_period']['means_per_unit_area'] = list()
511
        result['reporting_period']['means_increment_rate'] = list()
512
        result['reporting_period']['medians'] = list()
513
        result['reporting_period']['medians_per_unit_area'] = list()
514
        result['reporting_period']['medians_increment_rate'] = list()
515
        result['reporting_period']['minimums'] = list()
516
        result['reporting_period']['minimums_per_unit_area'] = list()
517
        result['reporting_period']['minimums_increment_rate'] = list()
518
        result['reporting_period']['maximums'] = list()
519
        result['reporting_period']['maximums_per_unit_area'] = list()
520
        result['reporting_period']['maximums_increment_rate'] = list()
521
        result['reporting_period']['stdevs'] = list()
522
        result['reporting_period']['stdevs_per_unit_area'] = list()
523
        result['reporting_period']['stdevs_increment_rate'] = list()
524
        result['reporting_period']['variances'] = list()
525
        result['reporting_period']['variances_per_unit_area'] = list()
526
        result['reporting_period']['variances_increment_rate'] = list()
527
528
        if energy_category_set is not None and len(energy_category_set) > 0:
529
            for energy_category_id in energy_category_set:
530
                result['reporting_period']['names'].append(energy_category_dict[energy_category_id]['name'])
531
                result['reporting_period']['energy_category_ids'].append(energy_category_id)
532
                result['reporting_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure'])
533
                result['reporting_period']['timestamps'].append(reporting[energy_category_id]['timestamps'])
534
                result['reporting_period']['values'].append(reporting[energy_category_id]['values'])
535
                result['reporting_period']['subtotals'].append(reporting[energy_category_id]['subtotal'])
536
                result['reporting_period']['means'].append(reporting[energy_category_id]['mean'])
537
                result['reporting_period']['means_per_unit_area'].append(
538
                    reporting[energy_category_id]['mean'] / shopfloor['area']
539
                    if reporting[energy_category_id]['mean'] is not None and
540
                    shopfloor['area'] is not None and
541
                    shopfloor['area'] > Decimal(0.0)
542
                    else None)
543
                result['reporting_period']['means_increment_rate'].append(
544
                    (reporting[energy_category_id]['mean'] - base[energy_category_id]['mean']) /
545
                    base[energy_category_id]['mean'] if (base[energy_category_id]['mean'] is not None and
546
                                                         base[energy_category_id]['mean'] > Decimal(0.0))
547
                    else None)
548
                result['reporting_period']['medians'].append(reporting[energy_category_id]['median'])
549
                result['reporting_period']['medians_per_unit_area'].append(
550
                    reporting[energy_category_id]['median'] / shopfloor['area']
551
                    if reporting[energy_category_id]['median'] is not None and
552
                    shopfloor['area'] is not None and
553
                    shopfloor['area'] > Decimal(0.0)
554
                    else None)
555
                result['reporting_period']['medians_increment_rate'].append(
556
                    (reporting[energy_category_id]['median'] - base[energy_category_id]['median']) /
557
                    base[energy_category_id]['median'] if (base[energy_category_id]['median'] is not None and
558
                                                           base[energy_category_id]['median'] > Decimal(0.0))
559
                    else None)
560
                result['reporting_period']['minimums'].append(reporting[energy_category_id]['minimum'])
561
                result['reporting_period']['minimums_per_unit_area'].append(
562
                    reporting[energy_category_id]['minimum'] / shopfloor['area']
563
                    if reporting[energy_category_id]['minimum'] is not None and
564
                    shopfloor['area'] is not None and
565
                    shopfloor['area'] > Decimal(0.0)
566
                    else None)
567
                result['reporting_period']['minimums_increment_rate'].append(
568
                    (reporting[energy_category_id]['minimum'] - base[energy_category_id]['minimum']) /
569
                    base[energy_category_id]['minimum'] if (base[energy_category_id]['minimum'] is not None and
570
                                                            base[energy_category_id]['minimum'] > Decimal(0.0))
571
                    else None)
572
                result['reporting_period']['maximums'].append(reporting[energy_category_id]['maximum'])
573
                result['reporting_period']['maximums_per_unit_area'].append(
574
                    reporting[energy_category_id]['maximum'] / shopfloor['area']
575
                    if reporting[energy_category_id]['maximum'] is not None and
576
                    shopfloor['area'] is not None and
577
                    shopfloor['area'] > Decimal(0.0)
578
                    else None)
579
                result['reporting_period']['maximums_increment_rate'].append(
580
                    (reporting[energy_category_id]['maximum'] - base[energy_category_id]['maximum']) /
581
                    base[energy_category_id]['maximum'] if (base[energy_category_id]['maximum'] is not None and
582
                                                            base[energy_category_id]['maximum'] > Decimal(0.0))
583
                    else None)
584
                result['reporting_period']['stdevs'].append(reporting[energy_category_id]['stdev'])
585
                result['reporting_period']['stdevs_per_unit_area'].append(
586
                    reporting[energy_category_id]['stdev'] / shopfloor['area']
587
                    if reporting[energy_category_id]['stdev'] is not None and
588
                    shopfloor['area'] is not None and
589
                    shopfloor['area'] > Decimal(0.0)
590
                    else None)
591
                result['reporting_period']['stdevs_increment_rate'].append(
592
                    (reporting[energy_category_id]['stdev'] - base[energy_category_id]['stdev']) /
593
                    base[energy_category_id]['stdev'] if (base[energy_category_id]['stdev'] is not None and
594
                                                          base[energy_category_id]['stdev'] > Decimal(0.0))
595
                    else None)
596
                result['reporting_period']['variances'].append(reporting[energy_category_id]['variance'])
597
                result['reporting_period']['variances_per_unit_area'].append(
598
                    reporting[energy_category_id]['variance'] / shopfloor['area']
599
                    if reporting[energy_category_id]['variance'] is not None and
600
                    shopfloor['area'] is not None and
601
                    shopfloor['area'] > Decimal(0.0)
602
                    else None)
603
                result['reporting_period']['variances_increment_rate'].append(
604
                    (reporting[energy_category_id]['variance'] - base[energy_category_id]['variance']) /
605
                    base[energy_category_id]['variance'] if (base[energy_category_id]['variance'] is not None and
606
                                                             base[energy_category_id]['variance'] > Decimal(0.0))
607
                    else None)
608
609
        result['parameters'] = {
610
            "names": parameters_data['names'],
611
            "timestamps": parameters_data['timestamps'],
612
            "values": parameters_data['values']
613
        }
614
615
        # export result to Excel file and then encode the file to base64 string
616
        result['excel_bytes_base64'] = excelexporters.shopfloorstatistics.export(result,
617
                                                                                 shopfloor['name'],
618
                                                                                 reporting_start_datetime_local,
619
                                                                                 reporting_end_datetime_local,
620
                                                                                 period_type)
621
622
        resp.body = json.dumps(result)
623